Influence of Long-Term and Short-Term Solar Radiation and Temperature Exposure on the Material Properties and Performance of Photovoltaic Panels: A Comprehensive Review
Abstract
1. Introduction
2. Fundamentals of Solar Cell Operation
2.1. Characteristic I–V Curves
2.2. Main Photovoltaic Technologies
3. Effects of Temperature on the Performance of Photovoltaic Modules
3.1. Impact of Temperature Variation on Photovoltaic Cells
3.2. Temperature Coefficient
3.3. Thermal Modelling
- Static or steady-state models: Assume environmental and operational conditions (irradiance and ambient temperature) as independent parameters with respect to time [79]. These models are widely used in research that provides an estimate of temperature as a function of average environmental conditions such as solar radiation, ambient temperature, and wind speed [80]. The nominal operating cell temperature (NOCT) model is the most commonly used model in studies for simple estimates of module temperature. It is given by the linear relationship [81,82]:
- Dynamic models: Consider variations in environmental conditions through differential equations over time. Using the principle of the heat transfer mechanism [79] to establish the total energy balance in the module [83,84], the energy balance for each layer of material can be included in the model [85], by considering every module [86]. This total energy balance can be determined by Equation (16) [86]:
3.4. Experimental Studies
4. Effect of Solar Radiation on the Performance of Solar Modules
Solar Radiation Estimation Models
5. Interaction Between Temperature and Solar Radiation and Their Long-Term Effects
5.1. I–V Curve Under Different Temperature and Irradiation Conditions
5.2. Theoretical and Experimental Models
5.3. Photochemical Degradation and Long-Term Effects of Temperature and Radiation
6. Technological Perspectives and Mitigating Solutions for the Effects of Temperature and Radiation
Technologies | |||
---|---|---|---|
Technique/Type | Description | Results | Reference |
Passive cooling | They use natural convection or radiation, such as fins or reflective materials, for heat dissipation. | They increase efficiency and can reduce operating temperatures, but are less efficient than active systems. | [214,215] |
Active cooling | With the aid of water pumps, fans or even evaporative cooling, they actively remove heat from photovoltaic solar modules. | Efficiency and output power in high temperature conditions are improved when cooling begins at the maximum permitted temperature, reducing the temperature by an average of 18.26% and increasing energy production by 10.14% when used in conjunction with reflectors. | [216] |
Heat pipe cooling | They are passive devices that use the vapour–liquid phase change process in thermal management, with high thermal conductivity. | Maintains the operating temperatures of photovoltaic systems, leading to improved efficiency even under high radiation rates, and when combined with other technologies, increases thermal management capacity. | [217,218,219] |
PV/T hybrid systems | To optimise energy generation, they control the temperature of the cells and convert excess heat into thermal energy through a combination of photovoltaic and thermal systems. | They maintain low temperatures in the cells and simultaneously generate thermal energy, substantially improving electrical efficiency. | [220,221] |
Anti-reflective coating | They reduce light reflection on the surface of the cells, increasing absorption and efficiency in the conversion of solar energy. | The application of these coatings on photovoltaic solar panels increases their performance. | [222,223] |
Infrared reflective coatings | They act as infrared radiation reflectors, thereby reducing heat build-up and alleviating the drop in efficiency associated with the thermal effect. | These radiative cooling strategies, through these coatings, demonstrate reduced heat loss and longer operational life for the systems, increasing efficiency, especially in high solar irradiance. | [224,225] |
Bifacial | They are vertical or inclined bifacial panels that increase the capture of direct or reflected solar radiation from the ground, i.e., from both the front and rear surfaces. | They produce more energy than monofacial panels due to their shape, providing optimal performance in variable irradiation conditions. Their production increases by between 10% and 20% depending on the albedo and angle of inclination, and can reach around 32%. | [226,227] |
Bifacial + reflectors | They have different reflector designs incorporated into bifacial modules which direct additional solar radiation to the panels. | They improve energy capture in variable temperature and radiation conditions, increasing the albedo effect, with an increase of around 35% in annual electricity generation when installed in conditions of reflectivity greater than 50% and with a rate of transparent space greater than 30%. | [228,229] |
Bifacial with tracking | They adjust the orientation in the sun’s path, maximising sun exposure throughout the day. | In regions with higher albedo, annual production is higher than that of monofacial systems, with a gain of 15% to 25%, minimising losses from the angle of incidence. | [230] |
7. Discussion and Final Considerations
Limitations in the Literature and Future Perspectives
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fazal, M.A.; Rubaiee, S. Progress of PV cell technology: Feasibility of building materials, cost, performance, and stability. Sol. Energy 2023, 258, 203–219. [Google Scholar] [CrossRef]
- Smith, B.; Woodhouse, M.; Horowitz, K.; Silverman, T.; Zuboy, J.; Margolis, R. Photovoltaic (PV) Module Technologies: 2020 Benchmark Costs and Technology Evolution Framework Results; NREL/TP-7A40-78173, MainId:32082; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2021. [CrossRef]
- Allouhi, A.; Rehman, S.; Buker, M.S.; Said, Z. Up-to-date literature review on Solar PV systems: Technology progress, market status and R&D. J. Clean. Prod. 2022, 362, 132339. [Google Scholar] [CrossRef]
- IRENA’s Renewable Capacity Statistics 2020—EAERE. Available online: https://www.eaere.org/policy/energy/irenas-renewable-capacity-statistics-2020/ (accessed on 5 August 2025).
- Renewables 2023 Global Status Report. Available online: https://www.ren21.net/gsr-2023/ (accessed on 5 August 2025).
- Haegel, N.M.; Verlinden, P.; Victoria, M.; Altermatt, P.; Atwater, H.; Barnes, T.; Breyer, C.; Case, C.; De Wolf, S.; Deline, C.; et al. Photovoltaics at multi-terawatt scale: Waiting is not an option. Science 2023, 380, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Interactive Best Research-Cell Efficiency Chart|Photovoltaic Research|NREL. Available online: https://www.nrel.gov/pv/interactive-cell-efficiency (accessed on 5 August 2025).
- Alami, A.H.; Rabaia, M.K.H.; Sayed, E.T.; Ramadan, M.; Abdelkareem, M.A.; Alasad, S.; Olabi, A.-G. Management of potential challenges of PV technology proliferation. Sustain. Energy Technol. Assess. 2022, 51, 101942. [Google Scholar] [CrossRef]
- Ascencio-Vásquez, J.; Kaaya, I.; Brecl, K.; Weiss, K.-A.; Topič, M. Global Climate Data Processing and Mapping of Degradation Mechanisms and Degradation Rates of PV Modules. Energies 2019, 12, 4749. [Google Scholar] [CrossRef]
- Luo, W.; Khoo, Y.S.; Hacke, P.; Jordan, D.; Zhao, L.; Ramakrishna, S.; Aberle, A.G.; Reindl, T. Analysis of the Long-Term Performance Degradation of Crystalline Silicon Photovoltaic Modules in Tropical Climates. IEEE J. Photovolt. 2019, 9, 266–271. [Google Scholar] [CrossRef]
- Zaim, S.; El Ibrahimi, M.; Arbaoui, A.; Samaouali, A.; Tlemcani, M.; Barhdadi, A. Using artificial intelligence for global solar radiation modeling from meteorological variables. Renew. Energy 2023, 215, 118904. [Google Scholar] [CrossRef]
- Farahmand, M.Z.; Nazari, M.E.; Shamlou, S.; Shafie-khah, M. The Simultaneous Impacts of Seasonal Weather and Solar Conditions on PV Panels Electrical Characteristics. Energies 2021, 14, 845. [Google Scholar] [CrossRef]
- Yaichi, M.; Tayebi, A.; Boutadara, A.; Bekraoui, A.; Mammeri, A. Monitoring of PV systems installed in an extremely hostile climate in southern Algeria: Performance evaluation extended to degradation assessment of various PV panel of single-crystalline technologies. Energy Convers. Manag. 2023, 279, 116777. [Google Scholar] [CrossRef]
