Relationship between Dislocation Density and Antibacterial Activity of Cryo-Rolled and Cold-Rolled Copper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Processing
2.2. Physical and Mechanical Characterization
2.3. Adhesion and Proliferation of S. Aureus Cells on Copper Coupons
2.3.1. Bacterial Adhesion and Progression Assay
2.3.2. Bacterial Adhesion and Progression Assay
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alavi, M.; Karimi, N. Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract. Artif. Cells Nanomed. Biotechnol. 2017, 46, 2066–2081. [Google Scholar] [CrossRef] [PubMed]
- Hans, M.; Mathews, S.; Mücklich, F.; Solioz, M. Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases 2016, 11, 018902. [Google Scholar] [CrossRef] [PubMed]
- Champagne, V.K.; Helfritch, D.J. Mainstreaming cold spray—Push for applications. Surf. Eng. 2014, 30, 396–403. [Google Scholar] [CrossRef]
- Zhao, D.; Lu, Y.; Zeng, X.; Wang, Z.; Liu, S.; Wang, T. Antifouling property of micro-arc oxidation coating incorporating Cu2O nanoparticles on Ti6Al4V. Surf. Eng. 2017, 33, 796–802. [Google Scholar] [CrossRef]
- Krishnaiah, A.; Chakkingal, U.; Venugopal, P. Applicability of the groove pressing technique for grain refinement in commercial purity copper. Mater. Sci. Eng. A 2005, 410–411, 337–340. [Google Scholar] [CrossRef]
- Bailat, C.; Gröschel, F.; Victoria, M. Deformation modes of proton and neutron irradiated stainless steels. J. Nucl. Mater. 2000, 276, 283–288. [Google Scholar] [CrossRef]
- Cordero, Z.C.; Knight, B.E.; Schuh, C.A. Six decades of the Hall–Petch effect—A survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 2016, 61, 495–512. [Google Scholar] [CrossRef]
- Yogesha, K.K.; Joshi, A.; Kumar, N.; Jayaganthan, R. Effect of cryo groove rolling followed by warm rolling (CGW) on the mechanical properties of 5052 Al alloy. Mater. Manuf. Process. 2017, 32, 1336–1344. [Google Scholar] [CrossRef]
- Satish, D.R.; Feyissa, F.; Kumar, D.R. Cryorolling and warm forming of AA6061 aluminum alloy sheets. Mater. Manuf. Process. 2017, 32, 1345–1352. [Google Scholar] [CrossRef]
- Nanda, T.; Kumar, B.R.; Sharma, S.; Singh, V.; Pandey, O.P. Effect of thermal cycling process parameters on recrystallization kinetics for processing of fine-grained pure copper. Mater. Manuf. Process. 2017, 32, 34–43. [Google Scholar] [CrossRef]
- Valiev, R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 2004, 3, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zechetbauer, M.J.; Zhu, Y.T. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 2006, 58, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Anand, G.; Barai, K.; Madhavan, R.; Chattopadhyay, P.P. Evolution of annealing texture in cryo-rolled copper. Mater. Sci. Eng. A 2015, 638, 114–120. [Google Scholar] [CrossRef]
- Kocks, U.F.; Mecking, H. Physics and phenomenology of strain hardening: The FCC case. Prog. Mater. Sci. 2003, 48, 171–273. [Google Scholar] [CrossRef]
- Srinivas, B.; Dhal, A.; Panigrahi, S.K. A mathematical prediction model to establish the role of stacking fault energy on the cryo-deformation behavior of FCC materials at different strain levels. Int. J. Plast. 2017, 97, 159–177. [Google Scholar] [CrossRef]
- Bettinali, L.; Tosti, S.; Pizzuto, A. Mechanical and Electrical Properties of Cryo-worked Cu. J. Low Temp. Phys. 2014, 174, 64–75. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, W.; Yu, P.; Wang, X.; He, T.; Tan, G.; Ning, C. Antibacterial nanostructured copper coatings deposited on tantalum by magnetron sputtering. Mater. Technol. 2015, 30, B120–B125. [Google Scholar] [CrossRef]
- Momeni, M.M.; Hashemizadeh, S.; Mirhosseini, M.; Kazempour, A.; Hosseinizadeh, S.A. Preparation, characterisation, hardness and antibacterial properties of Zn–Ni–TiO2 nanocomposites coatings. Surf. Eng. 2016, 32, 490–494. [Google Scholar] [CrossRef]
- Harris, L.G.; Foster, S.J.; Richards, R.G. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying, S. aureus adhesisn in relation to adhesion to biomaterials: Review. Eur. Cells Mater. 2002, 4, 39–60. [Google Scholar] [CrossRef]
- Ma, N.; Cameron, A.; Tivey, D.; Grae, N.; Roberts, S.; Morris, A. Systematic review of a patient care bundle in reducing staphylococcal infections in cardiac and orthopaedic surgery. ANZ J. Surg. 2017, 87, 239–246. [Google Scholar] [CrossRef]
