Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = nonlinear ultrasound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8040 KiB  
Article
Development of Modified Drug Delivery Systems with Metformin Loaded in Mesoporous Silica Matrices: Experimental and Theoretical Designs
by Mousa Sha’at, Maria Ignat, Florica Doroftei, Vlad Ghizdovat, Maricel Agop, Alexandra Barsan (Bujor), Monica Stamate Cretan, Fawzia Sha’at, Ramona-Daniela Pavaloiu, Adrian Florin Spac, Lacramioara Ochiuz, Carmen Nicoleta Filip and Ovidiu Popa
Pharmaceutics 2025, 17(7), 882; https://doi.org/10.3390/pharmaceutics17070882 - 4 Jul 2025
Viewed by 682
Abstract
Background/Objectives: Mesoporous silica materials, particularly KIT-6, offer promising features, such as large surface area, tunable pore structures, and biocompatibility, making them ideal candidates for advanced drug delivery systems. The aims of this study were to develop and evaluate an innovative modified-release platform for [...] Read more.
Background/Objectives: Mesoporous silica materials, particularly KIT-6, offer promising features, such as large surface area, tunable pore structures, and biocompatibility, making them ideal candidates for advanced drug delivery systems. The aims of this study were to develop and evaluate an innovative modified-release platform for metformin hydrochloride (MTF), using KIT-6 mesoporous silica as a matrix, to enhance oral antidiabetic therapy. Methods: KIT-6 was synthesized using an ultrasound-assisted sol-gel method and subsequently loaded with MTF via adsorption from alkaline aqueous solutions at two concentrations (1 and 3 mg/mL). The structural and morphological characteristics of the matrices—before and after drug loading—were assessed using SEM-EDX, TEM, and nitrogen adsorption–desorption isotherms (the BET method). In vitro drug release profiles were recorded in simulated gastric and intestinal fluids over 12 h. Kinetic modeling was performed using seven classical models, and a multifractal theoretical framework was used to further interpret the complex release behavior. Results: The loading efficiency increased with increasing drug concentration but nonlinearly, reaching 56.43 mg/g for 1 mg/mL and 131.69 mg/g for 3 mg/mL. BET analysis confirmed significant reductions in the surface area and pore volume upon MTF incorporation. In vitro dissolution showed a biphasic release: a fast initial phase in an acidic medium followed by sustained release at a neutral pH. The Korsmeyer–Peppas and Weibull models best described the release profiles, indicating a predominantly diffusion-controlled mechanism. The multifractal model supported the experimental findings, capturing nonlinear dynamics, memory effects, and soliton-like transport behavior across resolution scales. Conclusions: The study confirms the potential of KIT-6 as a reliable and efficient carrier for the modified oral delivery of metformin. The combination of experimental and multifractal modeling provides a deeper understanding of drug release mechanisms in mesoporous systems and offers a predictive tool for future drug delivery design. This integrated approach can be extended to other active pharmaceutical ingredients with complex release requirements. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

10 pages, 705 KiB  
Article
Enhancement of Subharmonic Intensity in a Cavity Filled with Bubbly Liquid Through Its Nonlinear Resonance Shift
by María Teresa Tejedor-Sastre and Christian Vanhille
Acoustics 2025, 7(2), 17; https://doi.org/10.3390/acoustics7020017 - 28 Mar 2025
Viewed by 638
Abstract
The aim of this study is to examine the behavior of subharmonics in a one-dimensional cavity filled with a bubbly liquid, leveraging the nonlinear softening phenomenon of the medium at high amplitudes to enhance subharmonic generation. To this purpose, we use a numerical [...] Read more.
The aim of this study is to examine the behavior of subharmonics in a one-dimensional cavity filled with a bubbly liquid, leveraging the nonlinear softening phenomenon of the medium at high amplitudes to enhance subharmonic generation. To this purpose, we use a numerical model developed previously that solves a coupled differential system formed by the wave equation and a Taylor-expanded Rayleigh–Plesset equation. This system describes the nonlinear mutual interaction between ultrasound and bubble vibrations. We carry out several different simulations to measure the response of the subharmonic component f/2 and the acoustic source frequency signal f when the cavity is excited over a range around the linear resonance frequency of the cavity (the resonance value obtained at low pressure amplitudes). Different source amplitudes in three different kinds of medium are used. Our results reveal several new characteristics of subharmonics as follows: their generation is predominant compared to the source frequency; their generation is affected by the softening of the bubbly medium when acoustic pressure amplitudes are raised; this specific behavior is solely an acoustically-related phenomenon; their behavior may indicate that the bubbly liquid medium is undergoing a softening process. Full article
Show Figures

