Experimental Measurement and Numerical Computation of Permeability for Additively-Manufactured Heat Pipe Wicks
Abstract
1. Introduction
2. State of the Art
3. Physical and Virtual Samples of HP Wicks
- Samples for capillary rise tests were shaped as half-pipes, with height and wick thickness .
- Samples for mass flow rate tests were cylindrical, with height and diameter , including an external fillet for connection to the pipe of the experimental setup.
- The sample used to extract the domains for numerical simulations was a cylindrical HP, with length , internal diameter , and wick thickness .
4. Experimental Tests
4.1. Capillary Rise Test
4.2. Flow Rate Based Measurement
5. Numerical Simulations
5.1. Finite Volume Simulations
5.1.1. Software Tool
5.1.2. Geometry, Mesh, Discretization Schemes, and Solution Algorithms
- Steady-state simulations were performed.
- The SIMPLE algorithm was applied to couple pressure and velocity, with one non-orthogonal corrector.
- The flow velocities involved were very low, as required for permeability estimation, so laminar flow was assumed.
- Second-order Gauss linear discretization schemes were used for all the terms.
- Pressure and velocity were relaxed with factors of .
- Residuals threshold for convergence was set to for both pressure and velocity.
- The geometric–algebraic multigrid solver (GAMG) was used for pressure.
- The stabilized preconditioned bi-conjugate gradient solver (PBiCGStab) was adopted for velocity.
5.1.3. Preliminary Simulations for Validation
5.1.4. Boundary Conditions
5.2. Lattice Boltzmann Simulations
5.2.1. Lattice Boltzmann Equations and Selected Software
5.2.2. Setup of the Lattice Boltzmann Simulations
5.2.3. Preliminary Simulations for Validation
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zohuri, B. Basic principles of heat pipes and history. In Heat Pipe Design and Technology: Modern Applications for Practical Thermal Management; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–41. [Google Scholar]
- Caruana, R.; Guilizzoni, M. Modeling of Conventional Heat Pipes with Capillary Wicks: A Review. Energies 2025, 18, 2213. [Google Scholar] [CrossRef]
- Jouhara, H.; Reay, D.; McGlen, R.; Kew, P.; McDonough, J. Heat Pipes: Theory, Design and Applications; Butterworth-Heinemann: Oxford, UK, 2023. [Google Scholar]
- Shukla, K. Heat pipe for aerospace applications—An overview. J. Electron. Cool. Therm. Control 2015, 5, 1–14. [Google Scholar] [CrossRef]
- Caruana, R.; Gallazzi, L.; Iazurlo, R.; Marcovati, M.; Guilizzoni, M. A multi-node lumped parameter model including gravity and real gas effects for steady and transient analysis of heat pipes. Fluids 2022, 7, 109. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, P. Multiphase flow and heat transfer in porous media. In Advances in Heat Transfer; Elsevier: Amsterdam, The Netherlands, 1997; Volume 30, pp. 93–196. [Google Scholar]
- Badruddin, I.A.; Khan, T.Y.; Baig, M.A.A. Heat transfer in porous media: A mini review. Mater. Today Proc. 2020, 24, 1318–1321. [Google Scholar] [CrossRef]
- Wang, X.; Wan, Z. Heat transfer performance of a heat pipe with sintered stainless-steel fiber wick. Case Stud. Therm. Eng. 2023, 45, 103016. [Google Scholar] [CrossRef]
- Brambati, G.; Vitali, L.; Guilizzoni, M.; Caplanne, E.; Niro, A.; Foletti, S. Comparative thermal analysis, design, and structural assessment of lattice-based additively manufactured heat pipes for space applications. Prog. Addit. Manuf. 2025, 10, 8221–8238. [Google Scholar] [CrossRef]
- Khanafer, K.; Vafai, K. The role of porous media in biomedical engineering as related to magnetic resonance imaging and drug delivery. Heat Mass Transf. 2006, 42, 939–953. [Google Scholar] [CrossRef]
- Heydari, A.; Peyvandi, K. Role of metallic porous media and surfactant on kinetics of methane hydrate formation and capacity of gas storage. J. Pet. Sci. Eng. 2019, 181, 106235. [Google Scholar] [CrossRef]
