Research of Method for Solving Relaxation Modulus Based on Three-Point Bending Creep Test
Abstract
:1. Introduction
2. Interconversion of Creep Compliance and Relaxation Modulus
2.1. Interconversion Equation
2.2. Derivation of Relaxation Modulus
2.2.1. Taylor’s Formula
2.2.2. Solutions of Transcendental Equation
3. Creep Tests and Calculations of Relaxation Moduli
3.1. Three-Point Bending Creep Tests
3.1.1. Material Properties
3.1.2. Sample Preparations
3.1.3. Bending Creep Tests Procedure
3.1.4. Test Results and Calculation of Creep Compliance
3.2. Determination of Model Parameters
3.3. Calculation of Relaxation Moduli
4. Verification of Calculated Results and Uniaxial Compression Tests
4.1. Uniaxial Compression Relaxation Tests
4.1.1. Determination of Constant Levels of Input Strains for Relaxation Tests
4.1.2. Uniaxial Compression Relaxation Tests Procedure
4.1.3. Determination Parameters of GMM Model
4.1.4. Construction of Master Curves for Relaxation Modulus of Asphalt Mixture
4.2. Verification of Calculated Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Park, H.M.; Choi, J.Y.; Lee, H.J.; Hwang, E.Y. Performance evaluation of a high durability asphalt binder and a high durability asphalt mixture for bridge deck pavements. Constr. Build. Mater. 2009, 23, 219–225. [Google Scholar] [CrossRef]
- Doyle, J.D.; Mejias-Santiago, M.; Brown, E.; Howard, I.L. Performance of High RAP-WMA Surface Mixtures, 2011. The National Academies of Sciences, Engineering, and Medicine. Available online: https://trid.trb.org/view/1135253 (accessed on 24 May 2018).
- Saha, G.; Biligiri, K.P. Fracture properties of asphalt mixtures using semi-circular bending test: a state-of-the-art review and future research. Constr. Build. Mater. 2016, 105, 103–112. [Google Scholar] [CrossRef]
- Behnia, B.; Dave, E.V.; Ahmed, S.; Buttlar, W.G.; Reis, H. Effects of recycled asphalt pavement amounts on low-temperature cracking performance of asphalt mixtures using acoustic emissions. Transport. Res. Rec. 2011, 2208, 64–71. [Google Scholar] [CrossRef]
- Al-Khateeb, G.G.; Ghuzlan, K.A. The combined effect of loading frequency, temperature, and stress level on the fatigue life of asphalt paving mixtures using the IDT test configuration. Int. J. Fatigue 2014, 59, 254–261. [Google Scholar] [CrossRef]
- Souza, F.V.; Castro, L.S. Effect of temperature on the mechanical response of thermo-viscoelastic asphalt pavements. Constr. Build. Mater. 2012, 30, 574–582. [Google Scholar] [CrossRef]
- Walubita, L.F.; Alvarez, A.E.; Simate, G.S. Evaluating and comparing different methods and models for generating relaxation modulus master-curves for asphalt mixes. Constr. Build. Mater. 2011, 25, 2619–2626. [Google Scholar] [CrossRef]
- Fu, Q.; Xie, Y.J.; Long, G.C.; Meng, F.; Song, H. Temperature sensitivity and model of stress relaxation properties of cement and asphalt mortar. Constr. Build. Mater. 2015, 84, 1–11. [Google Scholar] [CrossRef]
- Tabatabaee, H.A.; Velasquez, R.; Bahia, H.U. Modeling thermal stress in asphalt mixtures undergoing glass transition and physical hardening. Transport. Res. Rec. 2012, 2296, 106–114. [Google Scholar] [CrossRef]
- Sun, Y.; Gu, Z.; Wang, J.; Fang, C.; Yuan, X. Study on Relaxation Damage Properties of High Viscosity Asphalt Sand under Uniaxial Compression. Adv. Civil Eng. 2018, 2018, 1498480. [Google Scholar] [CrossRef]
- Huang, W.K.; Zhang, L.J. Study on transformation from asphalt mixture creep compliance to relaxation modulus. J. Transport Sci. Eng. 2015, 31, 7–12. [Google Scholar]
- Zheng, J.L.; Tian, X.G.; Ying, R.H. A laboratory research on the thermo-viscoelastic constitutive model of bituminous mixtures. J. Changsha Univ. Sci. Technol. 2014. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNQG200401001.htm (accessed on 15 September 2018).