Figure 1

13 pages, 1462 KiB  
Article
Inactivation Kinetics of Escherichia coli and Staphylococcus aureus Using Ultrasound in a Model Parenteral Emulsion
by Maricarmen Iñiguez-Moreno, Montserrat Calderón-Santoyo, Gabriel Ascanio, Estefanía Brito-Bazán, María Soledad Córdova-Aguilar, Edmundo Brito-de la Fuente and Juan Arturo Ragazzo-Sánchez
Appl. Microbiol. 2025, 5(1), 34; https://doi.org/10.3390/applmicrobiol5010034 - 20 Mar 2025
Cited by 1 | Viewed by 625
Abstract
Ultrasound (US) is a technology that enables microbial inactivation through cavitation-induced cell wall disruption, preserving food safety and quality. This study evaluated the impact of US parameters, including time, temperature, and surrounding media (saline solution and lipid parenteral emulsion) on Escherichia coli and [...] Read more.
Ultrasound (US) is a technology that enables microbial inactivation through cavitation-induced cell wall disruption, preserving food safety and quality. This study evaluated the impact of US parameters, including time, temperature, and surrounding media (saline solution and lipid parenteral emulsion) on Escherichia coli and Staphylococcus aureus reduction. Microbial survival was quantified via plate counting, and inactivation kinetics were modeled using GInaFiT. Microbial reductions ranged from 0.05 to 6.10 Log10 CFU/mL, with E. coli showing greater susceptibility than S. aureus. The highest reduction (6.10 Log10 CFU/mL) was observed for E. coli in the emulsion after 5 min at uncontrolled temperature, while S. aureus exhibited lower susceptibility (3.92 Log10 CFU/mL). The Weibull model provided the best fit, highlighting the non-linear nature of microbial inactivation. The US presents a promising alternative for microbial control in food and pharmaceutical applications. Future research should optimize treatment conditions, understand microbial resistance mechanisms, and integrate the US with other hurdle technologies to enhance efficiency. In addition, studies about the US’s scalability for the pharmaceutical industry could widespread its implementation in that sector. Full article
(This article belongs to the Special Issue Applied Microbiology of Foods, 2nd Edition)
Show Figures