- Atia, D.M.; Hassan, A.A.; El-Madany, H.T.; Eliwa, A.Y.; Zahran, M.B. Degradation and energy performance evaluation of mono-crystalline photovoltaic modules in Egypt. Sci. Rep. 2023, 13, 13066. [Google Scholar] [CrossRef]
- Ali-Ou-Salah, H.; Oukarfi, B.; Mouhaydine, T. Short-term solar radiation forecasting using a new seasonal clustering technique and artificial neural network. Int. J. Green Energy 2022, 19, 424–434. [Google Scholar] [CrossRef]
- Lyu, Y.; Fairbrother, A.; Gong, M.; Kim, J.H.; Gu, X.; Kempe, M.; Julien, S.; Wan, K.-T.; Napoli, S.; Hauser, A.; et al. Impact of environmental variables on the degradation of photovoltaic components and perspectives for the reliability assessment methodology. Sol. Energy 2020, 199, 425–436. [Google Scholar] [CrossRef]
- Shaik, F.; Lingala, S.S.; Veeraboina, P. Effect of various parameters on the performance of solar PV power plant: A review and the experimental study. Sustain. Energy Res. 2023, 10, 6. [Google Scholar] [CrossRef]
- Quater, P.B.; Grimaccia, F.; Leva, S.; Mussetta, M.; Aghaei, M. Light Unmanned Aerial Vehicles (UAVs) for Cooperative Inspection of PV Plants. IEEE J. Photovolt. 2014, 4, 1107–1113. [Google Scholar] [CrossRef]
- Aghaei, M.; Fairbrother, A.; Gok, A.; Ahmad, S.; Kazim, S.; Lobato, K.; Oreski, G.; Reinders, A.; Schmitz, J.; Theelen, M.; et al. Review of degradation and failure phenomena in photovoltaic modules. Renew. Sustain. Energy Rev. 2022, 159, 112160. [Google Scholar] [CrossRef]
- Mesbahi, O.; Afonso, D.; Tlemçani, M.; Bouich, A.; Janeiro, F.M. Measurement Interval Effect on Photovoltaic Parameters Estimation. Energies 2023, 16, 6460. [Google Scholar] [CrossRef]
- Ahmed, M.T.; Rashel, M.R.; Faisal, F.; Tlemçani, M. Non-iterative MPPT Method: A Comparative Study. Int. J. Renew. Energy Res. IJRER 2020, 10, 549–557. [Google Scholar] [CrossRef]
- Mesbahi, O.; Tlemçani, M.; Janeiro, F.M.; Hajjaji, A.; Kandoussi, K. Recent Development on Photovoltaic Parameters Estimation: Total Least Squares Approach and Metaheuristic Algorithms. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 4546–4564. [Google Scholar] [CrossRef]
- Chakar, J.; Pavlov, M.; Bonnassieux, Y.; Badosa, J. Determining solar cell parameters and degradation rates from power production data. Energy Convers. Manag. X 2022, 15, 100270. [Google Scholar] [CrossRef]
- Torki, Z.; Benhamida, M.; Haddad, Z.; Nahoui, A.; Chouder, A.; Brahimi, I. Effects of Temperature and Solar Radiation on Photovoltaic Modules Performances Installed in Oued Keberit Power Plant, Algeria. J. Adv. Res. Fluid Mech. Therm. Sci. 2024, 112, 204–216. [Google Scholar] [CrossRef]
- da Fonseca, J.E.F.; de Oliveira, F.S.; Massen Prieb, C.W.; Krenzinger, A. Degradation analysis of a photovoltaic generator after operating for 15 years in southern Brazil. Sol. Energy 2020, 196, 196–206. [Google Scholar] [CrossRef]
- Kamei, A.; Yoshida, S.; Takakura, H.; Minemoto, T. Ten years outdoor operation of silicon based photovoltaic modules at central latitude of Japan. Renew. Energy 2014, 65, 78–82. [Google Scholar] [CrossRef]
- Romero-Fiances, I.; Livera, A.; Theristis, M.; Makrides, G.; Stein, J.S.; Nofuentes, G.; de la Casa, J.; Georghiou, G.E. Impact of duration and missing data on the long-term photovoltaic degradation rate estimation. Renew. Energy 2022, 181, 738–748. [Google Scholar] [CrossRef]
- Phinikarides, A.; Kindyni, N.; Makrides, G.; Georghiou, G.E. Review of photovoltaic degradation rate methodologies. Renew. Sustain. Energy Rev. 2014, 40, 143–152. [Google Scholar] [CrossRef]
- Marques Lameirinhas, R.A.; Torres, J.P.N.; de Melo Cunha, J.P. A Photovoltaic Technology Review: History, Fundamentals and Applications. Energies 2022, 15, 1823. [Google Scholar] [CrossRef]
- Duarte, F.; Torres, J.P.N.; Baptista, A.; Marques Lameirinhas, R.A. Optical Nanoantennas for Photovoltaic Applications. Nanomaterials 2021, 11, 422. [Google Scholar] [CrossRef]
- Oumaima, M.; Mouhavdine, T.; Janeiro, F.M.; Abdeloawahed, H.; Khalid, K. Estimation of Photovoltaic Panel Parameters by a Numerical Heuristic Searching Algorithm. In Proceedings of the 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA), Brasov, Romania, 3–6 November 2019; pp. 401–406. [Google Scholar] [CrossRef]
- Xiong, G.; Li, L.; Mohamed, A.W.; Yuan, X.; Zhang, J. A new method for parameter extraction of solar photovoltaic models using gaining–sharing knowledge based algorithm. Energy Rep. 2021, 7, 3286–3301. [Google Scholar] [CrossRef]
- El-Sehiemy, R.; Shaheen, A.; El-Fergany, A.; Ginidi, A. Electrical parameters extraction of PV modules using artificial hummingbird optimizer. Sci. Rep. 2023, 13, 9240. [Google Scholar] [CrossRef]
- Chin, V.J.; Salam, Z.; Ishaque, K. Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review. Appl. Energy 2015, 154, 500–519. [Google Scholar] [CrossRef]
- Rekioua, D.; Matagne, E. Modeling of Solar Irradiance and Cells. In Optimization of Photovoltaic Power Systems; Green Energy and Technology; Springer: London, UK, 2012; pp. 31–87. ISBN 978-1-4471-2348-4. [Google Scholar]
- Maniraj, B.; Peer Fathima, A. Parameter extraction of solar photovoltaic modules using various optimization techniques: A review. J. Phys. Conf. Ser. 2020, 1716, 012001. [Google Scholar] [CrossRef]
- Rhouma, M.B.H.; Gastli, A.; Ben Brahim, L.; Touati, F.; Benammar, M. A simple method for extracting the parameters of the PV cell single-diode model. Renew. Energy 2017, 113, 885–894. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiency Chart|Photovoltaic Research|NREL. Available online: https://www.nrel.gov/pv/cell-efficiency (accessed on 5 August 2025).
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Yoshita, M.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (Version 53). Prog. Photovolt. Res. Appl. 2019, 27, 3–12. [Google Scholar] [CrossRef]
- Madani, H.H.; Shayesteh, M.R.; Moslemi, M.R. Optimization of a CNT-based SiGe Thin Film Solar Cell Structure. Res. Sq. 2021. preprint. [Google Scholar] [CrossRef]
- 27.81%! LONGi Refreshes the World Record for the Efficiency of Monocrystalline Silicon Cells Again. Available online: https://www.longi.com/us/news/longi-world-record-efficiency-of-monocrystalline-silicon-cells/ (accessed on 5 August 2025).
- Nayak, P.K.; Mahesh, S.; Snaith, H.J.; Cahen, D. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater. 2019, 4, 269–285. [Google Scholar] [CrossRef]
- Mashrafi, M.; Anik, M.H.K.; Israt, M.F.; Habib, A.; Islam, S. Modeling the path to >30% power conversion efficiency in perovskite solar cells with plasmonic nanoparticles. RSC Adv. 2023, 13, 19447–19454. [Google Scholar] [CrossRef]
- Agresti, A.; Pescetelli, S.; Taheri, B.; Del Rio Castillo, A.E.; Cinà, L.; Bonaccorso, F.; Di Carlo, A. Graphene–Perovskite Solar Cells Exceed 18% Efficiency: A Stability Study. ChemSusChem 2016, 9, 2609–2619. [Google Scholar] [CrossRef]
- Fouad, M.M.; Shihata, L.A.; Morgan, E.I. An integrated review of factors influencing the perfomance of photovoltaic panels. Renew. Sustain. Energy Rev. 2017, 80, 1499–1511. [Google Scholar] [CrossRef]
- Suman; Sharma, P.; Goyal, P. Evolution of PV technology from conventional to nano-materials. Mater. Today Proc. 2020, 28, 1593–1597. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A.; Blair, N. Solar Engineering of Thermal Processes, Photovoltaics and Wind, 1st ed.; Wiley: Hoboken, NJ, USA, 2020; ISBN 978-1-119-54028-1. [Google Scholar] [CrossRef]
- Perin Gasparin, F.; Detzel Kipper, F.; Schuck de Oliveira, F.; Krenzinger, A. Assessment on the variation of temperature coefficients of photovoltaic modules with solar irradiance. Sol. Energy 2022, 244, 126–133. [Google Scholar] [CrossRef]
- Shaker, L.M.; Al-Amiery, A.A.; Hanoon, M.M.; Al-Azzawi, W.K.; Kadhum, A.A.H. Examining the influence of thermal effects on solar cells: A comprehensive review. Sustain. Energy Res. 2024, 11, 6. [Google Scholar] [CrossRef]
- Li, G.; Wang, F.; Feng, F.; Wei, B. Hot Spot Detection of Photovoltaic Module Based on Distributed Fiber Bragg Grating Sensor. Sensors 2022, 22, 4951. [Google Scholar] [CrossRef]
- Iqbal, S.; Khan, S.N.; Sajid, M.; Khan, J.; Ayaz, Y.; Waqas, A. Impact and performance efficiency analysis of grid-tied solar photovoltaic system based on installation site environmental factors. Energy Environ. 2023, 34, 2343–2363. [Google Scholar] [CrossRef]
- Bhat, P.; Iyengar, A.S.; Kumar Reddy, P. Experimental investigation and validation of solar PV cooling for enhanced energy conversion efficiency for Indian climatic conditions. J. Therm. Eng. 2022, 8, 711–718. [Google Scholar] [CrossRef]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef]
