Optimization of Energy Consumption Saving of Passenger Railway Traffic Using Neural Network Systems
Abstract
1. Introduction
- Operating speed of up to 120 km/h.
- Improved driving capabilities, due to the use of the following:
- New asynchronous motors.
- New two-stage gearboxes.
- Modernization of the bogies in terms of the first stage of suspension and wheelset guidance, along with ensuring optimal braking parameters.
2. Research Procedure
3. Investigation Results and Discussion
4. Multi-Criteria Analysis
- Cost of purchasing/renovating new EMUs.
- Servicing costs.
- Need for further inspections/renovations (e.g., P5) and when.
- Maximum operating parameters (e.g., speed) and operating comfort.
- Condition of the unit for operation under all permissible conditions (renovated EMUs typically retain old bogies and frames).
- Improving the competencies of technical staff.
- Financial resources from scrapping the units.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bulakh, M. Evaluation and Reduction of Energy Consumption of Railway Train Movement on a Straight Track Section with Reduced Freight Wagon Mass. Energies 2025, 18, 280. [Google Scholar] [CrossRef]
- Sayed Gad, K.; Tonini, F.; Agati, G.; Borello, D. Emanuela Colombo, Energy demand prediction and scenario analysis for vehicle traction: A bottom-up approach applied to the italian railway system. Energy Rep. 2025, 13, 4196–4208. [Google Scholar]
- Sobkowiak, A.; Świechowicz, R. Energy balance of the passenger rail vehicles. Pojazdy Szyn./Rail Veh. 2020, 1, 49–56. [Google Scholar] [CrossRef]
- Kampczyk, A.; Gamon, W.; Gawlak, K. Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics. Energies 2023, 16, 2689. [Google Scholar] [CrossRef]
- Tian, Z.; Zhao, N.; Hillmansen, S.; Roberts, C.; Dowens, T.; Kerr, C. SmartDrive: Traction Energy Optimization and Applications in Rail Systems, IEEE Transactions On Intelligent Transportation Systems. Available online: https://livrepository.liverpool.ac.uk/3093202/1/SmartDrive%20Traction%20Energy%20Optimization%20and%20Applications%20in%20Rail%20Systems_final.pdf (accessed on 15 January 2026).
- How Much Electricity Does a Train Use? Surprising Facts About Electricity. Available online: https://sofarsolarpoland.pl/ile-pradu-zuzywa-pociag-zaskakujace-fakty-o-energii-elektrycznej (accessed on 2 October 2025).
- Szeląg, A. Energy aspects of rolling stock modernization and increasing the speed of electric trains. TTS Tech. Transp. Szyn. 2009, 11, 29–34. (In Polish) [Google Scholar]
- Szkopiński, J.; Kochan, A. Energy Efficiency and Smooth Running of a Train on the Route While Approaching Another Train. Energies 2021, 14, 7593. [Google Scholar] [CrossRef]
- Lu, Q.; Dessouky, M.; Leachman, R.C. Modeling Train Movements Through Complex Rail Networks. ACM Trans. Model. Comput. Simul. 2004, 14, 48–75. [Google Scholar] [CrossRef]
- Široký, J.; Nachtigall, P.; Tischer, E.; Gašparík, J. Simulation of Railway Lines with a Simplified Interlocking System. Sustainability 2021, 13, 1394. [Google Scholar] [CrossRef]
- ter Beek, M.H. Models for formal methods and tools: The case of railway systems. Softw. Syst. Model. 2025, 24, 1935–1954. [Google Scholar] [CrossRef]
- Kwaśnikowski, J.; Gramza, G. Simulation studies of traction energy consumption depending on the route profile. Pojazdy Szyn. 2004, 2, 77–80. (In Polish) [Google Scholar]
- Kwaśnikowski, J. Reliability of data for train simulation. Mat. XKraj. Kon/Nauk. Pojazdy Szyn. 1994, 2, 150–160. (In Polish) [Google Scholar]