Figure 1

16 pages, 1241 KiB  
Article
Antioxidant Intake and Ovarian Reserve in Women Attending a Fertility Center
by Ana B. Maldonado-Cárceles, Irene Souter, Ming-Chieh Li, Makiko Mitsunami, Irene Dimitriadis, Jennifer B. Ford, Lidia Mínguez-Alarcón and Jorge E. Chavarro
Nutrients 2025, 17(3), 554; https://doi.org/10.3390/nu17030554 - 31 Jan 2025
Viewed by 2792
Abstract
Background/Objectives: The aim of this study was to investigate the association between antioxidant intake and antral follicle count (AFC), a marker of ovarian reserve, in women attending a fertility clinic. Methods: We conducted an observational study with 567 women undergoing infertility evaluation at [...] Read more.
Background/Objectives: The aim of this study was to investigate the association between antioxidant intake and antral follicle count (AFC), a marker of ovarian reserve, in women attending a fertility clinic. Methods: We conducted an observational study with 567 women undergoing infertility evaluation at the Massachusetts General Hospital Fertility Center, who were enrolled in the Environment and Reproductive Health (EARTH) study. Participants filled out the lifestyle and health questionnaires and a validated food frequency questionnaire (FFQ) for assessing habitual dietary intake and underwent a transvaginal ultrasound to measure AFC. Intake of nutrients with direct antioxidant capacity (vitamin A, C, and E and carotenoids) and intake of antioxidant food sources were estimated from the FFQ. Adjusted Poisson regression models were fitted to assess the relationships between antioxidants and AFC while adjusting for potential confounders. Non-linearity was assessed with restricted cubic splines. Results: The median (interquartile range) age and AFC of participants were 35.0 (32.0–38.0) years and 13 (9–18), respectively. Our findings revealed a non-linear association between lycopene intake and AFC. There was a positive linear association with the highest AFC among women consuming approximately 6000 mcg/day of lycopene (p for non-linearity = 0.003). An inverse association was observed between retinol intake, predominantly from dairy foods, and AFC among women aged under 35 years (p-trend < 0.001 and 0.01, respectively). Conclusions: Our findings suggest that lycopene intake might influence the ovarian reserve in fertility patients. The observed inverse association with retinol, if confirmed, may reflect biological mechanisms different from oxidative stress. The underlying mechanisms of these associations remain to be elucidated and warrant further investigation. Full article
(This article belongs to the Special Issue Impact of Diet, Nutrition and Lifestyle on Reproductive Health)
Show Figures

Figure 1

16 pages, 3421 KiB  
Article
Construction of a Compound Model to Enhance the Accuracy of Hepatic Fat Fraction Estimation with Quantitative Ultrasound
by Zsély Boglárka, Zita Zsombor, Aladár D. Rónaszéki, Anna Egresi, Róbert Stollmayer, Marco Himsel, Viktor Bérczi, Ildikó Kalina, Klára Werling, Gabriella Győri, Pál Maurovich-Horvat, Anikó Folhoffer, Krisztina Hagymási and Pál Novák Kaposi
Diagnostics 2025, 15(2), 203; https://doi.org/10.3390/diagnostics15020203 - 17 Jan 2025
Viewed by 1068
Abstract
Background: we evaluated regression models based on quantitative ultrasound (QUS) parameters and compared them with a vendor-provided method for calculating the ultrasound fat fraction (USFF) in metabolic dysfunction-associated steatotic liver disease (MASLD). Methods: We measured the attenuation coefficient (AC) and the backscatter-distribution coefficient [...] Read more.
Background: we evaluated regression models based on quantitative ultrasound (QUS) parameters and compared them with a vendor-provided method for calculating the ultrasound fat fraction (USFF) in metabolic dysfunction-associated steatotic liver disease (MASLD). Methods: We measured the attenuation coefficient (AC) and the backscatter-distribution coefficient (BSC-D) and determined the USFF during a liver ultrasound and calculated the magnetic resonance imaging proton-density fat fraction (MRI-PDFF) and steatosis grade (S0–S4) in a combined retrospective–prospective cohort. We trained multiple models using single or various QUS parameters as independent variables to forecast MRI-PDFF. Linear and nonlinear models were trained during five-time repeated three-fold cross-validation in a retrospectively collected dataset of 60 MASLD cases. We calculated the models’ Pearson correlation (r) and the intraclass correlation coefficient (ICC) in a prospectively collected test set of 57 MASLD cases. Results: The linear multivariable model (r = 0.602, ICC = 0.529) and USFF (r = 0.576, ICC = 0.54) were more reliable in S0- and S1-grade steatosis than the nonlinear multivariable model (r = 0.492, ICC = 0.461). In S2 and S3 grades, the nonlinear multivariable (r = 0.377, ICC = 0.32) and AC-only (r = 0.375, ICC = 0.313) models’ approximated correlation and agreement surpassed that of the multivariable linear model (r = 0.394, ICC = 0.265). We searched a QUS parameter grid to find the optimal thresholds (AC ≥ 0.84 dB/cm/MHz, BSC-D ≥ 105), above which switching from a linear (r = 0.752, ICC = 0.715) to a nonlinear multivariable (r = 0.719, ICC = 0.641) model could improve the overall fit (r = 0.775, ICC = 0.718). Conclusions: The USFF and linear multivariable models are robust in diagnosing low-grade steatosis. Switching to a nonlinear model could enhance the fit to MRI-PDFF in advanced steatosis. Full article
(This article belongs to the Special Issue Current Challenges and Perspectives of Ultrasound, 2nd Edition)
Show Figures