- Park, S.W.; Schapery, R.A. Methods of interconversion between linear viscoelastic material functions. Part I: a numerical method based on prony series. Int. J. Solids Struct. 1999, 36, 1653–1675. [Google Scholar] [CrossRef]
- Liu, X.M.; Tang, Z.P.; Lin, X.Z. Discussion on transformation formulas between complex compliance and creep compliance, complex modulus and relaxation modulus in linear viscoelasticity. J. Univ. Sci. Technol. China 1989. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-ZKJD198904009.htm (accessed on 22 December 2018).
- Kim, J.; Scholar, G.A. Determination of accurate creep compliance and relaxation modulus at a single temperature for viscoelastic solids. J. Mater. Civil Eng. 2008, 20, 147–156. [Google Scholar] [CrossRef]
- Forough, S.A.; Nejad, F.M.; Khodaii, A. Comparing various fitting models to construct the tensile relaxation modulus master curve of asphalt mixes. Int. J. Pavement Eng. 2016, 17, 314–330. [Google Scholar] [CrossRef]
- Boltzmann, L. Zur Theorie der elastischen Nachwirkung. Ann. Phys.-Berlin 1878, 241, 430–432. [Google Scholar] [CrossRef]
- Yan, M.; Wang, J. Study on Conversion Between Creep Compliance and Relaxation Modulus of Asphalt Mixture. Technol. Highw. Transp. 2016. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLJT201605008.htm (accessed on 10 June 2018).
- Anderssen, R.S.; Davies, A.R.; de Hoog, F.R. The effect of kernel perturbations when solving the interconversion convolution equation of linear viscoelasticity. Appl. Math. Lett. 2011, 24, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.H. Study on the Volume Relaxation Modulus and the Volume Creep Complianee. J. Solid Rocket Technol. 1995. Available online: http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ501.012.htm (accessed on 20 March 2018).
- Hopkins, I.L.; Hamming, R.W. On creep and relaxation. J. Appl. Phys. 1957, 28, 906–909. [Google Scholar] [CrossRef]
- Park, S.W.; Kim, Y.R.; Schapery, R.A. Aviscoelastic continuum damage model and its application to uniaxial behavior of asphalt concrete. Mech. Mater. 1996, 24, 241–255. [Google Scholar] [CrossRef]
- Park, S.W.; Kim, Y.R. Fitting Prony-series viscoelastic models with power-law presmoothing. J. Mater. Civil Eng. 2001, 13, 26–32. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Tang, J.M.; Bai, L. Determination of relaxation modulus using complex modulus of the asphalt mixture. J. Build. Mater. 2012, 15, 498–502. [Google Scholar]
- Findley, W.N.; Davis, F.A. Creep and Relaxation of Nonlinear Viscoelastic Materials, 1st ed.; Elsevier Publishing: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Koeller, R.C. A theory relating creep and relaxation for linear materials with memory. J. Appl. Mech. 2010, 77, 031008. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, L.; Wang, B. Modification of creep model of asphalt mixture and parameters determination. J. Wuhan Univ. Technol. (Transp. Sci. Eng.) 2010, 34, 699–702. Available online: http://www.en.cnki.com.cn/Article_en/CJFDTotal-JTKJ201004016.htm (accessed on 4 June 2018).
- Blab, R.; Harvey, J.T. Modeling measured 3D tire contact stresses in a viscoelastic FE pavement model. Int. J. Geomech. 2002, 2, 271–290. [Google Scholar] [CrossRef]
- Shan, L.; Xu, Y.; He, H.; Ren, N. Optimization criterion of viscoelastic response model for asphalt binders. Constr. Build. Mater. 2016, 113, 553–560. [Google Scholar] [CrossRef]
- Wang, Q. The Taylor’s formula with surplus item Peano and applications. J. Shenyang Archit. Univ. (Nat. Sci. Ed.) 2005. Available online: http://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200506041.htm (accessed on 17 May 2018).
