

- 1 Article
- 2 **Relationship between Dislocation Density and**
- 3 Antibacterial Activity of Cryo-Rolled and Cold-

4 Rolled Copper

Vinod Parmar ^{1,2}, Kandarp Changela ³, B. Srinivas ⁴, Manimuthu Mani Sankar ⁵, Sujata Mohanty ⁵, S.K. Panigrahi ⁴, K. Hariharan ⁴, and Dinesh Kalyanasundaram ^{1,6,*}

- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India;
 vinodparmar.9876@gmail.com (V.P.)
- 9 ² Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
- ³ Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India;
 kandarp.changela06@gmail.com (K.C.)
- ⁴ Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036 India;
 srinivasbehera108@gmail.com (B.S.); skpanigrahi@iitm.ac.in (S.K.P.); hariharan@iitm.ac.in (K.H.)
- Stem Cell Research Facility, All India Institute of Medical Sciences, New Delhi 110029 India;
 sankar.mm@gmail.com (M.M.); drmohantysujata@gmail.com (S.M.);
- 16 ⁶ Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
- 17 * Correspondence: dineshk.iitdelhi@gmail.com (D.K.)
- 18 Received: 13 December 2018; Accepted: 03 January 2019; Published: date

19 S1. Physical and Mechanical Tests

20 S1.1 Contact Angle Measurements

Contact angle measurements were performed by using DataPhysics OCA 15EC goniometer (DataPhysics Instruments GmbH, Germany). Two-microliter droplets of deionized (DI) water were dispensed on to the surface of the coupons. After one minute of stabilization, the contact angles were measured. Surface of the pristine copper was found to be hydrophobic in nature with an apparent contact angle of ~112.43 ± 0.32°. The apparent contact angle of cold rolled copper was approximately

26 96.27 \pm 1.36° while that of cryo-rolled was found to be 80.80 \pm 4.28° (hydrophilic regime) (Figure S1).

- 27
- 28

Figure S1. Apparent contact angle (a) pristine, (b) cold rolled and (c) cryo-rolled copper.

29 S1.2 Results of Tensile Tests

30 For tensile testing, the substrates were profile cut by wire cut electric discharge machining. The 31 profile dimensions and sample thickness were in accordance to ASTM-ES standard. The substrates 32 were subjected to a tensile load at quasi-static strain rate in a universal tensile testing machine (Model: 33 5582, Capacity: 50 kN, Instron, USA). The stress-strain plot of cold rolled and cryo-rolled coupons 34 were obtained. Tensile test results indicate that the cryo-rolling process works in such a way that it 35 enhances the strength of material under process. Thus cryo-rolled substrates are able to bear higher 36 stress (~700 MPa) as compare to cold rolled (~480 MPa) and pristine (~320 MPa) copper sample, as 37 shown in Figure S2.

38

Figure S2. Stress-strain curve depicting tensile test results of pristine, cold rolled, cryo-rolled 1, and
 cryo-rolled 2 copper substrates.

41 S1.3 Estimation of Leaching of Copper

42 The leaching of copper in liquid media (such as nutrient broth) was estimated using inductively 43 coupled plasma-mass spectroscopy (Model: ICP-MS 7900, manufacturer: Agilent, USA). Cleaned and 44 autoclaved coupons of dimension 5 mm × 10 mm × 6 mm were sectioned from pristine copper plate, 45 while coupons of dimension 5 mm X 10 mm X 1 mm were sectioned from cold-rolled and cryo-rolled 46 copper plates. The unrolled pristine coupons are six times thicker than cold-rolled and cryo-rolled 47 coupons. For natural leaching of elemental copper, each of the coupons were immersed in falcon 48 tubes containing 5 mL nutrient broth media for 72 hours at 37 °C. After 72 hours, all the copper 49 coupons were taken out and left out media (with leached copper) was diluted by a factor of 20 to 50 lower the concentration for ICP-MS measurements.

51 The quantitative results of ICP-MS indicate that 644.5, 975.9, and 1441.5 ppb/mm² of elemental 52 copper leached out from pristine, cold rolled and cryo-rolled copper coupons respectively in to the 53 nutrient broth. Therefore, higher concentration of copper leaching has led to higher contact killing S. 54 aureus by cryo-rolled copper. Hong et al. has proposed an oxidation-dissolution mechanism that leads 55 to leaching of copper ions in liquid media, wherein the free hydroxyls attack the metal surface to 56 form oxidized product from the surface [1]. The dissolution of copper ions is highly affected by the 57 disinfectant dosage, immersion time and pH of the aqueous media. Of the above parameters, pH is 58 the most significant parameter that determines the solubility of various oxidation states of copper 59 (e.g., cupric oxide (CuO) or copper oxide (Cu₂O₃) state). Low pH media will readily dissolve the 60 copper mineral (cupric oxide) and thus results in increased carbonation and exposes fresh copper 61 metal sites to further oxidation and leaching.

62 S2. Biological Tests

63 S2.1 Estimation of leakage protein

3

64 Leakage of endo-cell proteins were determined by spectrophotometry, as described elsewhere 65 [2]. S. aureus was grown for 12 hours in 100 mL of Luria broth (Hi-Media, India) at 37 °C. The cells 66 were pelleted at 10,000 g for 10 minutes and washed twice with 1X PBS (pH 6.8). The pellet was re-67 suspended in 50 mM sodium phosphate buffer (pH 7.1) and turbidity was adjusted to 1 OD. The cell 68 suspension was seeded on to the surface of copper coupons followed by incubation for 24 hours at 69 37 °C. For positive controls, S. aureus suspension was treated with 10 µg/mL cetyl 70 trimethylammonium bromide at 37 °C for 120 minutes, followed by bath sonication for 15 minutes. 71 The suspension was centrifuged at 10,000 g for 10 minutes. The absorbance of the supernatant at 260-72 and 280- nm was determined using spectrophotometer (BioTek, USA). Protein concentrations in the 73 leaked supernatants was estimated as described elsewhere [3]. Protein leakage from bacterial 74 suspensions not exposed to copper coupons served as negative control. The extent of leakage of 260-75 and 280- nm absorbing compounds were expressed as a percentage of the positive control 76 (suspension treated with CTAB) measured in the supernatant.