- Mitterhofer, S.; Glazar, B.; Jankovec, M.; Topic, M. The Development of Thermal Coefficients of Photo-Voltaic Devices. Inf. MIDEM J. Microelectron. Electron. Compon. Mater. 2019, 49, 219–227. [Google Scholar] [CrossRef]
- Green, M.A. General temperature dependence of solar cell performance and implications for device modelling. Prog. Photovolt. Res. Appl. 2003, 11, 333–340. [Google Scholar] [CrossRef]
- Dupré, O.; Vaillon, R.; Green, M.A. Physics of the temperature coefficients of solar cells. Sol. Energy Mater. Sol. Cells 2015, 140, 92–100. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, A.; Robinson, S.J.; Green, M.A. Reduced temperature coefficients for recent high-performance silicon solar cells. Prog. Photovolt. Res. Appl. 1994, 2, 221–225. [Google Scholar] [CrossRef]
- Ponce-Alcántara, S.; Connolly, J.P.; Sánchez, G.; Míguez, J.M.; Hoffmann, V.; Ordás, R. A Statistical Analysis of the Temperature Coefficients of Industrial Silicon Solar Cells. Energy Procedia 2014, 55, 578–588. [Google Scholar] [CrossRef]
- Berthod, C.; Strandberg, R.; Yordanov, G.H.; Beyer, H.G.; Odden, J.O. On the Variability of the Temperature Coefficients of mc-Si Solar Cells with Irradiance. Energy Procedia 2016, 92, 2–9. [Google Scholar] [CrossRef]
- Tobe, T.; Shibayama, N.; Nakamura, Y.; Ikegami, M.; Kanda, H.; Miyasaka, T. Investigation of the Temperature Coefficients of Perovskite Solar Cells for Application in High-Temperature Environments. Chem. Asian J. 2024, 19, e202400686. [Google Scholar] [CrossRef]
- Cotfas, D.T.; Cotfas, P.A.; Machidon, O.M. Study of Temperature Coefficients for Parameters of Photovoltaic Cells. Int. J. Photoenergy 2018, 2018, 5945602. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, X.; Yang, H. Temperature Coefficients and Operating Temperature Verification for Passivated Emitter and Rear Cell Bifacial Silicon Solar Module. IEEE J. Photovolt. 2020, 10, 729–739. [Google Scholar] [CrossRef]
- Bensalem, S.; Chegaar, M. Thermal behavior of parasitic resistances of polycrystalline silicon solar cells. J. Renew. Energ. 2023, 16, 171–176. [Google Scholar] [CrossRef]
- Deng, Y.; Van Brackle, C.H.; Dai, X.; Zhao, J.; Chen, B.; Huang, J. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. Adv. 2019, 5, eaax7537. [Google Scholar] [CrossRef]
- Dash, P.K.; Gupta, N.C. Effect of Temperature on Power Output from Different Commercially available Photovoltaic Modules. Int. J. Eng. Res. Appl. 2015, 5, 148–151. [Google Scholar]
- Gulomov, J.; Ziyoitdinov, J.; Gulomova, I. The Effect of Temperature and Base Thickness on Photoelectric Parameters of Amorphous Silicon Solar Cells. J. Nano- Electron. Phys. 2022, 14, 05010. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Masuda, T.; Araki, K.; Ota, Y.; Nishioka, K.; Takamoto, T.; Thiel, C.; Tsakalidis, A.; Jaeger-Waldau, A.; Okumura, K.; et al. Analysis of temperature coefficients and their effect on efficiency of solar cell modules for photovoltaics-powered vehicles. J. Phys. Appl. Phys. 2021, 54, 504002. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.; Pham, D.P.; Kim, S.; Kim, Y.; Trinh, T.T.; Dao, V.A.; Yi, J. The Impact of the Micro-Structure within Passivated Layers on the Performance of the a-Si:H/c-Si Heterojunction Solar Cells. Energies 2023, 16, 6694. [Google Scholar] [CrossRef]
- Huang, S.; Yang, Y.; Li, J.; Jiang, K.; Li, X.; Zhou, Y.; Li, Z.; Wang, G.; Shi, Q.; Shi, J.; et al. Dipoles and defects caused by CO2 plasma improve carrier transport of silicon solar cells. Prog. Photovolt. Res. Appl. 2024, 32, 283–290. [Google Scholar] [CrossRef]
- Tian, X.; Han, P.; Zhao, G.; Yang, R.; Li, L.; Meng, Y.; Guo, T. Pyramid size control and morphology treatment for high-efficiency silicon heterojunction solar cells. J. Semicond. 2019, 40, 032703. [Google Scholar] [CrossRef]
- Elbar, M.; Tobbeche, S.; Chala, S.; Saidani, O.; Kateb, M.N.; Serdouk, M.R. Effect of Temperature on the Performance of CGS/CIGS Tandem Solar Cell. J. Nano-Electron. Phys. 2023, 15, 01020. [Google Scholar] [CrossRef]
- Metzger, W.K.; Miller, D.W.; Mallick, R.; Li, X.; Zhang, W.; Wang, I.; Polizzotti, A.; Ablekim, T.; Cao, D.H.; Hamilton, D.C.; et al. As-Doped CdSeTe Solar Cells Achieving 22% Efficiency with −0.23%/°C Temperature Coefficient. IEEE J. Photovolt. 2022, 12, 1435–1438. [Google Scholar] [CrossRef]
- Ghazal, O.G.; Kasim, A.W.; Tawfeeq, N.Z. The absorber and buffer layer thicknesses for CdTe/CdS based thin film solar cell efficiency at various operational temperatures. Indones. J. Electr. Eng. Comput. Sci. 2021, 24, 70. [Google Scholar] [CrossRef]
- Khaledi, P.; Behboodnia, M.; Karimi, M. Simulation and Optimization of Temperature Effect in Solar Cells CdTe with Back Connection Cu2O. Int. J. Opt. 2022, 2022, 1207082. [Google Scholar] [CrossRef]
- Moot, T.; Patel, J.B.; McAndrews, G.; Wolf, E.J.; Morales, D.; Gould, I.E.; Rosales, B.A.; Boyd, C.C.; Wheeler, L.M.; Parilla, P.A.; et al. Temperature Coefficients of Perovskite Photovoltaics for Energy Yield Calculations. ACS Energy Lett. 2021, 6, 2038–2047. [Google Scholar] [CrossRef]
- Jošt, M.; Lipovšek, B.; Glažar, B.; Al-Ashouri, A.; Brecl, K.; Matič, G.; Magomedov, A.; Getautis, V.; Topič, M.; Albrecht, S. Perovskite Solar Cells go Outdoors: Field Testing and Temperature Effects on Energy Yield. Adv. Energy Mater. 2020, 10, 2000454. [Google Scholar] [CrossRef]
- Dong, Z.; Li, W.; Wang, H.; Jiang, X.; Liu, H.; Zhu, L.; Chen, H. High-Temperature Perovskite Solar Cells. Sol. RRL 2021, 5, 2100370. [Google Scholar] [CrossRef]
- Aly, S.P.; Ahzi, S.; Barth, N.; Abdallah, A. Using energy balance method to study the thermal behavior of PV panels under time-varying field conditions. Energy Convers. Manag. 2018, 175, 246–262. [Google Scholar] [CrossRef]
- Abdulrazzaq, A.K.; Plesz, B.; Bognár, G. A Novel Method for Thermal Modelling of Photovoltaic Modules/Cells under Varying Environmental Conditions. Energies 2020, 13, 3318. [Google Scholar] [CrossRef]
- Pereira, S.; Canhoto, P.; Oozeki, T.; Salgado, R. Assessment of thermal modeling of photovoltaic panels for predicting power generation using only manufacturer data. Energy Rep. 2024, 12, 1431–1448. [Google Scholar] [CrossRef]
- Martín-Chivelet, N.; Polo, J.; Sanz-Saiz, C.; Núñez Benítez, L.T.; Alonso-Abella, M.; Cuenca, J. Assessment of PV Module Temperature Models for Building-Integrated Photovoltaics (BIPV). Sustainability 2022, 14, 1500. [Google Scholar] [CrossRef]
- Jacques, S. Chapter 5 The importance of cell temperature in modelling the energy efficiency of PV modules. In Advances in Renewable Energies and Power Quality; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2020. [Google Scholar]
- Chopde, A.; Magare, D.; Patil, M.; Gupta, R.; Sastry, O.S. Parameter extraction for dynamic PV thermal model using particle swarm optimisation. Appl. Therm. Eng. 2016, 100, 508–517. [Google Scholar] [CrossRef]
- Torres Lobera, D.; Valkealahti, S. Dynamic thermal model of solar PV systems under varying climatic conditions. Sol. Energy 2013, 93, 183–194. [Google Scholar] [CrossRef]
- Bevilacqua, P.; Perrella, S.; Bruno, R.; Arcuri, N. An accurate thermal model for the PV electric generation prediction: Long-term validation in different climatic conditions. Renew. Energy 2021, 163, 1092–1112. [Google Scholar] [CrossRef]
- Perovic, B.; Klimenta, D.; Jevtic, M.; Milovanovic, M. A Transient Thermal Model for Flat-Plate Photovoltaic Systems and Its Experimental Validation. Elektron. Elektrotechnika 2019, 25, 40–46. [Google Scholar] [CrossRef]
- Ross, R.G., Jr. Interface design considerations for terrestrial solar cell modules. In Proceedings of the 12th Photovoltaic specialists conference, Baton Rouge, LA, USA, 15–18 November 1976; pp. 801–806. Available online: https://ui.adsabs.harvard.edu/abs/1976pvsp.conf..801R/abstract (accessed on 5 August 2025).
- National Aeronautics and Space Administration. Solar Cell Array Design Handbook; Jet Propulsion Laboratory California Institute of Technology: Pasadena, CA, USA, 1976. Available online: https://ntrs.nasa.gov/api/citations/19770007250/downloads/19770007250.pdf (accessed on 6 August 2025).
- Risser, V.V.; Fuentes, M.K. Linear regression analysis of flat-plate photovoltaic system performance data. In Proceedings of the 5th Photovoltaic Solar Energy Conference, Athens, Greece, 17–21 October 1983; pp. 623–627. Available online: https://ui.adsabs.harvard.edu/abs/1984pvse.conf..623R (accessed on 6 August 2025).
