Nonlinear Resonance Vibration Assessment to Evaluate the Freezing and Thawing Resistance of Concrete
Abstract
1. Introduction
2. Nonlinear Resonance Vibration
3. Experiments and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Powers, T.C. A working hypothesis for further studies of frost resistance. J. Am. Concr. Inst. 1945, 16, 245–272. [Google Scholar]
- Scherer, G.W.; Valenza, J.J. Mechanisms of frost damage. Mater. Sci. Concr. 2005, 7, 209–246. [Google Scholar]
- Scherer, G.W. Crystallization in pores. Cem. Concr. Res. 1999, 29, 1347–1358. [Google Scholar] [CrossRef]
- Coussy, O.; Monteiro, P.J. Poroelasticmodel for concrete exposed to freezing temperatures. Cem. Concr. Res. 2008, 38, 40–48. [Google Scholar] [CrossRef]
- Zeng, Q.; Fen-Chong, T.; Dangla, P.; Li, K. A study of freezing behavior of cementitious materials by poromechanical approach. Int. J. Solids Struct. 2011, 48, 3267–3273. [Google Scholar] [CrossRef]
- ASTM C94/C94M-17a. Standard Specification for Ready-Mixed Concrete; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Mardani-Aghabaglou, A.; Andiç-Çakir, Ö.; Ramyar, K. Freeze–thaw resistance and transport properties of high-volume fly ash roller compacted concrete designed by maximum density method. Cem. Concr. Compos. 2013, 37, 259–266. [Google Scholar] [CrossRef]
- Tuyan, M.; Mardani-Aghabaglou, A.; Ramyar, K. Freeze–thaw resistance, mechanical and transport properties of self-consolidating concrete incorporating coarse recycled concrete aggregate. Mater. Des. 2014, 53, 983–991. [Google Scholar] [CrossRef]
- Bogas, J.; de Brito, J.; Ramos, D. Freeze–thaw resistance of concrete produced with fine recycled concrete aggregates. J. Clean. Prod. 2016, 115, 294–306. [Google Scholar] [CrossRef]
- Gokce, A.; Nagataki, S.; Saeki, T.; Hisada, M. Freezing and thawing resistance of air-entrained concrete incorporating recycled coarse aggregate: The role of air content in demolished concrete. Cem. Concr. Res. 2004, 34, 799–806. [Google Scholar] [CrossRef]
- ASTM C457/C457M-16. Standard Test Method for Microscopial Determination of Parameters of the Air-Void System in Hardened Concrete; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Mehta, P.K.; Monteiro, P.J. Concrete: Microstructure, Properties, and Materials, 4th ed.; McGraw-Hill Education: New York, NY, USA, 2006; pp. 41–80. [Google Scholar]
- Philleo, R.E. A method for analyzing void distribution in air-entrained concrete. Cem. Concr. Aggreg. 1983, 5, 128–130. [Google Scholar]
- Attiogbe, E.K. Volume fraction of protected paste and mean spacing of air voids. ACI Mater. J. 1997, 94, 588–591. [Google Scholar]
- Pleau, R.; Pigeon, M. The use of the flow length concept to assess the efficiency of airentrainment with regards to frost durability: Part I—Description of the test method. Cem. Concr. Aggreg. 1997, 5, 128–130. [Google Scholar]
- Lu, B.; Torquato, S. Nearest-surface distribution functions for polydispersed particle systems. Phys. Rev. A 1992, 45, 5530–5544. [Google Scholar] [CrossRef] [PubMed]
- Mayercsik, N.P.; Felice, R.; Ley, M.T.; Kurtis, K.E. A probabilistic technique for entrained air void analysis in hardened concrete. Cem. Concr. Res. 2014, 59, 16–23. [Google Scholar] [CrossRef]
- Mayercsik, N.P.; Vandamme, M.; Kurtis, K.E. Assessing the efficiency of entrained air voids for freeze-thaw durability through modeling. Cem. Concr. Res. 2016, 88, 43–59. [Google Scholar] [CrossRef]
- Suzuki, T.; Ogata, H.; Takada, R.; Aoki, M.; Ohtsu, M. Use of acoustic emission and X-ray computed tomography for damage evaluation of freeze-thawed concrete. Constr. Build. Mater. 2010, 24, 2347–2352. [Google Scholar] [CrossRef]
- Yim, H.J.; Kim, J.H.; Park, S.J.; Kwak, H.G. Characterization of thermally damaged concrete using a nonlinear ultrasonic method. Cem. Concr. Res. 2012, 42, 1438–1446. [Google Scholar] [CrossRef]
- Yim, H.J.; Park, S.J.; Kim, J.H.; Kwak, H.G. Nonlinear Ultrasonic Method to Evaluate Residual Mechanical Properties of Thermally Damaged Concrete. ACI Mater. J. 2014, 111, 1–11. [Google Scholar] [CrossRef]
- Nagy, P.B. Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 1998, 36, 375–381. [Google Scholar] [CrossRef]
- Herrmann, J.; Kim, J.Y.; Jacobs, L.J.; Qu, J.; Littles, J.W.; Savage, M.F. Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves. J. Appl. Phys. 2006, 99, 124913–124918. [Google Scholar] [CrossRef]