- Zhao, B.; Gain, A.K.; Ding, W.; Zhang, L.; Li, X.; Fu, Y. A review on metallic porous materials: Pore formation, mechanical properties, and their applications. Int. J. Adv. Manuf. Technol. 2018, 95, 2641–2659. [Google Scholar] [CrossRef]
- Szymanski, P.; Mikielewicz, D. Additive manufacturing as a solution to challenges associated with heat pipe production. Materials 2022, 15, 1609. [Google Scholar] [CrossRef]
- Nemec, P.; Čaja, A.; Malcho, M. Mathematical model for heat transfer limitations of heat pipe. Math. Comput. Model. 2013, 57, 126–136. [Google Scholar] [CrossRef]
- Ehlers, W. Darcy, Forchheimer, Brinkman and Richards: Classical hydromechanical equations and their significance in the light of the TPM. Arch. Appl. Mech. 2022, 92, 619–639. [Google Scholar] [CrossRef]
- Peterson, G.P. An Introduction to Heat Pipes. Modeling, Testing, and Applications; Wiley Series in Thermal Management of Microelectronic and Electronic Systems; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Faghri, A. Heat Pipe Science and Technology; Global Digital Press: New York, NY, USA, 1995. [Google Scholar]
- Krakowska, P.; Madejski, P. Research on fluid flow and permeability in low porous rock sample using laboratory and computational techniques. Energies 2019, 12, 4684. [Google Scholar] [CrossRef]
- Yang, X.; Kuru, E.; Gingras, M.; Iremonger, S. CT-CFD integrated investigation into porosity and permeability of neat early-age well cement at downhole condition. Constr. Build. Mater. 2019, 205, 73–86. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Chen, D.; Yin, Z. An investigation on the permeability of hydrate-bearing sediments based on pore-scale CFD simulation. Int. J. Heat Mass Transf. 2022, 192, 122901. [Google Scholar] [CrossRef]
- Boumedjane, M.; Al-Maamari, R.S.; Rabbani, A.; Karimi, M. Real-time pore-scale investigation of the effects of uniform, random, and heterogenous porous structures on intrinsic permeability using two-dimensional microfluidic chips. Energy Fuels 2024, 38, 5700–5713. [Google Scholar] [CrossRef]
- Nickerson, S.; Shu, Y.; Zhong, D.; Könke, C.; Tandia, A. Permeability of porous ceramics by X-ray CT image analysis. Acta Mater. 2019, 172, 121–130. [Google Scholar] [CrossRef]
- Song, S.; Rong, L.; Dong, K.; Liu, X.; Le-Clech, P.; Shen, Y. Pore-scale numerical study of intrinsic permeability for fluid flow through asymmetric ceramic microfiltration membranes. J. Membr. Sci. 2022, 642, 119920. [Google Scholar] [CrossRef]
- Chao, L.; Jiao, C.; Liang, H.; Xie, D.; Shen, L.; Liu, Z. Analysis of mechanical properties and permeability of trabecular-like porous scaffold by additive manufacturing. Front. Bioeng. Biotechnol. 2021, 9, 779854. [Google Scholar] [CrossRef]
- Yuan, T.; Shen, L.; Dini, D. Porosity-permeability tensor relationship of closely and randomly packed fibrous biomaterials and biological tissues: Application to the brain white matter. Acta Biomater. 2024, 173, 123–134. [Google Scholar] [CrossRef]
- Gabrieli, R.; Schiavi, A.; Baino, F. Determining the permeability of porous bioceramic scaffolds: Significance, overview of current methods and challenges ahead. Materials 2024, 17, 5522. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Zhang, L.; Liu, Q.; Ren, L. Tailored Pore Architectures in Ti6Al4V Bone Scaffolds for Tunable Permeability and Mechanical Performance. Adv. Eng. Mater. 2025, 27, 2500070. [Google Scholar] [CrossRef]
- Tang, T.; McDonough, J. A theoretical model for the porosity-permeability relationship. Int. J. Heat Mass Transf. 2016, 103, 984–996. [Google Scholar] [CrossRef]
- Lv, C.; Li, W.; Du, J.; Liang, J.; Yang, H.; Zhu, Y.; Ma, B. Experimental investigation of permeability and Darcy-Forchheimer flow transition in metal foam with high pore density. Exp. Therm. Fluid Sci. 2024, 154, 111149. [Google Scholar] [CrossRef]