- Chen, A.F.; Wessel, C.B.; Rao, N. Staphylococcus aureus screening and decolonization in orthopaedic surgery and reduction of surgical site infections infection. Clin. Orthop. Relat. Res. 2013, 471, 2383–2399. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcal biofilms. Curr. Top. Microbiol. Immunol. 2008, 322, 207–228. [Google Scholar] [PubMed]
- Sivasankaran, S.; Alaboodi, A.S.; Al-Mufadi, F. Cold deformation of dezincification resistant yellow brass for plumbing applications. Mater. Manuf. Process. 2018, 33, 1–8. [Google Scholar] [CrossRef]
- Domashenkov, A.; Borbély, A.; Smurov, I. Structural modifications of WC/Co nanophased and conventional powders processed by selective laser melting. Mater. Manuf. Process. 2017, 32, 93–100. [Google Scholar] [CrossRef]
- Gay, P.; Hirsch, P.B.K.A. The estimation of dislocation densities in metals from X-ray data. Acta. Metall. 1953, 1, 315–319. [Google Scholar] [CrossRef]
- Jiang, J.; Britton, T.B.; Wilkinson, A.J. Accumulation of geometrically necessary dislocations near grain boundaries in deformed copper. Philos. Mag. Lett. 2012, 92, 580–588. [Google Scholar] [CrossRef]
- Hall, G.K.; Williamsons, W.H. X-ray line broadening from filed aluminum and wolfram. Acta. Metall. 1953, 1, 22–31. [Google Scholar]
- Hordon, M.J.; Averbach, B.L. X-ray measurement of dislocation density in deformed copper and aluminum single crystals. Acta Metall. 1961, 9, 237–246. [Google Scholar] [CrossRef]
- Mishnaevsky, L., Jr.; Levashov, E.; Valiev, R.Z.; Segurado, J.; Sabirov, I.; Enikeev, N.; Prokoshkin, S.; Solov’yov, A.V.; Korotitskiy, A.; Gutmanas, E.; et al. Nanostructured titanium-based materials for medical implants: Modeling and development. Mater. Sci. Eng. R Rep. 2014, 81, 1–19. [Google Scholar] [CrossRef]
- Sunil, B.R.; Kumar, A.A.; Sampath Kumar, T.S.; Chakkingal, U. Role of biomineralization on the degradation of fine grained AZ31 magnesium alloy processed by groove pressing. Mater. Sci. Eng. C 2013, 33, 1607–1615. [Google Scholar] [CrossRef]
- Vlack, L.H.V. Elements of Materials Science and Engineering; Addison Wesley: Boston, MA, USA, 1989; Volume 156. [Google Scholar]
- Gremaud, G. Overview on dislocation-point defect interaction: The brownian picture of dislocation motion. Mater. Sci. Eng. A 2004, 370, 191–198. [Google Scholar] [CrossRef]
- Hirel, P.; Carrez, P.; Clouet, E.; Cordier, P. The electric charge and climb of edge dislocations in perovskite oxides: The case of high-pressure MgSiO3 bridgmanite. Acta Mater. 2016, 106, 313–321. [Google Scholar] [CrossRef]
- Osetsky, Y.N.; Bacon, D.J.; Rong, Z.; Singh, B.N. Dynamic properties of edge dislocations decorated by interstitial loops in α-iron and copper. Philos. Mag. Lett. 2004, 84, 745–754. [Google Scholar] [CrossRef]
- Koehler, J.S.; Langreth, D.; Von Turkovich, B. Charged disloctions in ionic crystals. Phys. Rev. 1962, 128, 573. [Google Scholar] [CrossRef]
- Pödör, B. Electron Mobility in Plastically Deformed Germanium. Phys. Status Solidi 1966, 16, K167–K170. [Google Scholar] [CrossRef]
S. No | Material Condition | Crystalline Size (d) (nm) | Microstrain (ε) (%) | (× 1018) | Average Contact Angle (°) |
---|---|---|---|---|---|
1 | Pristine | 170.2 | 0.028 | 0.018 | 114.0 |
2 | Cold rolled copper | 72.4 | 0.117 | 0.278 | 96.3 |
3 | Cryo-rolled copper | 55.7 | 0.262 | 0.526 | 80.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parmar, V.; Changela, K.; Srinivas, B.; Mani Sankar, M.; Mohanty, S.; Panigrahi, S.K.; Hariharan, K.; Kalyanasundaram, D. Relationship between Dislocation Density and Antibacterial Activity of Cryo-Rolled and Cold-Rolled Copper. Materials 2019, 12, 200. https://doi.org/10.3390/ma12020200
Parmar V, Changela K, Srinivas B, Mani Sankar M, Mohanty S, Panigrahi SK, Hariharan K, Kalyanasundaram D. Relationship between Dislocation Density and Antibacterial Activity of Cryo-Rolled and Cold-Rolled Copper. Materials. 2019; 12(2):200. https://doi.org/10.3390/ma12020200
Chicago/Turabian StyleParmar, Vinod, Kandarp Changela, B. Srinivas, Manimuthu Mani Sankar, Sujata Mohanty, S. K. Panigrahi, K. Hariharan, and Dinesh Kalyanasundaram. 2019. "Relationship between Dislocation Density and Antibacterial Activity of Cryo-Rolled and Cold-Rolled Copper" Materials 12, no. 2: 200. https://doi.org/10.3390/ma12020200