- Szeląag, A.; Chudzikiewicz, A.; Nikitenko, A.; Nikšic, M. Re-Engineering of Rolling Stock with DC Motors as a Form of Sustainable Modernisation of Rail Transport in Eastern Europe After Entering EU in 2004—Selected Examples and Problems Observed in Poland and Croatia with Some Perspectives for Ukraine. Sustainability 2025, 17, 9486. [Google Scholar] [CrossRef]
- Raczyński, J.; Graff, M. New passenger rolling stock in Poland. TTS Tech. Transp. Szyn. 2014, 6, 20–29. [Google Scholar]
- Bartosiewicz, A.; Szterlik, P. New Silk Road—An Opportunity for the Development of Rail Container Transport in Poland? Nowa Polityka Wschod. 2020, 24, 9–27. [Google Scholar] [CrossRef]
- Kłos, M.J.; Sierpiński, G. The Optimization of Intelligent Transport Systems: Planning, Energy Efficiency and Environmental Responsibility. Energies 2025, 18, 4518. [Google Scholar] [CrossRef]
- Skobiej, K. Energy efficiency in rail vehicles: Analysis of contemporary technologies in reducing energy consumption. Ail Veh. /Pojazdy Szyn. 2023, 3−4, 64−70. [Google Scholar] [CrossRef]
- Gołębiowski, P.; Jacyna, M.; Stańczak, A. The Assessment of Energy Efficiency versus Planning of Rail Freight Traffic: A Case Study on the Example of Poland. Energies 2021, 14, 5629. [Google Scholar] [CrossRef]
- Rocha, A.; Araújo, A.; Carvalho, A.; Sepulveda, J. A New Approach for Real Time Train Energy Efficiency Optimization. Energies 2018, 11, 2660. [Google Scholar] [CrossRef]
- Ćwil, M.; Bartnik, W.; Jarzębowski, S. Railway VehicleEnergy Efficiency as a Key Factor in Creating Sustainable Transportation Systems. Energies 2021, 14, 5211. [Google Scholar] [CrossRef]
- Holmes, S.; Schroeder, M.P. Aerodynamic Effects of High-Speed Passenger Trains on Other Trains. United States. Federal Railroad Administration. Office of Research and Development. Available online: https://rosap.ntl.bts.gov/view/dot/9450/dot_9450_DS1.pdf (accessed on 16 January 2026).
- Bałuch, H. Climate change and energy consumption—Examples of connections with railway construction. Probl. Kolejnictwa 2019, 183, 7–11. (In Polish) [Google Scholar]
- Ackoff, R.L. Optimal Decisions in Applied Research; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1966. (In Polish) [Google Scholar]
- Garlikowska, M.; Gondek, P. Types of risks in railway infrastructure investments. In Proceedings of the XI Konferencja INFRASZYN, Zakopanem, Poland, 18–20 April 2018. (In Polish) [Google Scholar]
- Szkopiński, J. Optimization of traction energy consumption using intelligent rail traffic management systems. Transp. Overv. 2023, 6–8, 70–81. (In Polish) [Google Scholar] [CrossRef]
- PKP Polskie Linie Kolejowe S.A. Technical Guidelines for the Construction of Railway Traffic Control Devices; Ie-4 (WTB-E10); PKP Polskie Linie Kolejowe S.A.: Warszawa, Poland, 2019. (In Polish) [Google Scholar]
- Jacyna, M.; Gołębiowski, M.; Krześniak, M.; Szkopiński, J. Organization of Railway Traffic; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2019; p. 384. [Google Scholar]
- Mańka, A.; Kisielewski, P.; Konieczny, J.; Labisz, K.; Ćwiek, J. Verification of a train on railway track simulation and optimization system. Transp. Probl. 2023, 3, 137–150. [Google Scholar] [CrossRef]
- Iliev, I.; Suslov, K.; Kryukov, A.; Cherepanov, A.; Beloev, I.; Valeeva, Y. Modeling of energy recovery processes in railway traction power supply systems. Energy Rep. 2024, 11, 5163–5171. [Google Scholar] [CrossRef]
- Kolejowy, K. Recuperation as a Way to Reduce Energy Costs on the Railways; Kurier Kolejowy: Warszawa, Poland, 2019. (In Polish) [Google Scholar]
- Urbaniak, M.; Jacyna, M. Selected issues of multi-criteria optimization of railway traffic in terms of cost minimization. Probl. Kolejnictwa 2015, 2, 169. (In Polish) [Google Scholar]
