Assessment of Long-Term Thermal Aging Effects on PVC/Al2O3 Nanocomposites Through Electrical, SEM and FTIR Characterizations
Abstract
1. Introduction
- -
- Al2O3 nanoparticle addition significantly enhances the thermal aging resistance of PVC.
- -
- Dielectric permittivity and the dielectric loss factor are better maintained in nanocomposites than in pure PVC, indicating improved dielectric stability.
- -
- Charging and discharging currents decrease with increasing Al2O3 content, demonstrating an improvement in the insulation performance.
- -
- Charging and discharging currents increase over time. These increases are attributed to the formation of aging products and reactive molecular groups, which enhance charge carrier mobility, and consequently raise the conductivity of PVC.
- -
- FTIR and SEM analyses revealed that thermal aging led to the development of certain polar groups, likely because of structural breakdown and slight dehydrochlorination. Additionally, a distinct color change was observed in the samples over the course of aging, suggesting surface degradation.
2. Experimental Setup
3. Results and Discussion
3.1. Dielectric Characterization
3.2. Charging and Discharging Current Measurements
3.3. SEM Analysis
3.4. FTIR Analysis
3.5. Visual Observations
4. Conclusions
- -
- The dielectric response of the PVC matrix was notably influenced by the Al2O3 nanofiller content. In unaged specimens, the permittivity exhibited increases of 6.9% and 3.6% at 2.5 wt% and 7.5 wt% loadings, respectively, highlighting a non-monotonic relationship between filler concentration and interfacial polarization.
- -
- The inclusion of Al2O3 nanofillers measurably elevated the dielectric loss factor, with the 2.5 wt% and 7.5 wt% composites showing increases of 13% and 26%, respectively. These rises are consistent with the introduction of loss mechanisms like interfacial polarization, leading to greater energy dissipation.
- -
- The initial electrical insulation characteristics were markedly enhanced by the nanofiller’s incorporation. A clear trend of suppression in conduction currents was observed, with the steady-state charging current for the 7.5 wt% composite measuring 1.25 × 10−11 A, representing a 28% reduction from the 1.74 × 10−11 A value of the unfilled PVC. The trapping efficiency was even more evident in the dissipation phase, where the discharging current decreased by 77%, falling from 2.52 × 10−12 A to 5.82 × 10−13 A.
- -
- Prolonged thermal exposure induced a significant alteration of the electrical properties, culminating in a pronounced rise in conductivity. This is quantitatively demonstrated by the 7.5 wt% composite, whose charging current escalated to 1.70 × 10−11 A after 2400 h—a 36% increase from its initial state. The most dramatic change was witnessed in the depolarization current, which underwent an increase of over two orders of magnitude (28×), reaching 1.66 × 10−11 A from an initial 5.82 × 10−13 A.
- -
- FTIR and SEM analyses show that thermal aging induced the formation of some polar groups, likely due to structural decomposition and the small degree of dehydrochlorination.
