Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. CVD Growth of G/NiF Current Collector
2.3. Preparation of AC Electrodes and Assembly of Supercapacitors
2.4. Characterizations and Electrochemical Measurements
3. Results and Discussion
3.1. The Roles of NiF/G Current Collectors
3.2. The Effect of Graphene Conductive Additive
3.3. The Symmetric Supercapacitor Assembled by AC@G@NiF/G-5 Electrodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sengottaiyan, C.; Jayavel, R.; Bairi, P.; Shrestha, R.G.; Ariga, K.; Shrestha, L.K. Cobalt Oxide/Reduced Graphene Oxide Composite with Enhanced Electrochemical Supercapacitance Performance. Bull. Chem. Soc. Jpn. 2017, 90, 955–962. [Google Scholar] [CrossRef]
- Jiang, L.; Yan, J.; Zhou, Y.; Hao, L.; Xue, R.; Jiang, L.; Yi, B. Activated Carbon/Graphene Composites with High-Rate Performance as Electrode Materials for Electrochemical Capacitors. J. Solid State Electrochem. 2013, 17, 2949–2958. [Google Scholar] [CrossRef]
- Bose, S.; Kuila, T.; Mishra, A.K.; Rajasekar, R.; Kim, N.H.; Lee, J.H. Carbon-Based Nanostructured Materials and Their Composites as Supercapacitor Electrodes. J. Mater. Chem. 2012, 22, 767–784. [Google Scholar] [CrossRef]
- Wang, J.G.; Wei, B. Special Issue: Materials for Electrochemical Capacitors and Batteries. Materials 2017, 10, 438. [Google Scholar] [CrossRef] [PubMed]
- Cakici, M.; Kakarla, R.R.; Alonso-Marroquin, F. Advanced Electrochemical Energy Storage Supercapacitors Based on the Flexible Carbon Fiber Fabric-Coated with Uniform Coral-Like MnO2 Structured Electrodes. Chem. Eng. J. 2017, 309, 151–158. [Google Scholar] [CrossRef]
- Liu, M.; Shi, M.; Lu, W.; Zhu, D.; Li, L.; Gan, L. Core–Shell Reduced Graphene Oxide/MnOx@Carbon Hollow Nanospheres for High Performance Supercapacitor Electrodes. Chem. Eng. J. 2017, 313, 518–526. [Google Scholar] [CrossRef]
- Wang, Y.; Mayorga-Martinez, C.C.; Pumera, M. Polyaniline/MoSX Supercapacitor by Electrodeposition. Bull. Chem. Soc. Jpn. 2017, 90, 847–853. [Google Scholar] [CrossRef]
- Yu, M.H.; Lin, D.; Feng, H.B.; Zeng, Y.X.; Tong, Y.X.; Lu, X.H. Boosting the Energy Density of Carbon-Based Aqueous Supercapacitors by Optimizing the Surface Charge. Angew. Chem. Int. Ed. 2017, 56, 5454–5459. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.W.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A.; Thommes, M.; et al. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537–1541. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Q.; Chen, I.W.; Liu, F.X.; Yang, C.Y.; Bi, H.; Xu, F.F.; Huang, F.Q. Nitrogen-Doped Mesoporous Carbon of Extraordinary Capacitance for Electrochemical Energy Storage. Science 2015, 350, 1508–1513. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.H.; Liu, M.N.; Yang, J.; Qiu, Y.C.; Li, W.F.; Xu, Y.; Zhang, X.Y.; Zhang, Y.G. High Electroactive Material Loading on a Carbon Nanotube@3D Graphene Aerogel for High-Performance Flexible All-Solid-State Asymmetric Supercapacitors. Adv. Funct. Mater. 2017, 27. [Google Scholar] [CrossRef]
- Khan, A.H.; Ghosh, S.; Pradhan, B.; Dalui, A.; Shrestha, L.K.; Acharya, S.; Ariga, K. Two-Dimensional (2D) Nanomaterials Towards Electrochemical Nanoarchitectonics in Energy-Related Applications. Bull. Chem. Soc. Jpn. 2017, 90, 627–648. [Google Scholar] [CrossRef]
- Suen, N.T.; Hung, S.F.; Quan, Q.; Zhang, N.; Xu, Y.J.; Chen, H.M. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, Y.; Hu, S. Nanocomposites of Graphene and Graphene Oxides: Synthesis, Molecular Functionalization and Application in Electrochemical Sensors and Biosensors. A Review. Microchim. Acta 2017, 184, 1–44. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Huang, W. Porous Graphene Oxide Prepared on Nickel Foam by Electrophoretic Deposition and Thermal Reduction as High-Performance Supercapacitor Electrodes. Materials 2017, 10, 936. [Google Scholar] [CrossRef]