- Servant, J.-M. Calculation of the Cell Temperature for Photovoltaic Modules from Climatic Data. In Intersol Eighty Five; Elsevier: Amsterdam, The Netherlands, 1986; pp. 1640–1643. ISBN 978-0-08-033177-5. [Google Scholar] [CrossRef]
- Cheikh Diouf, M.; Faye, M.; Thiam, A.; Ndiaye, A.; Sambou, V. Modeling of the Photovoltaic Module Operating Temperature for Various Weather Conditions in the Tropical Region. Fluid Dyn. Mater. Process. 2022, 18, 1275–1284. [Google Scholar] [CrossRef]
- Charles Lawrence Kamuyu, W.; Lim, J.; Won, C.; Ahn, H. Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs. Energies 2018, 11, 447. [Google Scholar] [CrossRef]
- Lasnier, F.; Ang, T.G. Photovoltaic Engineering Handbook, 1st ed.; Routledge: New York, NY, USA, 2017; ISBN 978-0-203-74339-3. [Google Scholar] [CrossRef]
- King, D.L.; Boyson, W.E.; Kratochvil, J.A. Photovoltaic Array Performance Model; SAND2004-3535; Sandia National Laboratories: Albuquerque, NM, USA; Livermore, CA, USA, 2004. [Google Scholar] [CrossRef]
- Agrawal, K.K.; Jha, S.K.; Mittal, R.K.; Singh, A.P.; Vashishtha, S.; Gupta, S.; Soni, M.K. Predictive Modeling of Solar PV Panel Operating Temperature over Water Bodies: Comparative Performance Analysis with Ground-Mounted Installations. Energies 2024, 17, 3489. [Google Scholar] [CrossRef]
- TamizhMani, G.; Ji, L.; Tang, Y.; Petacci, L.; Osterwald, C. Photovoltaic Module Thermal/Wind Performance: Long-Term Monitoring and Model Development For Energy Rating. Available online: https://docs.nrel.gov/docs/fy03osti/35645.pdf (accessed on 6 August 2025).
- Chenni, R.; Makhlouf, M.; Kerbache, T.; Bouzid, A. A detailed modeling method for photovoltaic cells. Energy 2007, 32, 1724–1730. [Google Scholar] [CrossRef]
- Faiman, D. Assessing the outdoor operating temperature of photovoltaic modules. Prog. Photovolt. Res. Appl. 2008, 16, 307–315. [Google Scholar] [CrossRef]
- Skoplaki, E.; Boudouvis, A.G.; Palyvos, J.A. A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Sol. Energy Mater. Sol. Cells 2008, 92, 1393–1402. [Google Scholar] [CrossRef]
- Mattei, M.; Notton, G.; Cristofari, C.; Muselli, M.; Poggi, P. Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renew. Energy 2006, 31, 553–567. [Google Scholar] [CrossRef]
- Muzathik, A.M. Photovoltaic Modules Operating Temperature Estimation Using a Simple Correlation. Int. J. Energy Eng. 2014, 4, 151–158. [Google Scholar]
- Silva, D.D.; Marson, V.; De Souza, R.R.; De Oliveira, J.D.; Silva, J.B.C.; Cardoso, E.M. A new predictive model for a photovoltaic module’s surface temperature. Energy Rep. 2022, 8, 15206–15220. [Google Scholar] [CrossRef]
- Mora Segado, P.; Carretero, J.; Sidrach-de-Cardona, M. Models to predict the operating temperature of different photovoltaic modules in outdoor conditions. Prog. Photovolt. Res. Appl. 2015, 23, 1267–1282. [Google Scholar] [CrossRef]
- Nguyen, D.P.N.; Neyts, K.; Lauwaert, J. Proposed Models to Improve Predicting the Operating Temperature of Different Photovoltaic Module Technologies under Various Climatic Conditions. Appl. Sci. 2021, 11, 7064. [Google Scholar] [CrossRef]
- Albadi, M.; Al-Badi, A. Solar Photovoltaic Power Intermittency and Implications on Power Systems; Cambridge Scholars Publisher: Newcastle-upon-Tyne, UK, 2021; ISBN 978-1-5275-7129-7. [Google Scholar]
- Zaini, N.H.; Kadir, M.Z.A.; Izadi, M.; Ahmad, N.I.; Radzi, M.A.M.; Azis, N. The effect of temperature on a mono-crystalline solar PV panel. In Proceedings of the 2015 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 19–20 October 2015; pp. 249–253. [Google Scholar] [CrossRef]
- Razak, A.; Irwan, Y.M.; Leow, W.Z.; Irwanto, M.; Safwati, I.; Zhafarina, M. Investigation of the Effect Temperature on Photovoltaic (PV) Panel Output Performance. Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 682–688. [Google Scholar] [CrossRef]
- Ertekin, C.; Yaldız, O. Estimation of monthly average daily global radiation on horizontal surface for Antalya (Turkey). Renew. Energy 1999, 17, 95–102. [Google Scholar] [CrossRef]
- Ebhota, W.S.; Tabakov, P.Y. Influence of photovoltaic cell technologies and elevated temperature on photovoltaic system performance. Ain Shams Eng. J. 2023, 14, 101984. [Google Scholar] [CrossRef]
- Arifin, Z.; Suyitno, S.; Tjahjana, D.D.D.P.; Juwana, W.E.; Putra, M.R.A.; Prabowo, A.R. The Effect of Heat Sink Properties on Solar Cell Cooling Systems. Appl. Sci. 2020, 10, 7919. [Google Scholar] [CrossRef]
- Ukwenya, J.A.; Owolabi, J.A.; Onimisi, M.Y.; Danladi, E.; Udeh, S.M.; Ushiekpan, U.R. THE EFFECT OF TEMPERATURE DEPENDENCE ON TIN PEROVSKITE SOLAR CELL USING SCAPS 1D. FUDMA J. Sci. 2023, 7, 321–329. [Google Scholar] [CrossRef]
- Yu, Q.; Romagnoli, A.; Yang, R.; Xie, D.; Liu, C.; Ding, Y.; Li, Y. Numerical study on energy and exergy performances of a microencapsulated phase change material slurry based photovoltaic/thermal module. Energy Convers. Manag. 2019, 183, 708–720. [Google Scholar] [CrossRef]
- Chander, S.; Purohit, A.; Sharma, A.; Nehra, S.P.; Dhaka, M.S. Impact of temperature on performance of series and parallel connected mono-crystalline silicon solar cells. Energy Rep. 2015, 1, 175–180. [Google Scholar] [CrossRef]
- Garg, S.; Arun, J.B. The Defining Positive Role of High Cell Temperature on the Performance of a Multicrystalline Solar Photovoltaic Module. Commun. Appl. Electron. 2019, 7, 1–10. [Google Scholar] [CrossRef]
- Nowsherwan, G.A.; Samad, A.; Iqbal, M.A.; Mushtaq, T.; Hussain, A.; Malik, M.; Haider, S.; Pham, P.V.; Choi, J.R. Performance Analysis and Optimization of a PBDB-T:ITIC Based Organic Solar Cell Using Graphene Oxide as the Hole Transport Layer. Nanomaterials 2022, 12, 1767. [Google Scholar] [CrossRef]
- Kumar, T.A.; Murthy, C.S.N.; Mangalpady, A. Performance analysis of PV panel under varying surface temperature. MATEC Web Conf. 2018, 144, 04004. [Google Scholar] [CrossRef]
- Siregar, Y.; Kai Suan Tial, M.; Fernando Soarez Purba, Y.; Suherman, S.; Soeharwinto, S. Design of solar cell using mirror, cooling, double axis, and solar tracking. Indones. J. Electr. Eng. Comput. Sci. 2022, 28, 1297–1308. [Google Scholar] [CrossRef]
- Buni, M.J.B.; Al-Walie, A.A.K.; Al-Asadi, K.A.N. Effect of Solar Radiation on Photovoltaic Cell. Int. Res. J. Adv. Eng. Sci. 2018, 3, 47–51. [Google Scholar]
- Abdel-Aziz, M.H.; Zoromba, M.S.; Attar, A.; Bassyouni, M.; Almutlaq, N.; Al-Qabandi, O.A.; Elhenawy, Y. Optimizing concentrated photovoltaic module efficiency using Nanofluid-Based cooling. Energy Convers. Manag. X 2025, 26, 100928. [Google Scholar] [CrossRef]
- Jia Joon, C.; Chew Wai Jin, K. Design of Augmented Cooling System for Urban Solar PV System. MATEC Web Conf. 2021, 335, 03002. [Google Scholar] [CrossRef]
- Hudișteanu, V.-S.; Cherecheș, N.-C.; Țurcanu, F.-E.; Hudișteanu, I.; Romila, C. Impact of Temperature on the Efficiency of Monocrystalline and Polycrystalline Photovoltaic Panels: A Comprehensive Experimental Analysis for Sustainable Energy Solutions. Sustainability 2024, 16, 10566. [Google Scholar] [CrossRef]
- Ripalda, J.M.; Chemisana, D.; Llorens, J.M.; García, I. Impact of spectral effects on photovoltaic energy production: A case study in the United States. arXiv 2020, arXiv:2003.08871. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Xu, T.; Ji, W.; Zong, X. Recent Advances on Small Band Gap Semiconductor Materials (≤2.1 eV) for Solar Water Splitting. Catalysts 2023, 13, 728. [Google Scholar] [CrossRef]
- Jalomo-Cuevas, J.; Colmenero Fonseca, F.; Cárcel-Carrasco, J.; Pérez, S.S.; Gudiño-Ochoa, A. Impact of Solar Radiation on Luminaires and Energy Efficiency in Isolated Residential Photovoltaic Systems. Buildings 2023, 13, 2655. [Google Scholar] [CrossRef]
- Kurpaska, S.; Knaga, J.; Latała, H.; Sikora, J.; Tomczyk, W. Efficiency of solar radiation conversion in photovoltaic panels. BIO Web Conf. 2018, 10, 02014. [Google Scholar] [CrossRef]
- Ajder, A.; Durusu, A.; Nakir, İ. İklim Koşullarının PV Panel Optimum Eğim Açısına Etkisi. Eur. J. Sci. Technol. 2018, 13, 84–90. [Google Scholar] [CrossRef]
- Soumya, B.S.; Nirmala Bai, L.; Monikashree, T.S. Power Saving Microcontroller based Robotic Solar Tracking Mechanism. Int. J. Comput. Appl. 2016, 153, 10–12. [Google Scholar] [CrossRef]
- Diez, F.J.; Martínez-Rodríguez, A.; Navas-Gracia, L.M.; Chico-Santamarta, L.; Correa-Guimaraes, A.; Andara, R. Estimation of the Hourly Global Solar Irradiation on the Tilted and Oriented Plane of Photovoltaic Solar Panels Applied to Greenhouse Production. Agronomy 2021, 11, 495. [Google Scholar] [CrossRef]