- -
- A significant color change was observed in the samples during the aging process, indicating surface degradation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ibrahim, I.D.; Jamiru, T.; Sadiku, E.R.; Hamam, Y.; Alayli, Y.; Eze, A.A. Application of nanoparticles and composite materials for energy generation and storage. IET Nanodielectr. 2019, 2, 115–122. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, K.H.; Parvez, M.M.H.; Irizarry, N.; Uddin, M.N. Polymer Nanocomposites with Optimized Nanoparticle Dispersion and Enhanced Functionalities for Industrial Applications. Processes 2025, 13, 994. [Google Scholar] [CrossRef]
- Hedir, A.; Lamrous, O.; Fofana, I.; Slimani, F.; Moudoud, M. Critical Issues in XLPE-Based Polymer Nanocomposites and Their Blends. Mater. Horiz. 2021, 63, 63–83. [Google Scholar]
- Rahimi-Ahar, Z.; Rahimi-Ahar, L. Thermal, optical, mechanical, dielectric, and electrical properties of nanocomposites. Eur. Polym. J. 2024, 218, 113337. [Google Scholar] [CrossRef]
- Fatemah, H.; Alkallas, A.; Al-Ahmadi, A.; Salem, E.; Mwafy, W.; Elsharkawy, W.; Trabelsi, A.B.G.; Motawea, M.; Alshammary, A.J.; Nafee, S.; et al. Influence of Al2O3 nanoparticles on the structural, optical, and electrical properties of PVC/PS nanocomposite for use in optoelectronic devices. Surf. Interfaces 2024, 51, 104651. [Google Scholar]
- Elsad, R.A.; Habashy, M.M.; Izzularab, M.A.; Abd-Elhady, A.M. Evaluation of dielectric properties for PVC/SiO2 nanocomposites under the effect of water absorption. J. Mater. Sci. Mater. Electron. 2023, 34, 786. [Google Scholar] [CrossRef]
- Pagacz, J.; Chrzanowski, M.; Krucińska, I.; Pielichowski, K. Thermal aging and accelerated weathering of PVC/MMT nanocomposites: Structural and morphological studies. J. Appl. Polym. Sci. 2015, 132, 42090. [Google Scholar] [CrossRef]
- He, L.; Ye, Z.; Zeng, J.; Yang, X.; Li, D.; Yang, X.; Chen, Y.; Huang, Y. Enhancement in electrical and thermal properties of LDPE with Al2O3 and h-BN as nanofiller. Materials 2022, 15, 2844. [Google Scholar] [CrossRef]
- Sugumaran, C.P. Experimental study on dielectric and mechanical properties of PVC cable insulation with SiO2/CaCO3 nanofillers. In Proceedings of the 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Ann Arbor, MI, USA, 18–21 October 2015; pp. 503–506. [Google Scholar]
- Nait Larbi, S.; Moudoud, M.; Hedir, A.; Lamrous, O.; Durmus, A.; Clark, D.; Slimani, F. Characterization of PVC/CaCO3 nanocomposites aged under the combined effects of temperature and UV-radiation. Materials 2025, 18, 4001. [Google Scholar] [CrossRef]
- Yaacob, M.M.; Kamaruddin, N.; Mazlan, N.A.; Noramat, N.F.; Alsaedi, M.A.; Aman, A. Dielectric Properties of Polyvinyl Chloride with Wollastonite Filler for the Application of High-Voltage Outdoor Insulation Material. Arab. J. Sci. Eng. 2014, 39, 3999–4012. [Google Scholar] [CrossRef]
- Faiza; Khattak, A.; Alahmadi, A.A.; Ishida, H.; Ullah, N. Improved PVC/ZnO Nanocomposite Insulation for High Voltage and High Temperature Applications. Sci. Rep. 2023, 13, 7235. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Liu, W.; Liang, L.; Liu, C.; He, S.; Zhang, F.; Shi, H.; Yang, M. Enhancement of anticorrosion property and hydrophobicity of modified epoxy coatings with fluorinated polyacrylate. Colloids Surf. A Physicochem. Eng. Asp. 2019, 579, 123659. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, T.; Ning, X.; Liu, Y.; Wang, J. Thermal degradation kinetics study of polyvinyl chloride (PVC) sheath for new and aged cables. Waste Manag. 2019, 99, 146–153. [Google Scholar] [CrossRef]
