Efficient Adsorption of Lead (II) from Aqueous Phase Solutions Using Polypyrrole-Based Activated Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PPyAC4
2.3. Adsorption Experiments
2.4. Theoretical Calculations
2.4.1. Adsorption Kinetics
2.4.2. Adsorption Isotherms
2.5. Characterization
3. Results and Discussion
3.1. PPyAC4 Properties
3.1.1. Morphological Analysis
3.1.2. XRD Analysis
3.1.3. Thermogravimetric Analysis
3.2. Batch Method Adsorption Studies
3.2.1. Effect of Contact Time and Adsorption Kinetics
3.2.2. Effect of pH
3.2.3. Effect of Adsorbent Dosage
3.3. Adsorption Isotherms
3.3.1. Langmuir Model
3.3.2. Freundlich Isotherm
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahmud, H.; Hosseini, S.; Yahya, R. Polymer adsorbent for the removal of lead ions from aqueous solution. Int. J. Tech. Res. Appl. 2014, 11, 04–08. [Google Scholar]
- Mohammadi, S.Z.; Karimi, M.A.; Afzali, D.; Mansouri, F. Removal of Pb (II) from aqueous solutions using activated carbon from Sea-buckthorn stones by chemical activation. Desalination 2010, 262, 86–93. [Google Scholar] [CrossRef]
- Amarasinghe, B.; Williams, R. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 2007, 132, 299–309. [Google Scholar] [CrossRef]
- Yarkandi, N. Removal of lead (II) from waste water by adsorption. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 207–228. [Google Scholar]
- Axtell, N.R.; Sternberg, S.P.; Claussen, K. Lead and nickel removal using Microspora and Lemna minor. Bioresour. Technol. 2003, 89, 41–48. [Google Scholar] [CrossRef]
- Mouflih, M.; Aklil, A.; Jahroud, N.; Gourai, M.; Sebti, S. Removal of lead from aqueous solutions by natural phosphate. Hydrometallurgy 2006, 81, 219–225. [Google Scholar] [CrossRef]
- Mahmud, H.N.M.E.; Huq, A.O.; binti Yahya, R. The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: A review. RSC Adv. 2016, 6, 14778–14791. [Google Scholar] [CrossRef]
- Singh, C.; Sahu, J.; Mahalik, K.; Mohanty, C.; Mohan, B.R.; Meikap, B. Studies on the removal of Pb (II) from wastewater by activated carbon developed from Tamarind wood activated with sulphuric acid. J. Hazard. Mater. 2008, 153, 221–228. [Google Scholar] [CrossRef]
- Djedidi, Z.; Bouda, M.; Souissi, M.A.; Cheikh, R.B.; Mercier, G.; Tyagi, R.D.; Blais, J.-F. Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge. J. Hazard. Mater. 2009, 172, 1372–1382. [Google Scholar] [CrossRef]
- Islam, M.; Patel, R. Removal of lead (II) from aqueous environment by a fibrous ion exchanger: Polycinnamamide thorium (IV) phosphate. J. Hazard. Mater. 2009, 172, 707–715. [Google Scholar] [CrossRef]
- Kobya, M.; Demirbas, E.; Senturk, E.; Ince, M. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour. Technol. 2005, 96, 1518–1521. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, D.W.; Birkinshaw, C.; O’Dwyer, T.F. Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresour. Technol. 2008, 99, 6709–6724. [Google Scholar] [CrossRef] [PubMed]
- Kadirvelu, K.; Thamaraiselvi, K.; Namasivayam, C. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour. Technol. 2001, 76, 63–65. [Google Scholar] [CrossRef]
- Blanchard, G.; Maunaye, M.; Martin, G. Removal of heavy metals from waters by means of natural zeolites. Water Res. 1984, 18, 1501–1507. [Google Scholar] [CrossRef]
- Bailey, S.E.; Olin, T.J.; Bricka, R.M.; Adrian, D.D. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999, 33, 2469–2479. [Google Scholar] [CrossRef]
- Ahluwalia, S.S.; Goyal, D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 2007, 98, 2243–2257. [Google Scholar] [CrossRef] [PubMed]