Figure 1

14 pages, 5479 KiB  
Article
Spectral Content Effects Study in Non-Contact Resonance Ultrasound Spectroscopy
by Muhammad Tayyib and Linas Svilainis
Sensors 2025, 25(1), 265; https://doi.org/10.3390/s25010265 - 5 Jan 2025
Viewed by 3110
Abstract
The application of spread-spectrum signals (arbitrary pulse width and position (APWP) sequences) in air-coupled resonant ultrasound spectroscopy is studied. It was hypothesized that spread-spectrum signal optimization should be based on te signal to noise ratio (SNR). Six APWP signal optimization criteria were proposed [...] Read more.
The application of spread-spectrum signals (arbitrary pulse width and position (APWP) sequences) in air-coupled resonant ultrasound spectroscopy is studied. It was hypothesized that spread-spectrum signal optimization should be based on te signal to noise ratio (SNR). Six APWP signal optimization criteria were proposed for this purpose. Experimental measurements were conducted using a thin polycarbonate sample using two standard spread-spectrum signals, linear and nonlinear frequency modulation, together with six optimized APWP signals. It was found that the performance of APWP signals derived from linear frequency modulation was better. The two best performing optimization criteria are SNR improvement on a linear scale with the SNR as an additional weight and energy improvement on a dB scale. The influence of spectral coverage on measurement errors was evaluated. It was found that it is sufficient to cover the sample resonance peak and the valley. The lowest error rates for density, 3%, and for thickness, 3.5%, were achieved when the upper valley was covered. For velocity, the best result, 5%, was achieved when the lower valley was covered. The lowest error rate for attenuation, 3.8%, was achieved in the case when both valleys were covered. Yet no significant performance degradation was noted when a whole −30 dB passband was covered. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

13 pages, 1235 KiB  
Article
Features of Generation, Propagation and Application of Special Ultrasonic Impulses in Viscous Liquids
by Oleg M. Gradov
Math. Comput. Appl. 2024, 29(6), 121; https://doi.org/10.3390/mca29060121 - 18 Dec 2024
Viewed by 673
Abstract
An exact numerical and approximate analytical description of solitary acoustic pulses with a large difference in spatial gradients of parameters in different directions has been obtained in viscous liquids using this small parameter. The method of special initial-boundary conditions obtained during analyzing the [...] Read more.
An exact numerical and approximate analytical description of solitary acoustic pulses with a large difference in spatial gradients of parameters in different directions has been obtained in viscous liquids using this small parameter. The method of special initial-boundary conditions obtained during analyzing the hydrodynamic equations has been applied to describe the peculiarities of this nonlinear phenomenon. Waves of this type exist in the presence of two- or three-dimensional inhomogeneity of the initial disturbances and retain a spatial structure along the direction of propagation when traveling long distances. At the same time, it is possible to regulate the pressure drop and the speed of the acoustic signal, which creates unique conditions for a special force effect or information transmission. The efficiency of their use in such processes as metal dissolution, solvent extraction and mass transfer under the conditions of resonance exposure of ultrasound was evaluated. Fine details of exciting the nonlinear impulse with the necessary properties have been analyzed to demonstrate a possible way to a new technology of successfully treating any different specimens, materials and constructions for a long distance between the source of radiation and the position of the treatment. The use of such pulses opens up new opportunities for remote acoustic force impact on various objects, as well as for the transmission of information. Full article
Show Figures