- Ning, J.; Zhang, T.; He, Y.; Jia, C.; Saha, P.; Cheng, Q. Co3O4@CoS Core-Shell Nanosheets on Carbon Cloth for High Performance Supercapacitor Electrodes. Materials 2017, 10, 608. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, W.; Chen, H.; Wang, S.; Kong, F.; Liu, S. Facile Control of the Porous Structure of Larch-Derived Mesoporous Carbons via Self-Assembly for Supercapacitors. Materials 2017, 10, 1330. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A.L.M.; Ci, L.J.; Vajtai, R.; Zhang, Q.; Wei, B.Q.; Ajayan, P.M. Direct Laser Writing of Micro-Supercapacitors on Hydrated Graphite Oxide Films. Nat. Nanotechnol. 2011, 6, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Fabrication of Carbon Nanorods and Graphene Nanoribbons from a Metal-Organic Framework. Nat. Chem. 2016, 8, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.B.; Zhan, Y.Y. Electrochemical Capacitance of Porous Reduced Graphene Oxide/Nickel Foam. J. Porous Mat. 2015, 22, 403–412. [Google Scholar] [CrossRef]
- Cao, X.H.; Shi, Y.M.; Shi, W.H.; Lu, G.; Huang, X.; Yan, Q.Y.; Zhang, Q.C.; Zhang, H. Preparation of Novel 3D Graphene Networks for Supercapacitor Applications. Small 2011, 7, 3163–3168. [Google Scholar] [CrossRef] [PubMed]
- Ortúzar, M.; Moreno, J.; Dixon, J. Ultracapacitor-Based Auxiliary Energy System for an Electric Vehicle: Implementation and Evaluation. IEEE. Trans. Ind. Electron. 2007, 54, 2147–2156. [Google Scholar] [CrossRef]
- Yu, H.; Tang, Q.; Wu, J.; Lin, Y.; Fan, L.; Huang, M.; Lin, J.; Li, Y.; Yu, F. Using Eggshell Membrane as a Separator in Supercapacitor. J. Power Sources 2012, 206, 463–468. [Google Scholar] [CrossRef]
- Fan, X.Y.; Ke, F.S.; Wei, G.Z.; Huang, L.; Sun, S.G. Sn–Co Alloy Anode Using Porous Cu as Current Collector for Lithium Ion Battery. J. Alloy Compd. 2009, 476, 70–73. [Google Scholar] [CrossRef]
- Arulepp, M.; Permann, L.; Leis, J.; Perkson, A.; Rumma, K.; Jänes, A.; Lust, E. Influence of the Solvent Properties on the Characteristics of a Double Layer Capacitor. J. Power Sources 2004, 133, 320–328. [Google Scholar] [CrossRef]
- Yang, C.P.; Yin, Y.X.; Zhang, S.F.; Li, N.W.; Guo, Y.G. Accommodating Lithium into 3D Current Collectors with a Submicron Skeleton towards Long-Life Lithium Metal Anodes. Nat. Commun. 2015, 6, 8058. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.X.; Liu, W.; Ye, B.Y.; Tang, Y. Preparation of Current Collector with Blind Holes and Eenhanced Cycle Performance of Silicon-Based Anode. Trans. Nonferr. Met. Soc. 2013, 23, 1723–1727. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, I.H.; Kim, S.I.; Jang, J.H. Nickel Hydroxide Supercapacitor with a Theoretical Capacitance and High Rate Capability Based on Hollow Dendritic 3D-Nickel Current Collectors. Chem. Asian J. 2017, 12, 1291–1296. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Qiao, S.Z.; Wu, X.Z.; Gao, X.L.; Zhou, J.; Zhuo, S.P.; Hartono, S.B.; Hulicova-Jurcakova, D. Exaggerated Capacitance Using Electrochemically Active Nickel Foam as Current Collector in Electrochemical Measurement. J. Power Sources 2011, 196, 4123–4127. [Google Scholar] [CrossRef]
- Ramabadran, U.; Ryan, G.; Zhou, X.; Farhat, S.; Manciu, F.; Tong, Y.; Ayler, R.; Garner, G. Reduced Graphene Oxide on Nickel Foam for Supercapacitor Electrodes. Materials 2017, 10, 1295. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Fan, X.M.; Yao, J.L.; Ren, B.; Gu, R.A.; Tian, Z.Q. Investigation on Surface-Enhanced Raman Scattering Activity on an Ex Situ ORC Roughened Nickel Electrode. J. Raman Spectrosc. 2009, 40, 405–410. [Google Scholar] [CrossRef]
- Wang, L.Z.; Fang, H.; Gu, S.H.; Zhang, L.S. The Performance of EDLC Using Chemical Etched Nickel Foil Current Collector. Battery Bimon. 2010, 40, 317–319. [Google Scholar]
- Gong, K.; Huang, Y.H.; Tian, Z.J.; Liu, Z.D.; Wang, G.F. Preparation of Porous Metal Nickel Used for Current Collector with Jet Electrodeposition and Electrochemical Capacitor Properties. Mater. Mech. Eng. 2011, 35, 62–69. [Google Scholar]