Based on the bacterial killing of copper coupons, we investigated the exact mechanism of action. The membrane leakage assay demonstrated damage caused to the cytoplasmic membrane of *S. aureus* when exposed to copper coupons. The 260- and 280-nm absorbing material released in the supernatants were measured at 0 and 24 hours after exposure (Figure S3). Leakage of proteins from all the tested coupons were similar at 0 hours. Post 24 hours exposure of *S. aureus* cells, cryo-rolled induced higher leakage of proteins (twice) as compared to pristine and cold rolled copper coupons. This indicates the disruption of the cell membrane of *S. aureus*.

84

85

Figure S3. Percentage leakage of protein exposed to copper coupons.

86 S2.2 Ethidium Bromide (EtBr) Uptake Assay

The disruptive effect of copper coupons on *S. aureus* was assessed by EtBr uptake. One milliliter of 1 × 10⁶ CFU/mL cell suspension of *S. aureus* in 1X PBS (pH 6.8) was incubated on copper coupons at 37 °C for 24 hours. Post incubation, adherent *S. aureus* were retrieved as described in the main script. EtBr (1 mg/mL solution) was added to all copper exposed *S. aureus* cells and incubated at room temperature for 15 minutes. *S. aureus* treated with 1% Triton X-100 was used as positive control whereas cells with EtBr not exposed to copper substrates served as negative controls. Ten microliters

- 93 of each suspension were examined under a fluorescence microscope at 100X magnification (Nikon,
- Japan) for fluorescence. EtBr is a DNA intercalating agent which enters the cell wall and binds with
- 95 DNA of the damaged cell and thus results in the emission of higher fluorescence. *S. aureus* cellular
- damage by copper coupons were estimated by EtBr uptake and visualized by fluorescent microscopy.
 S. aureus cells exposed to cryo-rolled coupons exhibited increased staining with EtBr as compared to
- *S. aureus* cells exposed to cryo-rolled coupons exhibited increased staining with EtBr as compared to
 pristine and cold rolled copper (Figure S4). EtBr uptake was conducted to measure the cell integrity
- 99 of *S. aureus* when exposed to copper coupons. The significant number of fluorescence spots on cryo-
- 100 rolled copper represents nearly complete cell membrane rupture (Figure S4c,d).

101

Figure S4. EtBr uptake of *S. aureus* on (a) pristine, (b) cold rolled, (c) cryo-rolled copper site1, and (d)
 cryo-rolled copper site 2 coupons (100X magnification).

104 S2.3 Hemolysis Experiment for Non-Toxicity of Copper Coupons

105 The toxicity assessment of copper coupons were tested for hemolysis [4]. This study was 106 approved by the Institute Ethics Committee, All India Institute of Medical Sciences, New Delhi. 107 Human peripheral blood samples were collected from healthy volunteers in EDTA vacutainer tubes 108 after obtaining informed consent. Whole blood (5 mL) was added to 10 mL of 1X PBS (pH 6.8) and 109 red blood cells (RBCs) were separated by centrifuging at 10,000 g for 10 minutes. The pelleted RBCs 110 were washed thrice with 10 mL of 1X PBS (pH 6.8) and diluted to 50 mL with 1X PBS. Two hundred 111 microliters of the diluted RBCs were layered onto the surface of copper coupons. RBCs treated with 112 1% Triton X-100 was used as a positive control, and RBCs not exposed to copper coupons served as 113 a negative control. The copper coupons were further incubated at 37 °C for 3 hours. After incubation, 114 the resultant suspension was aspirated and centrifuged at 10,000 g for 3 minutes. The hemoglobin 115 absorbance of the supernatant was measured at 570 nm using a spectrophotometer (BioTek, USA). 116 The tests were performed in triplicates. No cytotoxicity was observed on any of the copper coupons 117 and no significant differences were observed between the tested copper coupons. This provides

- 118 evidence of the non-toxic nature of copper to human cells. Physical alteration of pristine copper does
- 119 not alter the non-toxic nature of copper after cryo-rolling or cold rolling.

121

Figure S5. Percentage hemolysis of RBCs exposed to copper coupons.

122 References

- Hong, P. & Macauley, Y. Corrosion and leaching of copper tubing exposed to chlorinated drinking water.
 Water. Air. Soil Pollut. 1998,108, 457–471.
- 125 2. Cox, S. D.; Mann,C.M.; Markham, J.L.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. Determining the
 antimicrobial actions of tea tree oil. in *Molecules* 2001, *6*, 87–91.
- LOWRY, O. H., ROSEBROUGH, N. J., FARR, A. L. & RANDALL, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275.
- Laloy, J.; Minet, V.; Alpan, L.; Mullier, F.; Beken, S.; Toussaint, O.; Lucas, S.; Dogné1, J.M. Impact of Silver
 Nanoparticles on Haemolysis, Platelet Function and Coagulation. *Nanobiomedicine* 2014, *1*, 1–9.