Figure 1

17 pages, 20539 KiB  
Article
Evaluation of Bonding Strength of Pipeline Coating Based on Circumferential Guided Waves
by Yunxiu Ma, Xiaoran Ding, Aocheng Wang, Gang Liu and Lei Chen
Coatings 2024, 14(12), 1526; https://doi.org/10.3390/coatings14121526 - 3 Dec 2024
Viewed by 1082
Abstract
The anti-corrosion layer of the pipe provides corrosion resistance and extends the lifespan of the whole pipeline. Heat-shrinkable tape is primarily used as the pipeline joint coating material bonded to the pipeline weld connection position after heating. Delineating the bonding strength and assessing [...] Read more.
The anti-corrosion layer of the pipe provides corrosion resistance and extends the lifespan of the whole pipeline. Heat-shrinkable tape is primarily used as the pipeline joint coating material bonded to the pipeline weld connection position after heating. Delineating the bonding strength and assessing the quality of the bonded structure is crucial for pipeline safety. A detection technology based on nonlinear ultrasound is presented to quantitatively evaluate the bonding strength of a steel-EVA-polyethylene three-layer annulus bonding structure. Using the Floquet boundary condition, the dispersion curves of phase velocity and group velocity for a three-layer annulus bonding structure are obtained. Additionally, wave structure analysis is employed in theoretical study to choose guided wave modes that are appropriate for detection. In this paper, guided wave amplitude, frequency attenuation, and nonlinear harmonics are used to evaluate the structural bonding strength. The results reveal that the detection method based on amplitude and frequency attenuation can be used to preliminarily screen the poor bonding, while the acoustic nonlinear coefficient is sensitive to bonding strength changes. This study introduces a comprehensive and precise pipeline joint bonding strength detection system leveraging ultrasonic-guided wave technology for pipeline coating applications. The detection system determines the bonding strength of bonded structures with greater precision than conventional ultrasonic inspection methods. Full article
(This article belongs to the Special Issue Mechanical Automation Design and Intelligent Manufacturing)
Show Figures

Figure 1

19 pages, 3453 KiB  
Review
Opportunities and Challenges for Predicting the Service Status of SLM Metal Parts Under Big Data and Artificial Intelligence
by Xiaoling Yan and Huiwen Fu
Materials 2024, 17(22), 5648; https://doi.org/10.3390/ma17225648 - 19 Nov 2024
Viewed by 1160
Abstract
Selective laser melting (SLM) technology is a high-end dual-use technology that is implemented in aerospace and medical equipment, as well as the automotive industry and other military and civilian industries, and is urgently needed for major equipment manufacturing and national defense industries. This [...] Read more.
Selective laser melting (SLM) technology is a high-end dual-use technology that is implemented in aerospace and medical equipment, as well as the automotive industry and other military and civilian industries, and is urgently needed for major equipment manufacturing and national defense industries. This paper examines the challenges of uncontrollable service states and the inability to ensure service safety of SLM metal parts under nonlinear and complex operating conditions. An overview of the prediction of the service status of SLM metal parts was introduced, and an effective approach solving the problem was provided in this paper. In this approach, the cross-scale coupling mechanism between mesoscopic damage evolution and macroscopic service state evolution is clarified by tracking the mesoscopic damage evolution process of SLM metal parts based on ultrasonic nonlinear responses. The failure mechanism is organically integrated with hidden information from monitoring big data, and a “chimeric” model to accurately evaluate the service status of SLM metal parts is constructed. Combining nonlinear ultrasound technology with big data and artificial intelligence to construct a “chimeric” model and consummate the corresponding methods and theories for evaluating the service status of SLM metal parts is an effective way to reveal the mesoscopic damage evolution and service status evolution mechanisms of SLM metal parts under complex factor coupling, and to accurately describe and characterize the service status of parts under complex operating conditions. The proposed approach will provide a theoretical basis and technical guarantee for the precise management of SLM parts’ service safety in key equipment fields such as aerospace, medical equipment, and the automotive industry. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