- Xie, K.Y.; Wei, W.F.; Yuan, K.; Lu, W.; Guo, M.; Li, Z.H.; Song, Q.; Liu, X.R.; Wang, J.G.; Shen, C. Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold. ACS Appl. Mater. Inter. 2016, 8, 26091–26097. [Google Scholar] [CrossRef] [PubMed]
- Toupin, M.; Bélanger, D.; Hill, I.R.; Quinn, D. Performance of Experimental Carbon Blacks in Aqueous Supercapacitors. J. Power Sources 2005, 140, 203–210. [Google Scholar] [CrossRef]
- Zheng, C.; Zhou, X.; Cao, H.; Wang, G.; Liu, Z. Synthesis of Porous Graphene/Activated Carbon Composite with High Packing Density and Large Specific Surface Area for Supercapacitor Electrode Material. J. Power Sources 2014, 258, 290–296. [Google Scholar] [CrossRef]
- Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The Role of Graphene for Electrochemical Energy Storage. Nat. Mater. 2015, 14, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Su, F.Y.; He, Y.B.; Li, B.; Chen, X.C.; You, C.H.; Wei, W.; Lv, W.; Yang, Q.H.; Kang, F. Could Graphene Construct an Effective Conducting Network in a High-Power Lithium Ion Battery? Nano Energy 2012, 1, 429–439. [Google Scholar] [CrossRef]
- Kandasamy, S.K.; Kandasamy, K. Recent Advances in Electrochemical Performances of Graphene Composite (Graphene-Polyaniline/Polypyrrole/Activated Carbon/Carbon Nanotube) Electrode Materials for Supercapacitor: A review. J. Inorg. Organomet. Polym. Mater. 2018, 28, 559–584. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Zhang, H.T.; Sun, X.Z.; Zhang, D.C.; Ma, Y.W. High-Performance Supercapacitors Based on a Graphene-Activated Carbon Composite Prepared by Chemical Activation. RSC Adv. 2012, 2, 7747–7753. [Google Scholar] [CrossRef]
- Ma, W.; Chen, S.; Yang, S.; Chen, W.; Wei, W.; Zhu, M. Bottom-Up Fabrication of Activated Carbon Fiber for All-Solid-State Supercapacitor with Excellent Electrochemical Performance. ACS Appl. Mater. Interfaces 2016, 8, 14622–14627. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Zheng, A.; Zhai, S.; Wu, S.; Xie, C.; Zhang, Y.; Guan, Y. Reed Straw Derived Active Carbon/Graphene Hybrids as Sustainable High-Performance Electrodes for Advanced Supercapacitors. J. Solid State Electrochem. 2016, 20, 449–457. [Google Scholar] [CrossRef]
- Zheng, C.; Zhou, X.F.; Cao, H.L.; Wang, G.H.; Liu, Z.P. Nitrogen-Doped Porous Graphene-Activated Carbon Composite Derived from “Bucky Gels” for Supercapacitors. RSC Adv. 2015, 5, 10739–10745. [Google Scholar] [CrossRef]
Electrode | Role of Graphene | Electrolyte | Specific Capacitance | Capacity Retention Ratio | Energy Density (Wh/kg) | Power Density (W/kg) |
---|---|---|---|---|---|---|
Graphene/AC [36] | component of active material | 6M KOH | 210 F/g (1 mV/s) | 94.7% (5000) | 22.3 | 33.2 |
Graphene/AC [40] | component of active material | KOH | 122 F/g | 90% (3000) | 6.1 | - |
Graphene/AC fiber [41] | dispersant & binder | 1M H2SO4 | 43.8 F/g | 90.4% (10,000) | - | - |
Graphene/AC [42] | component of active material | 6M KOH | 297 F/g (0.1 A/g) | 90% (6000) | 6.12 | 4660 |
Nitrogen-doped graphene/AC [43] | component of active material | 6M KOH | 145 F/g (20 mV/s) | 98.4% (5000) | - | - |
AC@G@NiF/G [our work] | Conductive agent & modification of current collectors | 6M KOH | 123.6 F/g (1 A/g) | >95% (10,000) | 17.2 | 507.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Qian, Y.; Li, W.; Zhu, S.; Liu, F.; Guo, Y.; Chen, M.; Li, Q.; Liu, L. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive. Materials 2018, 11, 799. https://doi.org/10.3390/ma11050799
Wang R, Qian Y, Li W, Zhu S, Liu F, Guo Y, Chen M, Li Q, Liu L. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive. Materials. 2018; 11(5):799. https://doi.org/10.3390/ma11050799
Chicago/Turabian StyleWang, Rubing, Yuting Qian, Weiwei Li, Shoupu Zhu, Fengkui Liu, Yufen Guo, Mingliang Chen, Qi Li, and Liwei Liu. 2018. "Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive" Materials 11, no. 5: 799. https://doi.org/10.3390/ma11050799