- Bal, S.; Tamus, Z.A. Analyzing the impact of short-term cyclic thermal ageing on PVC insulated low voltage samples with polarization/depolarization current measurement. Acta Polytech. Hung. 2023, 20, 77–91. [Google Scholar] [CrossRef]
- Nazrin, A.; Kuan, T.M.; Mansour, D.A.; Farade, R.A.; Mohd Ariffin, M.S.; Abd Rahman, N.I.B.A.W. Innovative approaches for augmenting dielectric properties in cross-linked polyethylene (XLPE): A review. Heliyon 2024, 10, e34737. [Google Scholar] [CrossRef]
- Hamzah, M.S.; Mariatti, M.; Ismail, H. Melt flow index and flammability of alumina, zinc oxide and organoclay nanoparticles filled cross-linked polyethylene nanocomposites. Mater. Today Proc. 2019, 17, 798–802. [Google Scholar] [CrossRef]
- Maur, S.; Haque, N.; Pottekat, P.; Chakraborty, B.; Dalai, S.; Chatterjee, B. Investigations on the effect of ageing on charge de-trapping processes of epoxy–alumina nanocomposites based on isothermal relaxation current measurements. ET Nanodielectr. 2020, 3, 116–123. [Google Scholar] [CrossRef]
- Singha, S.; Thomas, M.J. Dielectric Properties of Epoxy-Al2O3 Nanocomposite System for Packaging Applications. IEEE Trans. Compon. Packag. Technol. 2010, 33, 373–385. [Google Scholar] [CrossRef]
- Tang, Y.; Ge, G.; Li, Y.; Huang, L. Effect of Al2O3 with different nanostructures on the insulating properties of epoxy-based composites. Materials 2020, 13, 4235. [Google Scholar] [CrossRef]
- Mansour, S.A.; Elsad, R.A.; Izzularab, M.A. Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. J. Polym. Res. 2016, 23, 85. [Google Scholar] [CrossRef]
- Quader, R.; Narayanan, L.K.; Caldona, E.B. Dielectric characterization of fiber- and nanofiller-reinforced polymeric materials. J. Appl. Polym. Sci. 2024, 141, e55362. [Google Scholar] [CrossRef]
- Habashy, M.M.; Abd-Elhady, A.M.; Elsad, R.A.; Izzularab, M.A. Performance of PVC/SiO2 nanocomposites under thermal ageing. Appl. Nanosci. 2021, 11, 2143–2151. [Google Scholar] [CrossRef]
- Jin, M.; Dong, M.; Ren, M.; Wu, X.; Shen, L.; Wang, H. Effect of nanoparticle polarization on relative permittivity of transformer oil-based nanofluids. J. Appl. Phys. 2013, 113, 204103. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, Z.; Zhang, M.; Li, S.; Huang, H.; Zhang, Z. Investigation of dielectric properties and conductivity of polyvinyl chloride composites by terahertz time-domain spectroscopy. Polym. Test. 2024, 134, 108446. [Google Scholar] [CrossRef]
- Amraoui, S.; Hedir, A.; Nait Larbi, S.; Moudoud, M.; Durmus, A. Evaluation of the electrical properties of XLPE cable insulation material aged under the combined effects of thermal stress and UV-radiation. In Proceedings of the 2024 3rd International Conference on Advanced Electrical Engineering (ICAEE), Sidi-Bel-Abbes, Algeria, 5–7 November 2024. [Google Scholar] [CrossRef]
- Barber, P.; Balasubramanian, S.; Anguchamy, Y.; Gong, S.; Wibowo, A.; Gao, H.; Ploehn, H.J.; Zur Loye, H.-C. Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2009, 2, 1697–1733. [Google Scholar] [CrossRef]
- Gherasim, C.; Asandulesa, M.; Fifere, N.; Doroftei, F.; Tîmpu, D.; Airinei, A. Structural, optical and dielectric properties of some nanocomposites derived from copper oxide nanoparticles embedded in poly(vinylpyrrolidone) matrix. Nanomaterials 2024, 14, 759. [Google Scholar] [CrossRef]
- You, L.; Liu, B.; Hua, H.; Jiang, H.; Yin, C.; Wen, F. Energy storage performance of polymer-based dielectric composites with two-dimensional fillers. Nanomaterials 2023, 13, 2842. [Google Scholar] [CrossRef]