- Seme, S.; Štumberger, G. Single or dual axis trackers, control systems and electric drive losses for photovoltaic applications. Renew. Energy Power Qual. J. (REPQJ) 2013, 11. [Google Scholar] [CrossRef]
- Sani, M.; Sule, A. Effect of Temperature on the Performance of Photovoltaic Module. Int. J. Innov. Sci. Res. Technol. 2020, 5, 670–676. [Google Scholar] [CrossRef]
- Flynn, T.; Chandra, S.; Ortega, A.; McCormack, S. Assessment of large-area luminescent solar concentrators as building-integrated geodesic dome panels. Sustain. Build. 2023, 6, 7. [Google Scholar] [CrossRef]
- Kumar, M.S.; Balasubramanian, K.R.; Maheswari, L. Effect of Temperature on Solar Photovoltaic Panel Efficiency. Int. J. Eng. Adv. Technol. 2019, 8, 2593–2595. [Google Scholar] [CrossRef]
- Gholami, H.; Nils Røstvik, H. Dataset for the Solar Incident Radiation and Electricity Production BIPV/BAPV System on the Northern/Southern Façade in Dense Urban Areas. Data 2021, 6, 57. [Google Scholar] [CrossRef]
- Ooshaksaraei, P.; Sopian, K.; Zulkifli, R.; Alghoul, M.A.; Zaidi, S.H. Characterization of a Bifacial Photovoltaic Panel Integrated with External Diffuse and Semimirror Type Reflectors. Int. J. Photoenergy 2013, 2013, 465837. [Google Scholar] [CrossRef]
- Olusola, O.S.; Israel, E.; Oluwafemi, O.; Babatunde, A. Determination of Optimal Solar Power and Corresponding Tilted Angle in Different Geoclimatic Zones in Nigeria. J. Energy Res. Rev. 2020, 6, 33–48. [Google Scholar] [CrossRef]
- Márquez-García, A.; Varo-Martínez, M.; López-Luque, R. New Model for the Estimation of Solar Radiation on Façades in Urban Environments. Renew. Energy Power Qual. J. (REPQJ) 2014, 12. [Google Scholar] [CrossRef]
- Besharat, F.; Dehghan, A.A.; Faghih, A.R. Empirical models for estimating global solar radiation: A review and case study. Renew. Sustain. Energy Rev. 2013, 21, 798–821. [Google Scholar] [CrossRef]
- Mohammadi, K.; Khorasanizadeh, H.; Shamshirband, S.; Tong, C.W. Influence of introducing various meteorological parameters to the Angström–Prescott model for estimation of global solar radiation. Environ. Earth Sci. 2016, 75, 219. [Google Scholar] [CrossRef]
- Vernet, A.; Fabregat, A. Evaluation of Empirical Daily Solar Radiation Models for the Northeast Coast of the Iberian Peninsula. Energies 2023, 16, 2560. [Google Scholar] [CrossRef]
- Gürel, A.E.; Ağbulut, Ü.; Bakır, H.; Ergün, A.; Yıldız, G. A state of art review on estimation of solar radiation with various models. Heliyon 2023, 9, e13167. [Google Scholar] [CrossRef]
- Angstrom, A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Q. J. R. Meteorol. Soc. 1924, 50, 121–126. [Google Scholar] [CrossRef]
- Benamrou, B.; Mustapha, O.; Allaouzi, I.; Ben Ahmed, M. Empirical models for estimating the global solar radiation based on air temperature and sunshine duration. In Proceedings of the 3rd International Conference on Smart City Applications, Tetouan Morocco, 10–11 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Glover, J.; McCulloch, J.S.G. The empirical relation between solar radiation and hours of sunshine. Q. J. R. Meteorol. Soc. 1958, 84, 172–175. [Google Scholar] [CrossRef]
- Coppolino, S. A new correlation between clearness index and relative sunshine. Renew. Energy 1994, 4, 417–423. [Google Scholar] [CrossRef]
- Ampratwum, D.B.; Dorvlo, A.S.S. Estimation of solar radiation from the number of sunshine hours. Appl. Energy 1999, 63, 161–167. [Google Scholar] [CrossRef]
- Bristow, K.L.; Campbell, G.S. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. For. Meteorol. 1984, 31, 159–166. [Google Scholar] [CrossRef]
- Ugwu, A.I. Performance assessment of Hargreaves model in estimating solar radiation in Abuja using minimum climatological data. Afr. J. Bus. Manag. 2011, 6, 7285–7290. [Google Scholar] [CrossRef]
- Zhang, Q.; Cui, N.; Feng, Y.; Jia, Y.; Li, Z.; Gong, D. Comparative Analysis of Global Solar Radiation Models in Different Regions of China. Adv. Meteorol. 2018, 2018, 3894831. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Bhadra, A.; Raghuwanshi, N.S.; Singh, R. Estimation of monthly solar radiation from measured air temperature extremes. Agric. For. Meteorol. 2008, 148, 1707–1718. [Google Scholar] [CrossRef]
- Tabari, H.; Hosseinzadehtalaei, P.; Willems, P.; Martinez, C. Validation and calibration of solar radiation equations for estimating daily reference evapotranspiration at cool semi-arid and arid locations. Hydrol. Sci. J. 2016, 61, 610–619. [Google Scholar] [CrossRef]
- Thornton, P.E.; Running, S.W. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteorol. 1999, 93, 211–228. [Google Scholar] [CrossRef]
- Chen, R.; Ersi, K.; Yang, J.; Lu, S.; Zhao, W. Validation of five global radiation models with measured daily data in China. Energy Convers. Manag. 2004, 45, 1759–1769. [Google Scholar] [CrossRef]
- Ihaddadene, R.; Ihaddadene, N.; Jed, M.E.H.O.A.B.; De Souza, A. Daily global solar radiation estimation based on air temperature: Case of study south of Algeria. E3S Web Conf. 2019, 80, 01002. [Google Scholar] [CrossRef]
- Badescu, V. Correlations to estimate monthly mean daily solar global irradiation: Application to Romania. Energy 1999, 24, 883–893. [Google Scholar] [CrossRef]
- Black, J.N. The distribution of solar radiation over the Earth’s surface. Arch. Meteorol. Geophys. Bioklimatol. Ser. B 1956, 7, 165–189. [Google Scholar] [CrossRef]
- Sarkar, M.N.I. Estimation of solar radiation from cloud cover data of Bangladesh. Renew. Wind Water Sol. 2016, 3, 11. [Google Scholar] [CrossRef]
- Swartman, R.K.; Ogunlade, O. Solar radiation estimates from common parameters. Sol. Energy 1967, 11, 170–172. [Google Scholar] [CrossRef]
- Hunt, L.A.; Kuchar, L.; Swanton, C.J. Estimation of solar radiation for use in crop modelling. Agric. For. Meteorol. 1998, 91, 293–300. [Google Scholar] [CrossRef]
- Garg, H.P.; Garg, S.N. Prediction of global solar radiation from bright sunshine hours and other meteorological data. Energy Convers. Manag. 1983, 23, 113–118. [Google Scholar] [CrossRef]
- Azaz, M.; Ullah, S.; Ul Islam, J. Comparative Analysis of PV System Performance in Different Environmental Conditions. Int. J. Eng. Works 2020, 7, 394–3400. [Google Scholar] [CrossRef]
- Yüzer, E.Ö.; Bozkurt, A. Evaluation of Photovoltaic Panel Power Generation Based on Instant Solar Radiation and Meteorological Parameters. Afyon Kocatepe Univ. J. Sci. Eng. 2023, 23, 1171–1179. [Google Scholar] [CrossRef]
- Al-Ghezi, M.K.; Ahmed, R.T.; Chaichan, M.T. The Influence of Temperature and Irradiance on Performance of the photovoltaic panel in the Middle of Iraq. Int. J. Renew. Energy Dev. 2022, 11, 501–513. [Google Scholar] [CrossRef]
- Rahman, Y.A.; Amin, N.; Masarrang, M.; Pirade, Y.; Yunfa, N.P.; Santoso, R. Monitoring PV Output Power in Tropical Climates Under Surface Temperature Distribution Area. IOP Conf. Ser. Earth Environ. Sci. 2023, 1157, 012037. [Google Scholar] [CrossRef]
- Kendon, E.J.; Stratton, R.A.; Tucker, S.; Marsham, J.H.; Berthou, S.; Rowell, D.P.; Senior, C.A. Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat. Commun. 2019, 10, 1794. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, W.; Qi, W. Experimental study on the influence of temperature and radiation on photovoltaic power generation in summer. IOP Conf. Ser. Earth Environ. Sci. 2021, 621, 012030. [Google Scholar] [CrossRef]
- Choo, Y.M.; Wei, W. Salt hydrates as phase change materials for photovoltaics thermal management. Energy Sci. Eng. 2022, 10, 1630–1642. [Google Scholar] [CrossRef]
- Bhavani, M.; Vijaybhaskar Reddy, K.; Mahesh, K.; Saravanan, S. Impact of variation of solar irradiance and temperature on the inverter output for grid connected photo voltaic (PV) system at different climate conditions. Mater. Today Proc. 2023, 80, 2101–2108. [Google Scholar] [CrossRef]
- Suwapaet, N.; Boonla, P. The Investigation of Produced Power Output During High Operating Temperature Occurrences of Monocrystalline and Amorphous Photovoltaic Modules. Energy Procedia 2014, 52, 459–465. [Google Scholar] [CrossRef]
- Leye, S.N.; Fall, I.; Mbodji, S.; Sow, P.L.T.; Sissoko, G. Analysis of T-Coefficients Using the Columnar Cylindrical Orientation of Solar Cell Grain. Smart Grid Renew. Energy 2018, 09, 43–56. [Google Scholar] [CrossRef]
- Reichmuth, S.K.; Helmers, H.; Philipps, S.P.; Schachtner, M.; Siefer, G.; Bett, A.W. On the temperature dependence of dual-junction laser power converters. Prog. Photovolt. Res. Appl. 2017, 25, 67–75. [Google Scholar] [CrossRef]
- He, Z.; Hu, Y.; Zhang, K.; Wei, H.; Alkahtani, M. Robust parameter identification based on nature-inspired optimization for accurate photovoltaic modelling under different operating conditions. IET Renew. Power Gener. 2024, 18, 1893–1925. [Google Scholar] [CrossRef]