- Nomanbhay, S.M.; Palanisamy, K. Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electron. J. Biotechnol. 2005, 8, 43–53. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Q.; Fang, Z.; Zhang, X.; Zhang, B. Magnetic chitosan nanocomposites: A useful recyclable tool for heavy metal ion removal. Langmuir 2008, 25, 3–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, Q.; Li, F.; Dai, J. Removal of heavy metal ions from wastewater by capacitive deionization using polypyrrole/chitosan composite electrode. Adsorpt. Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Alawa, B.; Srivstava, J.; Srivastava, A.; Palsania, J. Adsorption of heavy metal Pb (II) from synthetic waste water by polypyrrole composites. Int. J. Chem. Stud. 2015, 3, 04–08. [Google Scholar]
- He, Z.-Y.; Nie, H.-L.; Branford-White, C.; Zhu, L.-M.; Zhou, Y.-T.; Zheng, Y. Removal of Cu2+ from aqueous solution by adsorption onto a novel activated nylon-based membrane. Bioresour. Technol. 2008, 99, 7954–7958. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Du, Q.; Wang, X.; Zhang, P.; Wang, D.; Wang, Z.; Xia, Y. Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation. J. Hazard. Mater. 2010, 183, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Deliyanni, E.A.; Kyzas, G.Z.; Triantafyllidis, K.S.; Matis, K.A. Activated carbons for the removal of heavy metal ions: A systematic review of recent literature focused on lead and arsenic ions. Open Chem. 2015, 13. [Google Scholar] [CrossRef]
- Weidlich, C.; Mangold, K.-M.; Jüttner, K. Conducting polymers as ion-exchangers for water purification. Electrochim. Acta 2001, 47, 741–745. [Google Scholar] [CrossRef]
- Abdi, M.M.; Kassim, A.; Mahmud, H.E.; Yunus, W.M.M.; Talib, Z.A.; Sadrolhosseini, A.R. Physical, optical, and electrical properties of a new conducting polymer. J. Mater. Sci. 2009, 44, 3682–3686. [Google Scholar] [CrossRef]
- Yao, T.; Wang, C.; Wu, J.; Lin, Q.; Lv, H.; Zhang, K.; Yu, K.; Yang, B. Preparation of raspberry-like polypyrrole composites with applications in catalysis. J. Colloid Interface Sci. 2009, 338, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Truong, V.-T.; Lai, P.; Moore, B.; Muscat, R.; Russo, M. Corrosion protection of magnesium by electroactive polypyrrole/paint coatings. Synth. Met. 2000, 110, 7–15. [Google Scholar] [CrossRef]
- Mahmud, H.; Hosseini, S.; Yahya, R.B. Removal of Nickel Ions from Aqueous Solution by Polypyrrole Conducting Polymer; Trans Tech Publ: Zurich, Switzerland, 2014; Volume 594, p. 793. [Google Scholar]
- Mahmud, H.; Huq, A.; Yahya, R. Polymer-based adsorbent for heavy metals removal from aqueous solution. In Proceedings of IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 206, p. 012100. [Google Scholar]
- Nyairo, W.N.; Eker, Y.R.; Kowenje, C.; Akin, I.; Bingol, H.; Tor, A.; Ongeri, D.M. Efficient adsorption of lead (II) and copper (II) from aqueous phase using oxidized multiwalled carbon nanotubes/polypyrrole composite. Sep. Sci. Technol. 2018, 53, 1498–1510. [Google Scholar] [CrossRef]
- Xing, J.; Zhu, C.; Chowdhury, I.; Tian, Y.; Du, D.; Lin, Y. Electrically switched ion exchange based on polypyrrole and carbon nanotube nanocomposite for the removal of chromium (VI) from aqueous solution. Ind. Eng. Chem. Res. 2018, 57, 768–774. [Google Scholar] [CrossRef]
- Ansari, I.; Mosayebzadeh, Z. Removal of basic dye methylene blue from aqueous solutions using sawdust and sawdust coated with polypyrrole. JICS 2010, 7, 339–350. [Google Scholar] [CrossRef]
- Alghamdi, A.; Alshahrani, A.; Khdary, N.; Alharthi, F.; Alattas, H.; Adil, S. Enhanced CO2 Adsorption by Nitrogen-Doped Graphene Oxide Sheets (N-GOs) Prepared by Employing Polymeric Precursors. Materials 2018, 11, 578. [Google Scholar] [CrossRef] [PubMed]
- Sevilla, M.; Valle-Vigón, P.; Fuertes, A.B. N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 2011, 21, 2781–2787. [Google Scholar] [CrossRef]