- Mangano, S. Mathematica Cookbook; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2010. [Google Scholar]
- Research Institute of Highway Ministry of Transport. JTG E20-2011 Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering; China Communications Press: Beijing, China, 2011. [Google Scholar]
- Lytton, R.L.; Gu, F.; Zhang, Y.; Luo, X. Characteristics of undamaged asphalt mixtures in tension and compression. Int. J. Pavement Eng. 2018, 19, 192–204. [Google Scholar] [CrossRef]
- Walubita, L.F. Comparison of Fatigue Analysis Approaches for Predicting Fatigue Lives of Hot Mix Asphalt Concrete (HMAC) Mixtures. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, August 2006. [Google Scholar]
- Hong, Z. Mechanism Analysis of the Differences of Asphalt Fatigue Damage under Stress and Strain Control Mode. Master’s Thesis, Harbin Institute of Technology, Harbin, China, July 2014. [Google Scholar]
- Daniel, J.S.; Bisirri, W.; Kim, Y.R. Fatigue evaluation of asphalt mixtures using dissipated energy and viscoelastic continuum damage approaches. J. Assoc. Asphalt Paving Technol. 2004, v73, 557–583. [Google Scholar]
- Ferry, J.D. Viscoelastic Properties of Polymers; John Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Zhu, X.L. Experimental study on aging performance of asphalt mixture. Jilin Univ. China 2011. Available online: http://cdmd.cnki.com.cn/Article/CDMD-10183-1011099648.htm (accessed on 20 March 2018).
Model Parameters | 0 °C | 10 °C | 15 °C |
---|---|---|---|
3771.931 | 1893.139 | 1105.924 | |
5996.615 | 1272.372 | 705.477 | |
2.4 × 107 | 4.2 × 106 | 2.0 × 106 | |
5 × 106 | 1.2 × 106 | 4.6 × 105 | |
R2 | 0.998 | 0.999 | 0.999 |
Model Parameters | 15 °C | 0 °C |
---|---|---|
E1/MPa | 2032 | 431 |
E2/MPa | 2415.65 | 675.65 |
E3/MPa | 3742.5 | 1452.5 |
E4/MPa | 7464 | 431 |
E5/MPa | 5645 | 3713 |
E6/MPa | 2032 | 431 |
τ1/s | 0.01 | 0.0015 |
τ2/s | 1.54 | 0.00019 |
τ3/s | 0.011 | 0.00012 |
τ4/s | 0.00018 | 0.00089 |
τ5/s | 0.0000007 | 0.0000003 |
τ6/s | 0.0000005 | 0.0000006 |
Model Parameters | 0.3 mm | 0.9 mm | 1.5 mm | 3.0 mm | 6.0 mm |
---|---|---|---|---|---|
E1/MPa | 1 | 1.3 | 1200 | 12.21 | 65.442 |
E2/MPa | 1.6 | 1.33 | 25.56 | 1 | 114.98 |
E3/MPa | 159 | 106.4 | 182.06 | 95.30 | 54.45 |
E4/MPa | 341 | 181.3 | 94.33 | 567.09 | 31.396 |
E5/MPa | 341.6 | 181.3 | 89.3 | 567309 | 31.396 |
E6/MPa | 1 | 1.3 | 145.1 | 1 | 114.93 |
τ1/s | 1 | 1 | 1 | 1 | 1 |
τ2/s | 1 | 1 | 1 | 18.84 | 3.16 |
τ3/s | 12.248 | 7.63 | 11.43 | 18.84 | 19.5 |
τ4/s | 1 | 1 | 1 | 1 | 286.09 |
τ5/s | 1 | 1 | 1 | 1 | 296.14 |
τ6/s | 1 | 1 | 1 | 18.84 | 3.16 |
Temperature/°C | Temperature Fluctuation | Shift Factors lgαT |
---|---|---|
15 | 15 | 1.6636 |
−5 | 5 | −0.5959 |
−15 | 15 | −1.8569 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Gu, Z.; Wang, J.; Yuan, X. Research of Method for Solving Relaxation Modulus Based on Three-Point Bending Creep Test. Materials 2019, 12, 2021. https://doi.org/10.3390/ma12122021
Sun Y, Gu Z, Wang J, Yuan X. Research of Method for Solving Relaxation Modulus Based on Three-Point Bending Creep Test. Materials. 2019; 12(12):2021. https://doi.org/10.3390/ma12122021
Chicago/Turabian StyleSun, Yazhen, Zhangyi Gu, Jinchang Wang, and Xuezhong Yuan. 2019. "Research of Method for Solving Relaxation Modulus Based on Three-Point Bending Creep Test" Materials 12, no. 12: 2021. https://doi.org/10.3390/ma12122021