20 pages, 23226 KiB  
Article
Signal Processing to Characterize and Evaluate Nonlinear Acoustic Signals Applied to Underwater Communications
by María Campo-Valera, Dídac Diego-Tortosa, Ignacio Rodríguez-Rodríguez, Jorge Useche-Ramírez and Rafael Asorey-Cacheda
Electronics 2024, 13(21), 4192; https://doi.org/10.3390/electronics13214192 - 25 Oct 2024
Cited by 3 | Viewed by 1611
Abstract
Nonlinear acoustic signals, specifically the parametric effect, offer significant advantages over linear signals because the low frequencies generated in the medium due to the intermodulation of the emitted frequencies are highly directional and can propagate over long distances. Due to these characteristics, a [...] Read more.
Nonlinear acoustic signals, specifically the parametric effect, offer significant advantages over linear signals because the low frequencies generated in the medium due to the intermodulation of the emitted frequencies are highly directional and can propagate over long distances. Due to these characteristics, a detailed analysis of these signals is necessary to accurately estimate the Time of Arrival (ToA) and amplitude parameters. This is crucial for various communication applications, such as sonar and underwater location systems. The research addresses a notable gap in the literature regarding comparative methods for analyzing nonlinear acoustic signals, particularly focusing on ToA estimation and amplitude parameterization. Two types of nonlinear modulations are examined: parametric Frequency-Shift Keying (FSK) and parametric sine-sweep modulation, which correspond to narrowband and broadband signals, respectively. The first study evaluates three ToA estimation methods—threshold, power variation (Pvar), and cross-correlation methods for the modulations in question. Following ToA estimation, the amplitude of the received signals is analyzed using acoustic signal processing techniques such as time-domain, frequency-domain, and cross-correlation methods. The practical application is validated through controlled laboratory experiments, which confirm the robustness and effectiveness of the existing methods proposed under study for nonlinear (parametric) acoustic signals. Full article
(This article belongs to the Special Issue Recent Advances in Signal Processing and Applications)
Show Figures

Figure 1

21 pages, 5954 KiB  
Article
Experimental Study of Hot-Sphere Anemometer Response in Stratospheric Environment
by Xiyuan Li, Xiaoning Yang, Xiaobin Shen, Guiping Lin, Dongxing Tao and Jing Wang
Sensors 2024, 24(20), 6674; https://doi.org/10.3390/s24206674 - 17 Oct 2024
Viewed by 913
Abstract
Accurate wind speed measurement in low-pressure conditions is crucial for the thermal performance validation and attitude control of stratospheric aircraft. As air density decreases, traditional wind speed measurement systems based on principles such as dynamic pressure, heat transfer, ultrasound, and particle velocimetry face [...] Read more.
Accurate wind speed measurement in low-pressure conditions is crucial for the thermal performance validation and attitude control of stratospheric aircraft. As air density decreases, traditional wind speed measurement systems based on principles such as dynamic pressure, heat transfer, ultrasound, and particle velocimetry face significant challenges when applied in low-pressure environments, often failing to achieve the required measurement accuracy. This paper presents the development of a wind speed simulation system based on a rotation method designed to operate in low-pressure conditions, utilizing a space environment simulation chamber in conjunction with a high-precision turntable. The system was employed to conduct response tests on a constant heat flow thermal sphere anemometer within a stratospheric pressure range of 1 kPa to 30 kPa. The experimental results revealed that at extremely low Reynolds numbers, the probe signal exhibited increasing nonlinearity, significantly affecting the response curve at pressures below 15 kPa. While the sensitivity of the hot-sphere probe remained relatively stable at wind speeds above 5 m/s, it decreased nonlinearly as the pressure dropped when wind speeds fell below 5 m/s. Furthermore, this paper analyzes the impact of various interpolation methods on wind speed conversion errors, providing valuable data to support the future development and validation of stratospheric aircraft. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