- Hedir, A.; Slimani, F.; Moudoud, M.; Bellabas, F.; Loucif, A. Impact of thermal constraint on the low-density polyethylene (LDPE) properties. Lect. Notes Electr. Eng. 2020, 599, 952–960. [Google Scholar]
- Tan, D.Q. The search for enhanced dielectric strength of polymer-based dielectrics: A focused review on polymer nanocomposites. J. Appl. Polym. Sci. 2020, 137, 49379. [Google Scholar] [CrossRef]
- Abdallah, H.; Sébastien, R.; Omar, J.; Ali, D.; Mustapha, M.; Omar, L.; Abderrahmane, M.H. Assessment of UV-aging of crosslinked polyethylene cable insulation by electrical measurements, FTIR and DSC analyses. ECS J. Solid State Sci. Technol. 2025, 14, 013008. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Jiang, F.Y.; Yu, X.Y.; Zhou, K.; Zhang, W.; Fu, Q.; Hao, J. Assessment of thermal aging degree of 10kV cross-linked polyethylene cable based on depolarization current. IEEE Access 2021, 9, 111020–111029. [Google Scholar] [CrossRef]
- Man, P.R.; Lin, Q.W.; Xu, J.; Wang, H.B.; Zhao, Y.H.; Su, W.W.; Lyu, H.F.; Li, Y. Thermal decomposition kinetics of poly(vinyl chloride) insulation for overloaded and non-overloaded wires. J. Therm. Anal. Calorim. 2025, 150, 11. [Google Scholar] [CrossRef]
- Kotomin, E.A.; Stashans, A.; Kantorovich, L.N.; Lifshitz, A.I.; Popov, A.I.; Tale, I.A.; Calais, J.-L. Calculations of the geometry and optical properties of FMg centers and dimer (F2-type) centers in corundum crystals. Phys. Rev. B 1995, 51, 8770. [Google Scholar] [CrossRef]
- Jacobs, P.W.M.; Kotomin, E.A.; Stashans, A.; Tale, I. Theoretical simulations of hole centres in corundum crystals. Model. Simul. Mater. Sci. Eng. 1994, 2, 109. [Google Scholar] [CrossRef]
- Savchyn, V.P.; Popov, A.I.; Aksimentyeva, O.I.; Klym, H.; Horbenko, Y.Y.; Serga, V.; Moskina, A.; Karbovnyk, I. Cathodoluminescence characterization of polystyrene-BaZrO3 hybrid composites. Low Temp. Phys. 2016, 42, 597–600. [Google Scholar] [CrossRef]
- Starnes, W.H. Structural and Mechanistic Aspects of the Thermal Degradation of Poly(Vinyl Chloride). Prog. Polym. Sci. 2002, 27, 2133–2170. [Google Scholar] [CrossRef]
- Benavides, R.; Castillo, B.M.; Castañeda, A.O.; López, G.M.; Arias, G. Different thermo-oxidative degradation routes in poly(vinyl chloride). Polym. Degrad. Stab. 2001, 73, 3. [Google Scholar] [CrossRef]
- Starnes, W.H.; Ge, X. The Mechanism of Poly(Vinyl Chloride) Stabilization by Organotin Compounds. J. Vinyl Addit. Technol. 2004, 10, 116–121. [Google Scholar]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amraoui, S.; Hedir, A.; Moudoud, M.; Durmus, A.; Rondot, S.; Haddad, A.M.; Clark, D. Assessment of Long-Term Thermal Aging Effects on PVC/Al2O3 Nanocomposites Through Electrical, SEM and FTIR Characterizations. Energies 2025, 18, 6034. https://doi.org/10.3390/en18226034
Amraoui S, Hedir A, Moudoud M, Durmus A, Rondot S, Haddad AM, Clark D. Assessment of Long-Term Thermal Aging Effects on PVC/Al2O3 Nanocomposites Through Electrical, SEM and FTIR Characterizations. Energies. 2025; 18(22):6034. https://doi.org/10.3390/en18226034
Chicago/Turabian StyleAmraoui, Sabrina, Abdallah Hedir, Mustapha Moudoud, Ali Durmus, Sébastien Rondot, Abderrahmane Manu Haddad, and David Clark. 2025. "Assessment of Long-Term Thermal Aging Effects on PVC/Al2O3 Nanocomposites Through Electrical, SEM and FTIR Characterizations" Energies 18, no. 22: 6034. https://doi.org/10.3390/en18226034
APA StyleAmraoui, S., Hedir, A., Moudoud, M., Durmus, A., Rondot, S., Haddad, A. M., & Clark, D. (2025). Assessment of Long-Term Thermal Aging Effects on PVC/Al2O3 Nanocomposites Through Electrical, SEM and FTIR Characterizations. Energies, 18(22), 6034. https://doi.org/10.3390/en18226034