- Massel, A. Use of modernized railway infrastructure in Poland. In Zeszyty Naukowo-Techniczne; SITJ RP 2/123; Wydaw: Bielsko-Biała, Poland, 2021; Volume 2, pp. 271–282. (In Polish) [Google Scholar]
- Massel, A. Methods and Tools for Assessing the Use of Transport Infrastructure on the Example of Research on the Railway Infrastructure of Central and Eastern European Countries in the Years 1989–2019; Wydnictwo Instytutu Kolejnictwa: Warszawa, Poland, 2020. (In Polish) [Google Scholar]
- Jacyna-Gołda, I. Supply Network Efficiency Assessment Engineering; Wydawnictwo Naukowe PWN SA: Warszawa, Poland, 2019. (In Polish) [Google Scholar]
- Tomaszewski, F.; Licow, R. The impact of railway line modernization on the improvement of selected technical and operational parameters. Drog. Kolejowe 2015, 9, 152–155. [Google Scholar]
- Bałuch, H.; Bałuch, M. Determinants of Train Speed—Geometric Layout and Track Defects; Wydawnictwo Instytutu Kolejnictwa: Warszawa, Poland, 2010. (In Polish) [Google Scholar]
- Jakubowski, A.; Jarzębowicz, L.; Karwowski, K.; Wilk, A. Energy efficiency of a rail vehicle under various load conditions. Eksploatacja 2018, 12, 44–48. (In Polish) [Google Scholar]
- Douglas, H.; Roberts, C.; Hillmansen, S.; Schmid, F. An assessment of available measures to reduce traction energy use in railway networks. Energy Convers. Manag. 2015, 106, 1149–1165. [Google Scholar] [CrossRef]
- Durzyński, Z. Basics of the method for determining the parameters of energy-efficient driving of traction vehicles in agglomeration areas. Pojazdy Szyn. 2011, 3, 1–5. (In Polish) [Google Scholar]
- Jakubowski, A.; Jarzebowicz, L.; Karwowski, K.; Wilk, A. Analysis of the Energy Consumption of a Rapid Urban Rail Vehicle Taking into Account the Variable Efficiency of the Traction Drive; Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej: Gdańsk, Poland, 2018; pp. 32–36. (In Polish) [Google Scholar]
- Urbaniak, M.; Kardas-Cinal, E. Optimizing the efficiency of regenerative braking in rail transport by controlling the arrival time at the station. Railw. Rep. 2018, 180, 61–68. (In Polish) [Google Scholar]
- Rawicki, S. Energy-Saving Tram Rides with Vector-Controlled Induction Motors in Dynamic City Traffic; Wyd. Politechniki Poznańskiej: Poznań, Poland, 2013. (In Polish) [Google Scholar]
- Janduła, M. It’s been 55 years of popularity “kible”. Available online: https://www.rynek-kolejowy.pl/wiadomosci/to-juz-55-lat-popularnych-kibli-80146.html (accessed on 10 December 2025).
- Plewako, S. PKP Electrification at the Turn of the 20th and 21st Centuries: On the Seventieth Anniversary of PKP Electrification; Z.P. Poligrafia: Warszawa, Poland, 2006; pp. 159–173. (In Polish) [Google Scholar]
- Konieczny, J. Buy or Modernize Rolling Stock? Komun. Publiczna 2018, 3, 36–41. (In Polish) [Google Scholar]
- Biliński, J.; Buta, S.; Gmurczyk, E.; Kaska, J. Modern asynchronous drive with regenerative braking manufactured by MEDCOM for modernized electric multiple units of the EN57AKŁ series. TTS Tech. Transp. Szyn. 2012, 4, 20–25. [Google Scholar]
- Siwiec, J. Use of Hydrogen Fuel Cells in Rail Transport. Railw. Rep. 2021, 190, 113–117. [Google Scholar] [CrossRef]
- Electric Multiple Unit EN71AKŚ-101. Available online: https://ilostan.forumkolejowe.pl/index.php?nav=lok&typ=3&seria=66&lok=3500&numer=101&title=EN71AK%A6-101 (accessed on 31 October 2025).
- Electric Multiple Unit EN71AKŚ. Available online: https://www.kolejeslaskie.com/spolka/tabor/ezt-en71-aks/ (accessed on 31 October 2025).
- Electric Multiple Unit. Available online: https://ilostan.forumkolejowe.pl/index.php?nav=serie&typ=3&seria=66&title=EN71AK%A6 (accessed on 31 October 2025).