- Zaitsev, V.; Nazarov, V.; Gusev, V.; Castagnede, B. Novel nonlinear-modulation acoustic technique for crack detection. NDT&E Int. 2006, 39, 184–194. [Google Scholar]
- Warnemuende, K.; Wu, H.C. Actively modulated acoustic nondestructive evaluation of concrete. Cem. Concr. Res. 2004, 34, 563–570. [Google Scholar] [CrossRef]
- Chen, X.J.; Kim, J.Y.; Kurtis, K.E.; Qu, J.; Shen, C.W.; Jacobs, L.J. Characterization of progressive microcracking in Portland cement mortar using nonlinear ultrasonics. NDT&E Int. 2008, 41, 112–118. [Google Scholar]
- Park, S.J.; Yim, H.J.; Kwak, H.G. Nonlinear Resonance Vibration Method to Estimate Peak Temperature Exposure of Fire-Damaged Concrete. Fire Saf. J. 2014, 69, 36–42. [Google Scholar] [CrossRef]
- Park, S.J.; Park, K.G.; Yim, H.J.; Kwak, H.G. Evaluation of Residual Tensile Strength of Fire-damaged Concrete Using a Nonlinear Resonance Vibration Method. Mag. Concr. Res. 2014, 67, 235–246. [Google Scholar] [CrossRef]
- Park, S.J.; Yim, H.J.; Kwak, H.G. Effects of Post-fire Curing Conditions on the Restoration of Material Properties of Fire-damaged Concrete. Constr. Build. Mater. 2015, 99, 90–98. [Google Scholar] [CrossRef]
- Bouchaala, F.; Payan, C.; Garnier, V.; Balayssac, J.P. Carbonation assessment in concrete by nonlinear ultrasound. Cem. Concr. Res. 2011, 41, 557–559. [Google Scholar] [CrossRef]
- Yim, H.J.; Park, S.J.; Kim, J.H.; Kwak, H.G. Evaluation of Freezing and Thawing Damage of Concrete Using a Nonlinear Ultrasonic Method. Smart Struct. Sys. 2016, 17, 45–58. [Google Scholar] [CrossRef]
- Chen, J.; Bharata, R.; Yin, T.; Wang, Q.; Wang, H.; Zhang, T. Assessment of sulfate attack and freeze–thaw cycle damage of cement-based materials by a nonlinear acoustic technique. Mater. Struct. 2017, 50, 105. [Google Scholar] [CrossRef]
- Van Den Abeele, K.E.A.; Johnson, P.A.; Sutin, A. Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: Nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 2000, 12, 17–30. [Google Scholar] [CrossRef]
- Van Den Abeele, K.E.A.; Sutin, A.; Carmeliet, J.; Johnson, P.A. Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT&E Int. 2001, 34, 239–248. [Google Scholar]
- ASTM C231-08b. Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- ASTM C 666-03. Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Neville, A.M. Properties of Concrete; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Klieger, P. Further Studies on the Effect of Entrained Air on Strength and Durability of Concrete with Various Sizes of Aggregate. Highw. Res. Board Bull. 1956, 128, 16–17. [Google Scholar]
- Felice, R.; Freeman, J.M.; Ley, M.T. Durable concrete with modern air-entraining admixtures. Concr. Int. 2014, 36, 37–45. [Google Scholar]
Label | A | B | C | D |
---|---|---|---|---|
Compressive strength [MPa] | 63 | 48 | 52 | 29 |
Air content [%] | 3.5 ± 1.5 | 3.5 ± 1.5 | 0.2 ± 0.1 | 0.6 ± 0.2 |
w/b | 0.34 | 0.41 | 0.50 | 0.60 |
Water [kg/m3] | 165 | 175 | 160 | 171 |
Cement [kg/m3] | 368 | 292 | 320 | 285 |
Fly ash [kg/m3] | - | 43 | - | - |
GGBFS * [kg/m3] | 123 | 86 | - | - |
Sand [kg/m3] | 482 | 493 | 744 | 744 |
Coarse sand [kg/m3] | 324 | 488 | - | - |
Gravel [kg/m3] | 880 | 715 | 1,100 | 1,100 |
Expander [kg/m3] | 49 | 9 | - | - |
HRWRA ** [kg/m3] | 3.92 | 4.35 | - | - |
Oxide composition | CaO | SiO2 | Al2O3 | Fe2O3 | SO3 | MgO | K2O | Na2O |
---|---|---|---|---|---|---|---|---|
Cement | 65.47 | 17.71 | 4.50 | 3.37 | 3.44 | 3.29 | 1.11 | 0.16 |
Fly ash | 11.70 | 56.70 | 17.70 | 5.90 | 1.80 | 1.80 | 1.20 | 1.10 |
GGBFS | 44.30 | 33.70 | 11.60 | 1.20 | 1.50 | 4.30 | 0.40 | 0.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Park, S.-J.; Yim, H.J. Nonlinear Resonance Vibration Assessment to Evaluate the Freezing and Thawing Resistance of Concrete. Materials 2019, 12, 325. https://doi.org/10.3390/ma12020325
Kim JH, Park S-J, Yim HJ. Nonlinear Resonance Vibration Assessment to Evaluate the Freezing and Thawing Resistance of Concrete. Materials. 2019; 12(2):325. https://doi.org/10.3390/ma12020325
Chicago/Turabian StyleKim, Jae Hong, Sun-Jong Park, and Hong Jae Yim. 2019. "Nonlinear Resonance Vibration Assessment to Evaluate the Freezing and Thawing Resistance of Concrete" Materials 12, no. 2: 325. https://doi.org/10.3390/ma12020325
APA StyleKim, J. H., Park, S.-J., & Yim, H. J. (2019). Nonlinear Resonance Vibration Assessment to Evaluate the Freezing and Thawing Resistance of Concrete. Materials, 12(2), 325. https://doi.org/10.3390/ma12020325