- Abadi, I.; Imron, C.; Mardlijah; Noriyati, R.D. Implementation of Maximum Power Point Tracking (MPPT) Technique on Solar Tracking System Based on Adaptive Neuro-Fuzzy Inference System (ANFIS). E3S Web Conf. 2018, 43, 01014. [Google Scholar] [CrossRef]
- Sayyad, J.; Nasikkar, P. Design and Development of Low Cost, Portable, On-Field I-V Curve Tracer Based on Capacitor Loading for High Power Rated Solar Photovoltaic Modules. IEEE Access 2021, 9, 70715–70731. [Google Scholar] [CrossRef]
- Luciani, S.; Coccia, G.; Tomassetti, S.; Pierantozzi, M.; Di Nicola, G. Correction Procedures for Temperature and Irradiance of Photovoltaic Modules: Determination of Series Resistance and Temperature Coefficients by Means of an Indoor Solar Flash Test Device. Tec. Ital.-Ital. J. Eng. Sci. 2021, 65, 264–270. [Google Scholar] [CrossRef]
- Daut, I.; Yusoff, M.I.; Ibrahim, S.; Irwanto, M.; Nsurface, G. Relationship between the Solar Radiation and Surface Temperature in Perlis. Adv. Mater. Res. 2012, 512–515, 143–147. [Google Scholar] [CrossRef]
- Rajeswari, N.; Venkatanarayanan, S. An Efficient Honey Badger Optimization Based Solar MPPT Under Partial Shading Conditions. Intell. Autom. Soft Comput. 2023, 35, 1311–1322. [Google Scholar] [CrossRef]
- Ahmad, T.; Sobhan, S.; Nayan, M.F. Comparative Analysis between Single Diode and Double Diode Model of PV Cell: Concentrate Different Parameters Effect on Its Efficiency. J. Power Energy Eng. 2016, 4, 31–46. [Google Scholar] [CrossRef]
- Su, X.; Wang, Y. Photovoltaic Power Prediction Based on GA-Elman Model. J. Phys. Conf. Ser. 2023, 2532, 012016. [Google Scholar] [CrossRef]
- Kadyri, A.; Assaid, E.M.; Kandoussi, K.; Souhar, O. Numerical model for two dimensional temperature distribution in photovoltaic panels with experimental validation. Res. Sq. 2024. preprint. [Google Scholar] [CrossRef]
- Icel, Y.; Mamis, M.S.; Bugutekin, A.; Gursoy, M.I. Photovoltaic Panel Efficiency Estimation with Artificial Neural Networks: Samples of Adiyaman, Malatya, and Sanliurfa. Int. J. Photoenergy 2019, 2019, 6289021. [Google Scholar] [CrossRef]
- Hafiz, F.A.; Go, Y.I.; Tan, R.H.G.; Alkaff, S.A.; Tan, T.H.; Yap, T.C. Monitoring and Visualization of Solar PV Thermal Flow via Interpolation Techniques. J. Energy Saf. Technol. JEST 2018, 1, 1–9. [Google Scholar] [CrossRef]
- Abdelwahab, S.A.M.; El-Rifaie, A.M.; Hegazy, H.Y.; Tolba, M.A.; Mohamed, W.I.; Mohamed, M. Optimal Control and Optimization of Grid-Connected PV and Wind Turbine Hybrid Systems Using Electric Eel Foraging Optimization Algorithms. Sensors 2024, 24, 2354. [Google Scholar] [CrossRef] [PubMed]
- Soanda, N.I.; Spunei, E.; Chioncel, C.P.; Matasaru, G.S.; Piroi, F. Analysis of the operation of a photovoltaic hybrid system. J. Phys. Conf. Ser. 2024, 2927, 012001. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Stojkov, M.; Zlatunić, B. Experimental Testing of PV Module Performance. Teh. Glas. 2021, 15, 127–132. [Google Scholar] [CrossRef]
- Andreani, L.C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L. Silicon solar cells: Toward the efficiency limits. Adv. Phys. X 2019, 4, 1548305. [Google Scholar] [CrossRef]
- Tomihisa, T.; Shirasawa, K.; Takato, H. Investigation of electrical shading loss of bifacial interdigitated-back-contact (IBC) crystalline silicon solar cells with screen-printed electrode. Jpn. J. Appl. Phys. 2020, 59, 116503. [Google Scholar] [CrossRef]
- Xiao, X.J.; Zhu, H.M.; Liu, Z.M.; Tu, J.L. Multilayer antireflection coatings design for SiO2-passivated silicon solar cells. Mater. Werkst. 2022, 53, 80–88. [Google Scholar] [CrossRef]
- Rahman, T.; Mansur, A.; Hossain Lipu, M.; Rahman, M.; Ashique, R.; Houran, M.; Elavarasan, R.; Hossain, E. Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management. Energies 2023, 16, 3706. [Google Scholar] [CrossRef]
- Kurtz, S.; Whitfield, K.; TamizhMani, G.; Koehl, M.; Miller, D.; Joyce, J.; Wohlgemuth, J.; Bosco, N.; Kempe, M.; Zgonena, T. Evaluation of high-temperature exposure of photovoltaic modules. Prog. Photovolt. Res. Appl. 2011, 19, 954–965. [Google Scholar] [CrossRef]
- Abdullah; Putri, M.; Syahruddin, M.; Silitonga, A.S.; Dharma, S.; Jumaat, A.K.; Ridzuan, A.R.; Aritonang, G. The Utilization of a Combination of Heatsink Material and a Water Cooler Block as an Effort to Reduce Heat from Solar Panels. Int. J. Appl. Res. Sustain. Sci. 2024, 2, 339–352. [Google Scholar] [CrossRef]
- Alves Dos Santos, S.A.; Torres, J.P.N.; Fernandes, C.A.F.; Marques Lameirinhas, R.A. The impact of aging of solar cells on the performance of photovoltaic panels. Energy Convers. Manag. X 2021, 10, 100082. [Google Scholar] [CrossRef]
- Piasecka, M.; Piasecki, A.; Dadas, N. An Experimental Investigation and Numerical Simulation of Photovoltaic Cells with Enhanced Surfaces Using the Simcenter STAR-CCM+ Software. Energies 2023, 16, 8047. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Stojkov, M.; Katinić, M.; Lacković, I. Effects of Extreme Weather Conditions on PV Systems. Sustainability 2023, 15, 16044. [Google Scholar] [CrossRef]
- Durez, A.; Sohail, M.U.; Ali, M.; Khan, U.A. Thermal analysis and efficiency enhancement of solar modified PV panels through organic PCM under climate conditions of Pakistan. Mehran Univ. Res. J. Eng. Technol. 2024, 43, 97. [Google Scholar] [CrossRef]
- Han, J.; Xu, H.; Paleti, S.H.K.; Sharma, A.; Baran, D. Understanding photochemical degradation mechanisms in photoactive layer materials for organic solar cells. Chem. Soc. Rev. 2024, 53, 7426–7454. [Google Scholar] [CrossRef]
- Perrakis, G.; Tasolamprou, A.C.; Kenanakis, G.; Economou, E.N.; Tzortzakis, S.; Kafesaki, M. Ultraviolet radiation impact on the efficiency of commercial crystalline silicon-based photovoltaics: A theoretical thermal-electrical study in realistic device architectures. OSA Contin. 2020, 3, 1436–1444. [Google Scholar] [CrossRef]
- Burlingame, Q.; Tong, X.; Hankett, J.; Slootsky, M.; Chen, Z.; Forrest, S.R. Photochemical origins of burn-in degradation in small molecular weight organic photovoltaic cells. Energy Environ. Sci. 2015, 8, 1005–1010. [Google Scholar] [CrossRef]
- Liu, Z.-X.; Yu, Z.-P.; Shen, Z.; He, C.; Lau, T.-K.; Chen, Z.; Zhu, H.; Lu, X.; Xie, Z.; Chen, H.; et al. Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics. Nat. Commun. 2021, 12, 3049. [Google Scholar] [CrossRef] [PubMed]
- Manser, J.S.; Christians, J.A.; Kamat, P.V. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 2016, 116, 12956–13008. [Google Scholar] [CrossRef]
- Liu, P.; Wang, W.; Liu, S.; Yang, H.; Shao, Z. Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. Adv. Energy Mater. 2019, 9, 1803017. [Google Scholar] [CrossRef]
- Ndiaye, A.; Charki, A.; Kobi, A.; Kébé, C.M.F.; Ndiaye, P.A.; Sambou, V. Degradations of silicon photovoltaic modules: A literature review. Sol. Energy 2013, 96, 140–151. [Google Scholar] [CrossRef]
- Dhimish, M.; Alrashidi, A. Photovoltaic Degradation Rate Affected by Different Weather Conditions: A Case Study Based on PV Systems in the UK and Australia. Electronics 2020, 9, 650. [Google Scholar] [CrossRef]
- Al Garni, H.Z. The Impact of Soiling on PV Module Performance in Saudi Arabia. Energies 2022, 15, 8033. [Google Scholar] [CrossRef]
- Ghaffar, A.; Channa, I.A.; Chandio, A.D. Mitigating UV-Induced Degradation in Solar Panels through ZnO Nanocomposite Coatings. Sustainability 2024, 16, 6538. [Google Scholar] [CrossRef]
- Praveena, K.; Jain, A.; Arun, V.; Kaliyaperumal, G.; Khan, I.; Pahwa, S.; Alkhafaji, M.A. A Review on Next-Generation Solar Solutions: Pioneering Materials and Designs for Sustainable Energy Harvesting. E3S Web Conf. 2024, 505, 02004. [Google Scholar] [CrossRef]
- Patil, R.B.; Khalkar, A.; Al-Dahidi, S.; Pimpalkar, R.S.; Bhandari, S.; Pecht, M. A Reliability and Risk Assessment of Solar Photovoltaic Panels Using a Failure Mode and Effects Analysis Approach: A Case Study. Sustainability 2024, 16, 4183. [Google Scholar] [CrossRef]
- Grant, C.A.; Hicks, A.L. Global Warming Impacts of Residential Electricity Consumption: Agent-Based Modeling of Rooftop Solar Panel Adoption in Los Angeles County, California. Integr. Environ. Assess. Manag. 2020, 16, 1008–1018. [Google Scholar] [CrossRef]
- Martín-Gamboa, M.; Iribarren, D.; García-Gusano, D.; Dufour, J. A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. J. Clean. Prod. 2017, 150, 164–174. [Google Scholar] [CrossRef]
- Genge, Z.; Misaran, M.S.; Zhang, Z.; Radzali, M.A.; Ismail, M.A. Solar Photovoltaic Surface Cooling Using Hybrid Solar Chimney-Collector with Wavy Fins. J. Adv. Res. Numer. Heat Transf. 2024, 27, 107–119. [Google Scholar] [CrossRef]