17 pages, 5246 KiB  
Article
A Comparative Study of Geometric Phase Change- and Sideband Peak Count-Based Techniques for Monitoring Damage Growth and Material Nonlinearity
by Guangdong Zhang, Tribikram Kundu, Pierre A. Deymier and Keith Runge
Sensors 2024, 24(20), 6552; https://doi.org/10.3390/s24206552 - 11 Oct 2024
Cited by 3 | Viewed by 1193
Abstract
This work presents numerical modeling-based investigations for detecting and monitoring damage growth and material nonlinearity in plate structures using topological acoustic (TA) and sideband peak count (SPC)-based sensing techniques. The nonlinear ultrasonic SPC-based technique (SPC-index or SPC-I) has shown its effectiveness in monitoring [...] Read more.
This work presents numerical modeling-based investigations for detecting and monitoring damage growth and material nonlinearity in plate structures using topological acoustic (TA) and sideband peak count (SPC)-based sensing techniques. The nonlinear ultrasonic SPC-based technique (SPC-index or SPC-I) has shown its effectiveness in monitoring damage growth affecting various engineering materials. However, the new acoustic parameter, “geometric phase change (GPC)” and GPC-index (or GPC-I), derived from the TA sensing technique adopted for monitoring damage growth or material nonlinearity has not been reported yet. The damage growth modeling is carried out by the peri-ultrasound technique to simulate nonlinear interactions between elastic waves and damages (cracks). For damage growth with a purely linear response and for the nonlinearity arising from only the nonlinear stress–strain relationship of the material, the numerical analysis is conducted by the finite element method (FEM) in the Abaqus/CAE 2021 software. In both numerical modeling scenarios, the SPC- and GPC-based techniques are adopted to capture and compare those responses. The computed results show that, from a purely linear scattering response in FEM modeling, the GPC-I can effectively detect the existence of damage but cannot monitor damage growth since the linear scattering differences are small when crack thickness increases. The SPC-I does not show any change when a nonlinear response is not generated. However, the nonlinear response from the damage growth can be efficiently modeled by the nonlocal peri-ultrasound technique. Both the GPC-I and SPC-I techniques can clearly show the damage evolution process if the frequencies are properly chosen. This investigation also shows that the GPC-I indicator has the capability to distinguish nonlinear materials from linear materials while the SPC-I is found to be more effective in distinguishing between different types of nonlinear materials. This work can reveal the mechanism of GPC-I for capturing linear and nonlinear responses, and thus can provide guidance in structural health monitoring (SHM). Full article
Show Figures

Figure 1

10 pages, 4190 KiB  
Communication
Research on High-Frequency PGC-EKF Demodulation Technology Based on EOM for Nonlinear Distortion Suppression
by Peng Wu, Qun Li, Jiabi Liang, Jian Shao, Yuncai Lu, Yuandi Lin, Tonglei Wang, Xiaohan Li, Zongling Zhao and Chuanlu Deng
Photonics 2024, 11(9), 801; https://doi.org/10.3390/photonics11090801 - 27 Aug 2024
Viewed by 1143
Abstract
In this study, a phase-generated carrier (PGC) demodulation algorithm combined with the extended Kalman filter (EKF) algorithm based on an electro-optic modulator (EOM) is proposed, which can achieve nonlinear distortion (such as modulation depth drift and carrier phase delay) suppression for high-frequency phase [...] Read more.
In this study, a phase-generated carrier (PGC) demodulation algorithm combined with the extended Kalman filter (EKF) algorithm based on an electro-optic modulator (EOM) is proposed, which can achieve nonlinear distortion (such as modulation depth drift and carrier phase delay) suppression for high-frequency phase carrier modulation. The improved algorithm is implemented on a field-programmable gate array (FPGA) hardware platform. The experimental results by the PGC-EKF method show that total harmonic distortion (THD) decreases from −32.61 to −54.51 dB, and SINAD increases from 32.59 to 47.86 dB, compared to the traditional PGC-Arctan method. This indicates that the PGC-EKF demodulation algorithm proposed in this paper can be widely used in many important fields such as hydrophone, transformer, and ultrasound signal detection. Full article
(This article belongs to the Special Issue Advanced Optical Fiber Sensors for Harsh Environment Applications)
Show Figures