- Otaru, A.; Samuel, M. Pore-level CFD investigation of velocity and pressure dispositions in microcellular structures. Mater. Res. Express 2021, 8, 046516. [Google Scholar] [CrossRef]
- Narváez, A.; Zauner, T.; Raischel, F.; Hilfer, R.; Harting, J. Quantitative analysis of numerical estimates for the permeability of porous media fromlattice-Boltzmann simulations. J. Stat. Mech. Theory Exp. 2010, 2010, P11026. [Google Scholar] [CrossRef]
- Eshghinejadfard, A.; Daróczy, L.; Janiga, G.; Thévenin, D. Calculation of the permeability in porous media using the lattice Boltzmann method. Int. J. Heat Fluid Flow 2016, 62, 93–103. [Google Scholar] [CrossRef]
- Fu, J.; Dong, J.; Wang, Y.; Ju, Y.; Owen, D.R.J.; Li, C. Resolution effect: An error correction model for intrinsic permeability of porous media estimated from lattice boltzmann method. Transp. Porous Media 2020, 132, 627–656. [Google Scholar] [CrossRef]
- Feng, Z.; Fan, Y.; Dong, X.; Ma, X.; Chen, R. Permeability estimation in filter cake based on X-ray microtomography and Lattice Boltzmann method. Sep. Purif. Technol. 2021, 275, 119114. [Google Scholar] [CrossRef]
- Tian, J.; Qi, C.; Sun, Y.; Yaseen, Z.M.; Pham, B.T. Permeability prediction of porous media using a combination of computational fluid dynamics and hybrid machine learning methods. Eng. Comput. 2021, 37, 3455–3471. [Google Scholar] [CrossRef]
- Li, R.; Han, Z.; Zhang, L.; Zhou, J.; Wang, S.; Huang, F. Numerical Determination of Anisotropic Permeability for Unconsolidated Hydrate Reservoir: A DEM–CFD Coupling Method. J. Mar. Sci. Eng. 2024, 12, 1447. [Google Scholar] [CrossRef]
- Elrahmani, A.; Al-Raoush, R.I.; Ayari, M.A. Modeling of permeability impairment dynamics in porous media: A machine learning approach. Powder Technol. 2024, 433, 119272. [Google Scholar] [CrossRef]
- Shi, K.; Jin, G.; Yan, W.; Xing, H. Permeability estimation for deformable porous media with convolutional neural network. Int. J. Numer. Methods Heat Fluid Flow 2024, 34, 2943–2962. [Google Scholar] [CrossRef]
- Fogouang, L.M.; André, L.; Soulaine, C. Particulate transport in porous media at pore-scale. Part 1: Unresolved-resolved four-way coupling CFD-DEM. J. Comput. Phys. 2025, 521, 113540. [Google Scholar] [CrossRef]
- Ranjbarzadeh, R.; Sappa, G. Numerical and experimental study of fluid flow and heat transfer in porous media: A review article. Energies 2025, 18, 976. [Google Scholar] [CrossRef]
- Menke, H.P.; Maes, J.; Geiger, S. Upscaling the porosity–permeability relationship of a microporous carbonate for Darcy-scale flow with machine learning. Sci. Rep. 2021, 11, 2625. [Google Scholar] [CrossRef] [PubMed]
- Prakoso, A.T.; Basri, H.; Adanta, D.; Yani, I.; Ammarullah, M.I.; Akbar, I.; Ghazali, F.A.; Syahrom, A.; Kamarul, T. The effect of tortuosity on permeability of porous scaffold. Biomedicines 2023, 11, 427. [Google Scholar] [CrossRef]
- Masoodi, R.; Pillai, K.M.; Varanasi, P.P. Darcy’s law-based models for liquid absorption in polymer wicks. AIChE J. 2007, 53, 2769–2782. [Google Scholar] [CrossRef]
- Deng, D.; Tang, Y.; Huang, G.; Lu, L.; Yuan, D. Characterization of capillary performance of composite wicks for two-phase heat transfer devices. Int. J. Heat Mass Transf. 2013, 56, 283–293. [Google Scholar] [CrossRef]
- Zhang, J.; Lian, L.X.; Liu, Y.; Wang, R.Q. The heat transfer capability prediction of heat pipes based on capillary rise test of wicks. Int. J. Heat Mass Transf. 2021, 164, 120536. [Google Scholar] [CrossRef]
- Deng, D.; Liang, D.; Tang, Y.; Peng, J.; Han, X.; Pan, M. Evaluation of capillary performance of sintered porous wicks for loop heat pipe. Exp. Therm. Fluid Sci. 2013, 50, 1–9. [Google Scholar] [CrossRef]
- Jeon, S.; Byon, C. Permeability of dual-height micro-post wicks for heat pipes. Int. J. Heat Mass Transf. 2017, 115, 879–885. [Google Scholar] [CrossRef]
- Agarwal, U.; Alpak, F.O.; Koelman, J.V.A. Permeability from 3D porous media images: A fast two-step approach. Transp. Porous Media 2018, 124, 1017–1033. [Google Scholar] [CrossRef]