- Lagegren, S.; Svenska, B. Zur theorie der sogenannten adsorption geloester stoffe. Vaternskapsakad Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.-S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Guo, J.; Song, Y.; Ji, X.; Ji, L.; Cai, L.; Wang, Y.; Zhang, H.; Song, W. Preparation and Characterization of Nanoporous Activated Carbon Derived from Prawn Shell and Its Application for Removal of Heavy Metal Ions. Materials 2019, 12, 241. [Google Scholar] [CrossRef] [PubMed]
- Kalavathy, M.H.; Karthikeyan, T.; Rajgopal, S.; Miranda, L.R. Kinetic and isotherm studies of Cu (II) adsorption onto H3PO4-activated rubber wood sawdust. J. Colloid Interface Sci. 2005, 292, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, K.; Jha, M.; Meikap, B.; Biswas, M. Removal of chromium (VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. Chem. Eng. Sci. 2005, 60, 3049–3059. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Huang, Y.; Li, S.; Chen, J.; Zhang, X.; Chen, Y. Adsorption of Pb (II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: Adsorption capacity, kinetic and isotherm studies. Appl. Surf. Sci. 2014, 293, 160–168. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Zhao, R.; Li, Y.; Li, C.; Zhang, C. Adsorption of Pb (II) on activated carbon prepared from Polygonum orientale Linn.: Kinetics, isotherms, pH, and ionic strength studies. Bioresour. Technol. 2010, 101, 5808–5814. [Google Scholar] [CrossRef]
- Freundlich, H. Over the adsorption in solution. J. Phys. Chem 1906, 57, 1100–1107. [Google Scholar]
- Salam, O.E.A.; Reiad, N.A.; ElShafei, M.M. A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents. J. Adv. Res. 2011, 2, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Chitte, H.K.; Bhat, N.V.; Gore, M.A.V.; Shind, G.N. Synthesis of polypyrrole using ammonium peroxy disulfate (APS) as oxidant together with some dopants for use in gas sensors. Mater. Sci. Appl. 2011, 2, 1491. [Google Scholar] [CrossRef]
- Liu, A.S.; Oliveira, M.A.S. Corrosion control of aluminum surfaces by polypyrrole films: Influence of electrolyte. Mater. Res. 2007, 10, 205–209. [Google Scholar] [CrossRef]
- Bazzaoui, M.; Martins, L.; Bazzaoui, E.; Martins, J. New single-step electrosynthesis process of homogeneous and strongly adherent polypyrrole films on iron electrodes in aqueous medium. Electrochim. Acta 2002, 47, 2953–2962. [Google Scholar] [CrossRef]
- Tourillon, G.; Garnier, F. Morphology of conducting organic polymers: Polythiophene and poly (3-methyl thiophene). J. Polym. Sci. Polym. Phys. Ed. 1984, 22, 33–39. [Google Scholar] [CrossRef]
- Yu, J.T.; Dehkhoda, A.M.; Ellis, N. Development of biochar-based catalyst for transesterification of canola oil. Energy Fuels 2010, 25, 337–344. [Google Scholar] [CrossRef]
- Wu, W.; Yang, L.; Chen, S.; Shao, Y.; Jing, L.; Zhao, G.; Wei, H. Core–shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors. RSC Adv. 2015, 5, 91645–91653. [Google Scholar] [CrossRef]
- Zafar, M.N.; Nadeem, R.; Hanif, M.A. Biosorption of nickel from protonated rice bran. J. Hazard. Mater. 2007, 143, 478–485. [Google Scholar] [CrossRef]
- Nuhoglu, Y.; Malkoc, E. Thermodynamic and kinetic studies for environmentaly friendly Ni (II) biosorption using waste pomace of olive oil factory. Bioresour. Technol. 2009, 100, 2375–2380. [Google Scholar] [CrossRef]
- Mouni, L.; Merabet, D.; Bouzaza, A.; Belkhiri, L. Adsorption of Pb (II) from aqueous solutions using activated carbon developed from Apricot stone. Desalination 2011, 276, 148–153. [Google Scholar] [CrossRef]
- Boujelben, N.; Bouzid, J.; Elouear, Z. Removal of lead (II) ions from aqueous solutions using manganese oxide-coated adsorbents: Characterization and kinetic study. Adsorpt. Sci. Technol. 2009, 27, 177–191. [Google Scholar] [CrossRef]