Figure 1

13 pages, 2442 KiB  
Article
The Effect of Ultrasound Waves on the Pre-Settlement Behavior of Barnacle Cyprid Larvae
by Rubens M. Lopes, Claudia Guimarães, Felipe M. Neves, Leandro T. De-La-Cruz, Gelaysi Moreno Vega, Damián Mizrahi and Julio Cesar Adamowski
J. Mar. Sci. Eng. 2024, 12(8), 1364; https://doi.org/10.3390/jmse12081364 - 11 Aug 2024
Cited by 1 | Viewed by 1330
Abstract
Ultrasound waves have been employed to control marine biofouling but their effects on fouling organisms remain poorly understood. This study investigated the influence of ultrasound waves on barnacle (Tetraclita stalactifera cyprid larvae) pre-settlement behavior. Substrate inspection constituted most of the larval time [...] Read more.
Ultrasound waves have been employed to control marine biofouling but their effects on fouling organisms remain poorly understood. This study investigated the influence of ultrasound waves on barnacle (Tetraclita stalactifera cyprid larvae) pre-settlement behavior. Substrate inspection constituted most of the larval time budget, with a focus on the bottom surface rather than lateral or air–water interfaces. The frequency of substrate inspection decreased at 10 kPa when compared to higher acoustic pressures, while the time spent in the water column had an opposite trend. Various larval swimming modes were observed, including rotating, sinking, walking, and cruising, with rotating being dominant. Barnacle larvae exhibited higher speeds and less complex trajectories when subjected to ultrasound in comparison to controls. The impact of ultrasound waves on barnacle cyprid larvae behavior had a non-linear pattern, with lower acoustic pressure (10 kPa) inducing more effective substrate rejection than higher (15 and 20 kPa) intensities. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

17 pages, 11190 KiB  
Article
Visualization of Demodulated Sound Based on Sequential Acoustic Ray Tracing with Self-Demodulation in Parametric Array Loudspeakers
by Yuting Geng, Makoto Shimokata, Masato Nakayama and Takanobu Nishiura
Appl. Sci. 2024, 14(12), 5241; https://doi.org/10.3390/app14125241 - 17 Jun 2024
Cited by 1 | Viewed by 1152
Abstract
With the development of acoustic simulation methods in recent decades, it has become feasible to simulate the sound pressure distribution of loudspeakers before actually setting physical speakers and measuring the sound field. The parametric array loudspeaker (PAL) has attracted attention due to its [...] Read more.
With the development of acoustic simulation methods in recent decades, it has become feasible to simulate the sound pressure distribution of loudspeakers before actually setting physical speakers and measuring the sound field. The parametric array loudspeaker (PAL) has attracted attention due to its sharp directivity and unique applications. However, the sound reproduced by PALs is generated by the nonlinear interactions of ultrasound in the air, which makes it difficult to simulate the reproduced sound of a PAL with low computational load. Focusing on the sharp directivity of ultrasound, we extended conventional acoustic ray-tracing methods to consider the self-demodulation phenomenon of PALs. In this study, we developed a visualization method for the demodulated sound of a PAL. Specifically, the demodulated sound pressure distribution can be simulated to estimate and visualize the area covered by the reproduced sound of PAL before setting a real PAL. In the proposed method, acoustic rays were generated sequentially to express the generation of demodulated sound. Therefore, the proposed method is expected to simulate the demodulated sound of a PAL with acceptable accuracy and low calculation complexity. Quantitative evaluation between simulation results and practical measurement has been carried out, and the results demonstrate the effectiveness of the proposed method. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

Back to TopTop