- Wagner, A.; Eggenweiler, E.; Weinhardt, F.; Trivedi, Z.; Krach, D.; Lohrmann, C.; Jain, K.; Karadimitriou, N.; Bringedal, C.; Voland, P.; et al. Permeability estimation of regular porous structures: A benchmark for comparison of methods. Transp. Porous Media 2021, 138, 1–23. [Google Scholar] [CrossRef]
- Vitali, L.; Brambati, G.; Caruana, R.; Foletti, S.; Guilizzoni, M.; Niro, A. Permeability measurement of a 3D-printed AlSi10Mg porous medium: Comparisons between first results with different experimental and numerical techniques. J. Phys. Conf. Ser. 2024, 2685, 012052. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology (NIST). Reference Fluid Thermodynamic and Transport Properties Database (REFPROP); National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2024. Available online: https://www.nist.gov/srd/refprop/ (accessed on 30 October 2025).
- Jafari, D.; Wits, W.W.; Geurts, B.J. Metal 3D-printed wick structures for heat pipe application: Capillary performance analysis. Appl. Therm. Eng. 2018, 143, 403–414. [Google Scholar] [CrossRef]
- Elkholy, A.; Durfee, J.; Mooney, J.; Robinson, A.; Kempers, R. A rate-of-rise facility for measuring properties of wick structures. Meas. Sci. Technol. 2023, 34, 045301. [Google Scholar] [CrossRef]
- MATLAB. MathWorks. 2025. Available online: https://www.mathworks.com/ (accessed on 30 October 2025).
- OpenFOAM. The OpenFOAM Foundation. 2025. Available online: https://openfoam.org/ (accessed on 30 October 2025).
- Latt, J.; Malaspinas, O.; Kontaxakis, D.; Parmigiani, A.; Lagrava, D.; Brogi, F.; Belgacem, M.B.; Thorimbert, Y.; Leclaire, S.; Li, S.; et al. Palabos: Parallel lattice Boltzmann solver. Comput. Math. Appl. 2021, 81, 334–350. [Google Scholar] [CrossRef]
- Palabos. Université de Géneve. 2025. Available online: https://palabos.unige.ch/ (accessed on 30 October 2025).
- Ferziger, J.H.; Perić, M.; Street, R.L. Finite volume methods. In Computational Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 81–110. [Google Scholar]
- Guilizzoni, M.; Santini, M.; Lorenzi, M.; Knisel, V.; Fest-Santini, S. Micro computed tomography and CFD simulation of drop deposition on gas diffusion layers. J. Phys. Conf. Ser. 2014, 547, 012028. [Google Scholar] [CrossRef]
- Della Torre, A.; Montenegro, G.; Tabor, G.; Wears, M. CFD characterization of flow regimes inside open cell foam substrates. Int. J. Heat Fluid Flow 2014, 50, 72–82. [Google Scholar] [CrossRef]
- Della Torre, A.; Montenegro, G.; Onorati, A.; Tabor, G. CFD characterization of pressure drop and heat transfer inside porous substrates. Energy Procedia 2015, 81, 836–845. [Google Scholar] [CrossRef]
- Thompson, E.P.; Tomenchok, K.; Olson, T.; Ellis, B.R. Reducing user bias in X-ray computed tomography-derived rock parameters through image filtering. Transp. Porous Media 2021, 140, 493–509. [Google Scholar] [CrossRef]
- Caruana, R.; Marocco, L.; De Antonellis, S.; Guilizzoni, M. Effect of the plates geometry on the performance of a cross-flow recuperator for indirect evaporative cooling systems. J. Phys. Conf. Ser. 2024, 2766, 012177. [Google Scholar] [CrossRef]
- Corti, M.; Caruana, R.; Di Caterino, A.; Fustinoni, D.; Gramazio, P.; Vitali, L.; Guilizzoni, M. Morphology and Solidity Optimization of Freeform Surface Turbulators for Heat Exchangers Equipped with Narrow Channels. Energies 2025, 18, 2903. [Google Scholar] [CrossRef]
- Wildenschild, D.; Sheppard, A.P. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 2013, 51, 217–246. [Google Scholar] [CrossRef]
- Schlüter, S.; Sheppard, A.; Brown, K.; Wildenschild, D. Image processing of multiphase images obtained via X-ray microtomography: A review. Water Resour. Res. 2014, 50, 3615–3639. [Google Scholar] [CrossRef]
- Image Processing and Analysis in Java (IMAGEJ). 2025. Available online: https://imagej.net/ij/ (accessed on 30 October 2025).