- Electric Multiple Unit EN75—“FLIRT”. Available online: https://www.kolejeslaskie.com/spolka/tabor/ezt-en75/ (accessed on 31 October 2025).
- Electric Multiple Unit EN75-001. Available online: https://ilostan.forumkolejowe.pl/index.php?nav=lok&typ=3&seria=70&lok=3512&numer=1&title=EN75-001 (accessed on 31 October 2025).
- Electric Multiple Unit EN76—“ELF”. Available online: https://www.kolejeslaskie.com/spolka/tabor/ezt-en76-elf-22we/ (accessed on 31 October 2025).
- Electric Multiple Unit EN76-009. Available online: https://ilostan.forumkolejowe.pl/index.php?nav=lok&typ=3&seria=28&lok=1470&numer=9&title=EN76-009 (accessed on 31 October 2025).
- Electric Multiple Unit 21WEa—“ELF 2”. Available online: https://www.kolejeslaskie.com/spolka/tabor/ezt-21wea-elf-2/ (accessed on 31 October 2025).
- Electric Multiple Unit 21WEa-001. Available online: https://ilostan.forumkolejowe.pl/index.php?nav=lok&typ=3&seria=368&lok=14120&numer=1&title=21WEa-001 (accessed on 31 October 2025).
- Electric Multiple Unit 22WEd—“ELF 2”. Available online: https://www.kolejeslaskie.com/spolka/tabor/ezt-22wed-elf-2/ (accessed on 31 October 2025).
- Electric Multiple Unit 22WEdg-012. Available online: https://ilostan.forumkolejowe.pl/index.php?nav=lok&typ=3&seria=377&lok=15412&numer=12&title=22WEd-012 (accessed on 31 October 2025).
- Electric Multiple Unit 27WEb—“ELF”. Available online: https://www.kolejeslaskie.com/spolka/tabor/ezt-27web/ (accessed on 31 October 2025).
- Electric Multiple Unit 27WEb-006. Available online: https://ilostan.forumkolejowe.pl/index.php?nav=lok&typ=3&seria=107&lok=5492&numer=6&title=27WEb-006 (accessed on 31 October 2025).
- Electric Multiple Unit 36WEa—“IMPULS”. Available online: https://www.kolejeslaskie.com/spolka/tabor/ezt-36wea-impuls/ (accessed on 31 October 2025).
- Another Impuls 2 Trains are Starting to Run in the Silesian Voivodeship. Available online: https://www.kolejeslaskie.com/kolejne-impulsy-2-ruszaja-na-tory-wojewodztwa-slaskiego/ (accessed on 31 October 2025).
- Two Offers for Repairs to P4 Silesian EN57AKŚ. Available online: https://www.nakolei.pl/dwie-oferty-na-wykonanie-napraw-p4-slaskich-en57aks/ (accessed on 31 October 2025).
- Koleje Śląskie with a Repair Contract EN57AKŚ. Available online: https://transinfo.pl/x/inforail/koleje-slaskie-z-umowa-na-naprawy-en57aks/ (accessed on 3 October 2025).
- Hu, H.; Liu, Y.; Li, Y.; He, Z.; Gao, S.; Zhu, X.; Tao, H. Traction power systems for electrified railways: Evolution, state of the art, and future trends. Railw. Eng. Sci. 2024, 32, 1–19. [Google Scholar] [CrossRef]
- Barna, G.; Stypka, M. Microprocessor control system for electropneumatic braking of multiple units. Pojazdy Szyn. 2009, 2, 35–43. [Google Scholar] [CrossRef]
- Milojević, S. Sustainable application of natural gas as engine fuel in city buses: Benefit and restrictions. J. Appl. Eng. Sci. 2017, 15, 81–88. [Google Scholar] [CrossRef]
- Konieczny, J.; Labisz, K. Structure and Properties of the S49 Rail After a Long Term Outdoor Exposure. Adv. Sci. Technol. Res. J. 2022, 16, 280–290. [Google Scholar] [CrossRef]
- Labisz, K.; Konieczny, J.; Jurczyk, S.; Tanski, T.; Krupinski, M. Thermo-derivative analysis of Al-Si-Cu alloy used for surface treatment. J. Therm. Anal. Calorim. 2017, 129, 895–903. [Google Scholar] [CrossRef]












| Train Type | Average Energy Consumption (kWh/100 km) |