- Gupta, V.; Rastogi, A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J. Hazard. Mater. 2008, 152, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Depci, T.; Kul, A.R.; Önal, Y. Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: Study in single-and multi-solute systems. Chem. Eng. J. 2012, 200, 224–236. [Google Scholar] [CrossRef]
- Weber, T.W.; Chakravorti, R.K. Pore and solid diffusion models for fixed-bed adsorbers. Aiche J. 1974, 20, 228–238. [Google Scholar] [CrossRef]
- Imamoglu, M.; Tekir, O. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination 2008, 228, 108–113. [Google Scholar] [CrossRef]
- Li, Y.-H.; Wang, S.; Wei, J.; Zhang, X.; Xu, C.; Luan, Z.; Wu, D.; Wei, B. Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 2002, 357, 263–266. [Google Scholar] [CrossRef]
- Ali, I.H.; Al Mesfer, M.K.; Khan, M.I.; Danish, M.; Alghamdi, M.M. Exploring Adsorption Process of Lead (II) and Chromium (VI) Ions from Aqueous Solutions on Acid Activated Carbon Prepared from Juniperus procera Leaves. Processes 2019, 7, 217. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Qian, Q.; Machida, M.; Tatsumoto, H. Effect of ZnO loading to activated carbon on Pb (II) adsorption from aqueous solution. Carbon 2006, 44, 195–202. [Google Scholar] [CrossRef]
Sample | Surface Area (m2/g) | Average Pore Diameter (nm) | Pore Volume (cm3/g) | CO2 Uptake Capacity | ||
---|---|---|---|---|---|---|
BET | TEM | mg/g | mmol/g | |||
PPyAC4 | 2871 | 2.3 | 12.5 | 0.054 | 49.95 | 1.14 |
Co (mg/L) | qe-exp (mg/g) | Pseudo-First Order | Pseudo-Second-Order | |||||
---|---|---|---|---|---|---|---|---|
qe (mg/g) | k1 (1/min) | R2 | qe (mg/g) | k2 (g/(mg·min)) | R2 | h (mg/(g·min)) | ||
10 | 1.682 | 1.138 | 1.170 | 0.9042 | 1.739 | 2.505 | 0.9997 | 7.575 |
50 | 8.104 | 4.710 | 1.119 | 0.9863 | 8.621 | 0.408 | 0.9997 | 30.323 |
100 | 16.01 | 20.845 | 1.723 | 0.9514 | 17.241 | 0.168 | 0.9996 | 49.938 |
Adsorbent | Langmuir | Freundlich | ||||||
---|---|---|---|---|---|---|---|---|
PPyAC4 | qm (mg/g) | KL (L/mg) | R2 | RL | 1/n | n | KF (mg/g)(L/mg)1/n | R2 |
50 | 0.020 | 0.989 | 0.450 | 0.784 | 1.276 | 1.242 | 0.995 |
Activated Carbon Source | qm (mg/g) | Adsorption Conditions | Ref. | |||
---|---|---|---|---|---|---|
pH | T (°C) | Co (mg/L) | Adsorbent Dosage (g/L) | |||
Hazelnut husk (HH) | 13.05 | 5.7 | 18 | 200 | 12.0 | [58] |
Acidified CNTs | 17.44 | 5.0 | - | 10 | - | [59] |
Apricot stone | 21.38 | 6.0 | 20 | 50 | 1.0 | [53] |
PPy/oMWCNT composite | 26.32 | 6.0 | 25 | 10–100 | 1.0 | [30] |
Juniperus procera | 30.3 | 4.6 | 25 | 50 | 8.0 | [60] |
Coconut shell | 76.66 | 5.6 | 25 | - | 2.0 | [61] |
Polygonum orientale Linn | 98.39 | 5.0 | 25 | 50–75 | 0.6 | [42] |
Polypyrrole-based AC | 50.0 | 5.5 | 23 | 100 | 5.0 | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, A.A.; Al-Odayni, A.-B.; Saeed, W.S.; Al-Kahtani, A.; Alharthi, F.A.; Aouak, T. Efficient Adsorption of Lead (II) from Aqueous Phase Solutions Using Polypyrrole-Based Activated Carbon. Materials 2019, 12, 2020. https://doi.org/10.3390/ma12122020
Alghamdi AA, Al-Odayni A-B, Saeed WS, Al-Kahtani A, Alharthi FA, Aouak T. Efficient Adsorption of Lead (II) from Aqueous Phase Solutions Using Polypyrrole-Based Activated Carbon. Materials. 2019; 12(12):2020. https://doi.org/10.3390/ma12122020
Chicago/Turabian StyleAlghamdi, Abdulaziz Ali, Abdel-Basit Al-Odayni, Waseem Sharaf Saeed, Abdullah Al-Kahtani, Fahad A. Alharthi, and Taieb Aouak. 2019. "Efficient Adsorption of Lead (II) from Aqueous Phase Solutions Using Polypyrrole-Based Activated Carbon" Materials 12, no. 12: 2020. https://doi.org/10.3390/ma12122020