- Ahmad, E.Z.; Sopian, K.; Ibrahim, A.; Gan, C.K.; Razak, M.S.A. Experimental investigation of passively cooled photovoltaic modules on the power output performance. Int. J. Power Electron. Drive Syst. IJPEDS 2022, 13, 520–527. [Google Scholar] [CrossRef]
- Razzaq, M.E.A.; Ahamed, J.U.; Hossain, M.A.M. Effect of TiO2/MO Nano-lubricant on Energy and Exergy Savings of an Air Conditioner using Blends of R22/R600a. Int. J. Automot. Mech. Eng. 2020, 17, 8283–8297. [Google Scholar] [CrossRef]
- Cui, W.; Shen, Z.; Yang, J.; Wu, S. Effect of chaotic movements of nanoparticles for nanofluid heat transfer augmentation by molecular dynamics simulation. Appl. Therm. Eng. 2015, 76, 261–271. [Google Scholar] [CrossRef]
- Sharaf, M.; Yousef, M.S.; Huzayyin, A.S. Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environ. Sci. Pollut. Res. 2022, 29, 26131–26159. [Google Scholar] [CrossRef] [PubMed]
- Ait Ali, A.; Ouhassan, Y.; Abouyaakoub, M.; Chahboun, M.; Hihi, H. Impact of Temperature, Solar Irradiation and Wind Dust on the Production of Solar Energy and the Assessment of Water Quality Used for Cooling and Cleaning Photovoltaic Panels. Preprints 2024, 2024031323. [Google Scholar] [CrossRef]
- Firoozzadeh, M.; Shiravi, A.H.; Shafiee, M. An Experimental Study on Cooling the Photovoltaic Modules by Fins to Improve Power Generation: Economic Assessment. Iran. J. Energy Environ. 2019, 10, 80–84. [Google Scholar] [CrossRef]
- Pawawoi, A.; Zulfahmi, Z. Penambahan Sistem Pendingin Heatsink Untuk Optimasi Penggunaan Reflektor Pada Panel Surya. J. Nas. Tek. Elektro 2019, 8, 1–7. [Google Scholar] [CrossRef]
- Shittu, S.; Li, G.; Zhao, X.; Akhlaghi, Y.G.; Ma, X.; Yu, M. Comparative study of a concentrated photovoltaic-thermoelectric system with and without flat plate heat pipe. Energy Convers. Manag. 2019, 193, 1–14. [Google Scholar] [CrossRef]
- Yu, M.; Zhou, J.; Zhao, X.; Fan, Y. Impact Study of Height Difference on Solar Thermal Performance of a Novel Solar Micro-Channel Loop Heat Pipe-PV/T Heating System. In Proceedings of the International Conference on Applied Energy 2019, Västerås, Sweden, 12–15 August 2019. Volume 4: Innovative Solutions for Energy Transitions: Part III.. [Google Scholar] [CrossRef]
- Kayabaşi1, R.; Kaya, M. Effect of module operating temperature on module efficiency in photovoltaic modules and recovery of photovoltaic module heat by thermoelectric effect. J. Therm. Eng. 2023, 9, 191–204. [Google Scholar] [CrossRef]
- Żołądek, M.; Sornek, K.; Papis, K.; Figaj, R.; Filipowicz, M. Experimental and Numerical Analysis of Photovoltaics System Improvements in Urban Area. Civ. Environ. Eng. Rep. 2018, 28, 13–24. [Google Scholar] [CrossRef]
- Soltani, S.; Kasaeian, A.; Sarrafha, H.; Wen, D. An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. Sol. Energy 2017, 155, 1033–1043. [Google Scholar] [CrossRef]
- Satheesh, A.; Panda, S. Thin film development on a double layer of fluids over a stretching sheet. Phys. Scr. 2024, 99, 115277. [Google Scholar] [CrossRef]
- Isimjan, T.T.; West, D.H. Do Functional Coatings Work for Solar Panel Dust Mitigation? ACS Mater. Lett. 2023, 5, 2718–2725. [Google Scholar] [CrossRef]
- Testa, P.; Giliberti, G.; Cagnoni, M.; Cappelluti, F. Impact of radiative cooling on the thermal behavior of multi-junction solar cells. In Proceedings of the SPIE OPTO Conference: Physics, Simulation, and Photonic Engineering of Photovoltaic Devices XIV, San Francisco, CA, USA, 25–31 January 2025; Freundlich, A., Hinzer, K., Sellers, I.R., Helmers, H., Eds.; SPIE: San Francisco, CA, USA, 2025; Volume 13361, p. 133610D. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Chen, K.; Zhu, L.; Fan, S. A Comprehensive Photonic Approach for Solar Cell Cooling. ACS Photonics 2017, 4, 774–782. [Google Scholar] [CrossRef]
- Appelbaum, J. Bifacial photovoltaic panels field. Renew. Energy 2016, 85, 338–343. [Google Scholar] [CrossRef]
- Moehlecke, A.; Febras, F.S.; Zanesco, I. Electrical performance analysis of PV modules with bifacial silicon solar cells and white diffuse reflector. Sol. Energy 2013, 96, 253–262. [Google Scholar] [CrossRef]
- Kang, J.-G.; Kim, J.-H.; Kim, J.-T. Design Elements and Electrical Performance of a Bifacial BIPV Module. Int. J. Photoenergy 2016, 2016, 6943936. [Google Scholar] [CrossRef]
- Rajani, A.; Mat Said, D.; Noorden, Z.A.; Ahmad, N.; Arifin, M.S.; Komarudin, U.; Atmaja, T.D.; Subagyo, S.; Fudholi, A. Multi-objective optimisation and sensitivity analysis of component influences on efficiency in air-based bifacial photovoltaic thermal systems (B-PVT). Int. J. Renew. Energy Dev. 2024, 13, 736–749. [Google Scholar] [CrossRef]
- Pelaez, S.A.; Deline, C.; Greenberg, P.; Stein, J.S.; Kostuk, R.K. Model and Validation of Single-Axis Tracking with Bifacial PV. IEEE J. Photovolt. 2019, 9, 715–721. [Google Scholar] [CrossRef]
- Tahir, M.S.; Dong, X.; Khan, M.M.; Rehman, I.U. Thermal management of photovoltaic systems: A comprehensive review of cooling strategies. Sol. Energy 2025, 299, 113811. [Google Scholar] [CrossRef]
- Teterev, V.; Khudiakov, I. Simulation of a Hybrid Solar Power Plant with a Hydrogen Generator in MATLAB/Simulink Environment. Light. Eng. Power Eng. 2022, 61, 30–48. [Google Scholar] [CrossRef]
- Liu, Z.; Wei, T.; Wu, D.; Zhang, Y.; Li, G.; Yang, X. Performance Evaluation and Optimization of a Novel System Combining a Photovoltaic/Thermal Subsystem & an Organic Rankine Cycle Driven by Solar Parabolic Trough Collector. J. Therm. Sci. 2021, 30, 1513–1525. [Google Scholar] [CrossRef]
- Wang, J.; Ran, R.; Song, Z.; Sun, J. Short-Term Photovoltaic Power Generation Forecasting Based on Environmental Factors and GA-SVM. J. Electr. Eng. Technol. 2017, 12, 64–71. [Google Scholar] [CrossRef]
- Bamisile, O.; Acen, C.; Cai, D.; Huang, Q.; Staffell, I. The environmental factors affecting solar photovoltaic output. Renew. Sustain. Energy Rev. 2025, 208, 115073. [Google Scholar] [CrossRef]
- Kotz, M.; Wenz, L.; Levermann, A. Footprint of greenhouse forcing in daily temperature variability. Proc. Natl. Acad. Sci. USA 2021, 118, e2103294118. [Google Scholar] [CrossRef] [PubMed]
Solar Technology | Temp. of Coef. [%/°C] | Observation |
---|---|---|
Monocrystalline Silicon (c-Si) | −0.44 till −0.50 [60] | With increasing temperature, efficiency decreases due to reduction in VOC and FF [61,62]. |
Polycrystalline Silicon (p-Si) | −0.44 till −0.48 [61] | The decrease in performance is attributed to the increase in series resistance and the decrease in shunt resistance with increasing temperature [63]. |
Amporphous Silicon (a-Si) | −0.20 till −0.234 [64,65] | Efficiency decreases significantly with increasing temperature, and it is interesting to note that VOC decreases while JSC shows the opposite trend, increasing slightly, making the interaction between temperature and overall efficiency more complex [66]. |
Heterojunction (HTJ) | −0.26 till −0.32 [64,67] | They benefit from low processing temperatures, contributing to reduced degradation and improved temperature coefficients [68], which leads to high VOCs, improving overall performance [69]; and performance is also influenced by its microstructure and surface morphology, affecting thermal stability and efficiency [70]. |
Copper Indium Gallium Selenide (CIGS) | −0.32 till −0.36 [60,64] | Although their performance remains relatively stable in the face of rising temperatures, they suffer efficiency losses due to thermal effects [71]. |
Cadmium Telluride (CdTe) | −0.23 till −0.28 [64,72] | Moderate temperature sensitivity makes it suitable for high-temperature environments, although efficiency decreases as temperature increases [73], with it being less sensitive to temperature fluctuations than many photovoltaic materials [74]. |
Perovskite Solar Cells | −0.08 till −0.17 [75,76] | They can maintain better efficiency, although their performance may vary depending on the composition of the perovskite and the architecture [77]. |
Period | Authors | Thermal Model |
---|---|---|
1970–1980 | Ross [87] | |
Rauschenbach [88] | ||
1980–1990 | Risser e Fuentes [89] | |
Severant [90] | ||
Schott [91] | ||
Ross e Smokler [92] | ||
1990–2000 | Lasnier e Ang [93] | |
King [94] | ||
King [95] | ||
2000–2010 | TamizhMani et al. [96] | |
King et al. (I) [94] | ||
King et al. (II) [94] | ||
Duffie end Beckman [47] | ||
Chenni et al. [97] | ||
Mondol et al. [91] | ||
Faiman [98] | ||
Skoplaki et al. (I) [99] | ||
Skoplaki et al. (II) [99] | ||
Sandia [94] | ||
Mattei et al. [100] | ||
2010–2020 | Mazuthik [101] | |
Ren et al. [102] | ||
Segado et al. [103] | ||
Kamuyu et al. [92] | ||