- Zou, Q.; He, X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 1997, 9, 1591–1598. [Google Scholar] [CrossRef]
- Gotoh, R.; Furst, B.I.; Roberts, S.N.; Cappucci, S.; Daimaru, T.; Sunada, E.T. Experimental and analytical investigations of AlSi10Mg, stainless steel, Inconel 625 and Ti-6Al-4V porous materials printed via powder bed fusion. Prog. Addit. Manuf. 2022, 7, 943–955. [Google Scholar] [CrossRef]













| Print Parameter | Value |
|---|---|
| Layer thickness | 60 |
| Speed | 2350 |
| Hatch Distance | 140 |
| Energy per unit volume | |
| Power | 200 |
| Focal/spot size | 160 |
| Quantity | Value 1 | Value 2 | Value 3 |
|---|---|---|---|
| Sample height, H | |||
| Total pressure drop, | −11,550 | −14,728 | |
| Frictional pressure drop, | −12,262 | ||
| Volume flow rate, | |||
| Permeability, K |
| Sample Porosity, [–] | Permeability, | Technique |
|---|---|---|
| 0.22 | Numerical, FVM | |
| 0.22 | Numerical, LBM | |
| 0.26 | Experimental, mass flow rate | |
| 0.27 | Numerical, FVM | |
| 0.27 | Numerical, LBM | |
| 0.29 | – | Experimental, capillary rise |
| 0.36 | Numerical, FVM | |
| 0.36 | Numerical, LBM | |
| 0.40 1 | Numerical, FVM | |
| 0.40 1 | Numerical, LBM |
| Parameter | Value |
|---|---|
| HP shape | Cylindrical |
| Solid material | Aluminum |
| Working fluid | Acetone |
| In-pore contact angle, [°] | 10 |
| Average pore diameter, |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guilizzoni, M.; Vitali, L.; Brambati, G.; Caruana, R.; Caplanne, E.; Foletti, S. Experimental Measurement and Numerical Computation of Permeability for Additively-Manufactured Heat Pipe Wicks. Energies 2025, 18, 6399. https://doi.org/10.3390/en18246399
Guilizzoni M, Vitali L, Brambati G, Caruana R, Caplanne E, Foletti S. Experimental Measurement and Numerical Computation of Permeability for Additively-Manufactured Heat Pipe Wicks. Energies. 2025; 18(24):6399. https://doi.org/10.3390/en18246399
Chicago/Turabian StyleGuilizzoni, Manfredo, Luigi Vitali, Giovanni Brambati, Roberta Caruana, Emmanuel Caplanne, and Stefano Foletti. 2025. "Experimental Measurement and Numerical Computation of Permeability for Additively-Manufactured Heat Pipe Wicks" Energies 18, no. 24: 6399. https://doi.org/10.3390/en18246399
APA StyleGuilizzoni, M., Vitali, L., Brambati, G., Caruana, R., Caplanne, E., & Foletti, S. (2025). Experimental Measurement and Numerical Computation of Permeability for Additively-Manufactured Heat Pipe Wicks. Energies, 18(24), 6399. https://doi.org/10.3390/en18246399