|---|---|
| Pendolino | 2.7 |
| Intercity | 2.5 |
| ET22 (freight locomotive) | 3.5 |
| EMU | Year of Production | Producer | Year of Last Renovation P4 or P5 * | Contractor of the Last Renovation of P4 or P5 |
|---|---|---|---|---|
| EN57AKŚ | 1965 | Pafawag | 2023 | Public Transport Service sp. z o.o., |
| EN71AKŚ | 1975 | Pafawag | 2022 | PESA Minsk Mazowiecki |
| EN75 Flirt | 2008 | NEWAG S.A. Nowy Sącz | 2021 | Stadler Service Polska Sp. z o.o. |
| EN76 ELF | 2011 | PESA Bydgoszcz S.A. | 2022 | Public Transport Service sp. z o.o., |
| 21WEa Elf 2 | 2017 | PESA Bydgoszcz SA. | 2024 | Public Transport Service sp. z o.o., |
| 22Wed Elf 2 | 2019 | PESA Bydgoszcz SA. | 2024 | Public Transport Service sp. z o.o., |
| 27Web Elf | 2013 | PESA Bydgoszcz SA. | 2023 | Public Transport Service sp. z o.o., |
| 36WEa Impuls | 2014 | NEWAG S.A. Nowy Sącz | 2020 | NEWAG S.A. Nowy Sącz |
| Energy, Training Set | Energy, Validation Set | Energy, Test Set | |
|---|---|---|---|
| Mean | 0.4983885 | 0.4893446 | 0.4950181 |
| Standard Deviation | 0.4076593 | 0.3841393 | 0.3991902 |
| Mean Error | 0.0004014 | 0.0008609 | 3.531 × 109 |
| Error Deviation | 0.0615 | 0.05702 | 1.23 × 1011 |
| Average Absolute Error | 0.03743 | 0.036 | 3.531 × 109 |
| Standard Deviation | 0.1508521 | 0.1484317 | 3.081 × 1011 |
| Correlation | 0.9885564 | 0.9889233 | −0.03546 |
| Criterion | Purchase of New EMUs | Repair of EMUs (EN57) | Weight |
|---|---|---|---|
| Purchase/renovation cost | 4 | 8 | 0.35 |
| Service costs | 5 | 9 | 0.25 |
| Period of subsequent inspections/repairs (P5) | 9 | 3 | 0.15 |
| Maximum operating parameters (e.g., speed) | 10 | 8 | 0.05 |
| Unit condition for operation under all permissible conditions/passenger safety/durability limits | 10 | 7 | 0.1 |
| Improving the skills of technical staff | 5 | 9 | 0.05 |
| Financial resources from the scrapping of units | 9 | 0 | 0.05 |
| Criterion | Purchase of New EMUs | Repair of EMUs (EN57) | Weight |
|---|---|---|---|
| Purchase/renovation cost | 4 | 8 | 0.1 |
| Service costs | 5 | 9 | 0.15 |
| Period of subsequent inspections/repairs (P5) | 9 | 3 | 0.15 |
| Maximum operating parameters (e.g., speed) | 10 | 8 | 0.05 |
| Unit condition for operation under all permissible conditions/passenger safety/durability limits | 10 | 7 | 0.35 |
| Improving the skills of technical staff | 5 | 5 | 0.15 |
| Financial resources from the scrapping of units | 9 | 0 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gamon, W.; Konieczny, J.; Labisz, K. Optimization of Energy Consumption Saving of Passenger Railway Traffic Using Neural Network Systems. Energies 2026, 19, 605. https://doi.org/10.3390/en19030605
Gamon W, Konieczny J, Labisz K. Optimization of Energy Consumption Saving of Passenger Railway Traffic Using Neural Network Systems. Energies. 2026; 19(3):605. https://doi.org/10.3390/en19030605
Chicago/Turabian StyleGamon, Wojciech, Jarosław Konieczny, and Krzysztof Labisz. 2026. "Optimization of Energy Consumption Saving of Passenger Railway Traffic Using Neural Network Systems" Energies 19, no. 3: 605. https://doi.org/10.3390/en19030605
APA StyleGamon, W., Konieczny, J., & Labisz, K. (2026). Optimization of Energy Consumption Saving of Passenger Railway Traffic Using Neural Network Systems. Energies, 19(3), 605. https://doi.org/10.3390/en19030605