Duffie end Beckman [47] | ||
Jacques [82] | ||
PVSyst [104] |
Models | Authors/Reference | Model Equation | Features/Limitations |
---|---|---|---|
Based on sunlight | Angstrom [141] | It is a linear relationship between the average monthly–daily radiation ratio and the clear day radiation at the location and the insolation rate. | |
Angstrom and Prescott [137] | Based on linear regression, it is useful in locations with little data and dependent on the quality of the insolation period, requiring calibration of coefficients on site for greater accuracy and less efficient on cloudy days. | ||
Ögelman et al. [142] | It incorporates a quadratic structure in the insolation ratio, which facilitates the adjustment of real data, basically where the relationship between the insolation duration and radiation is not linear, but requires calibration with local meteorological data through statistical regression. | ||
Glower and McCulloch [143] | It is a parameterisation that incorporates the influence of the latitude of the location and the duration of insolation to improve accuracy, basically in diverse topographical areas and atmospheric conditions. | ||
Coppolino [144] | An exponential power law dependence between normalised solar radiation and relative duration of insolation, which is used on horizontal surfaces, where the constants are adjusted by the least squares of the local meteorological data. | ||
Ampratwum and Dorvlo [145] | Logarithmic transformation allows working with large variations in solar radiation data, making it perfect for data modelling. When the insolation period increases, the logarithmic transformation of the insolation ratio favours the capture of decreasing returns in the increase in radiation. | ||
Based on temperature | Bristow and Campbell [146] | It explores the temperature range of the time of day and the intensity of the radiation reaching the surface. | |
Hargreaves [147] | It uses daily temperature extremes correlated with solar radiation, requiring the coefficient to be calibrated on site and in areas where there are significant atmospheric changes so it can be less efficient. | ||
Annandale et al. [148,149] | It integrates the effect of reduced altitude and atmospheric thickness into the Hargreaves–Samani model, which makes it crucial for mountainous regions and the intrinsic dependence of temperature extremes on radiation estimation. | ||
Allen [150] | It considers Kr as a function of altitude and clarifies the effect of elevation on the volumetric heat capacity of the atmosphere. | ||
Thornton and Running [151] | Based on the Bristow–Campbell model, it uses the daily and monthly temperature range to obtain the atmospheric transmissivity coefficient. | ||
Chen et al. [152] | Based on the regression of radiation and temperature variations, it incorporates the logarithmic function of the daily temperature range to reflect the effects of solar radiation on temperature change and, because it excludes other environmental factors, makes it less accurate in certain regions. | ||
Li et al. [153] | It adopts the coefficient of the Hargreaves and Samani model as a linear function of the average temperature in the modified Chen model and performs best in regions where the diurnal temperature range correlates reliably with solar radiation. | ||
Based on Cloud Cover | Badeseu [154] | It introduces cloud cover and is based on the brightness of the sky to estimate radiation on a horizontal surface; and in the situation where unusual weather conditions are encountered, it becomes less reliable and proposes some correlations to be more flexible in matching solar radiation data. | |
Black [155] | It facilitates more flexible arrangements by including quadratic terms in cloudiness or insolation, and is useful in locations with variable cloud cover. | ||
Angstrom and Savinov [156] | It relates average cloudiness to global solar radiation by applying the transmission of radiation inside the clouds, depending on latitude, and performs best in regions with a stable climate. | ||
Based on other parameters | Swartman and Ogunlade [157] | The non-linear model is more flexible than the linear model when it comes to adapting to changing environmental situations, making it easier to incorporate local climatic conditions into the estimation of solar radiation and is very useful in regions where fluctuations in relative humidity play a role. | |
Hunt et al. [158] | Multivariate and more comprehensive, it allows for the influence of precipitation and considers the combination of meteorological parameters that interfere with solar radiation. | ||
Garg and Garg [159] | They present a double linear relationship for estimating the average daily–monthly global solar radiation, which requires the coefficients to be calibrated on site. |
Reference | Description |
---|---|
[175] | In this study, the relationship between temperature and solar radiation intensity was examined, emphasising that when solar radiation exceeds 3 kW/m2, it correlates with the performance of the solar system due to the influence of temperature. |
[176] | This study discussed the challenges to the efficiency of photovoltaic systems related to radiation intensity and temperature, focusing on MPPT and the issue of shading, using a theoretical model where the results of the Honey Badger Optimisation Algorithm (HBO) are compared with conventional methods such as Perturb and Observe (P&O), Whale Optimisation Algorithm (WOA), and Flying Squirrel Search Optimisation (FSSO), using MATLAB. |
[177] | This study estimates the efficiency of solar cells influenced by temperature and solar radiation parameters using computational models with single and double diode configurations. |
[178] | This study explains how the variation in the output power of photovoltaic solar panels is affected by the direct relationship between solar radiation intensity and temperature, using the Elman theoretical model. |
[179] | They refine thermal management strategies using an experimental and theoretical model through numerical modelling of temperature distributions in photovoltaic modules, validating them with experimental measurements. |
[180] | To demonstrate the prediction of production efficiency in photovoltaic systems, an experimental and theoretical method was used, integrating artificial neural networks in modelling the relationship between temperature and solar radiation intensity. |
[181] | To evaluate more efficient monitoring of temperature and solar radiation, the authors used interpolation techniques, demonstrating the importance of these parameters in the output power of solar panels. |
[182] | To help understand and optimise production in photovoltaic systems, models that integrate variations in solar radiation intensity and cell temperature have been developed to study the dynamics of solar radiation and its impact on photovoltaic solar energy production. |
[183] | They emphasise the application of mathematical models to estimate the energy production generated by solar photovoltaic systems, using historical radiation and temperature data, and in a way serving to aid in forecasting. |
[184] | They use experimental tests, through modelling the impacts of solar radiation, to assess the performance of photovoltaic modules, adjusting theoretical modelling approaches to prevent photovoltaic solar energy production. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonso, D.; Mesbahi, O.; Bouich, A.; Tlemçani, M. Influence of Long-Term and Short-Term Solar Radiation and Temperature Exposure on the Material Properties and Performance of Photovoltaic Panels: A Comprehensive Review. Energies 2025, 18, 5072. https://doi.org/10.3390/en18195072
Afonso D, Mesbahi O, Bouich A, Tlemçani M. Influence of Long-Term and Short-Term Solar Radiation and Temperature Exposure on the Material Properties and Performance of Photovoltaic Panels: A Comprehensive Review. Energies. 2025; 18(19):5072. https://doi.org/10.3390/en18195072
Chicago/Turabian StyleAfonso, Daruez, Oumaima Mesbahi, Amal Bouich, and Mouhaydine Tlemçani. 2025. "Influence of Long-Term and Short-Term Solar Radiation and Temperature Exposure on the Material Properties and Performance of Photovoltaic Panels: A Comprehensive Review" Energies 18, no. 19: 5072. https://doi.org/10.3390/en18195072
APA StyleAfonso, D., Mesbahi, O., Bouich, A., & Tlemçani, M. (2025). Influence of Long-Term and Short-Term Solar Radiation and Temperature Exposure on the Material Properties and Performance of Photovoltaic Panels: A Comprehensive Review. Energies, 18(19), 5072. https://doi.org/10.3390/en18195072