A Data-Driven ML Model for Sand Channel Prediction from Well Logs for UTES Site Optimization and Thermal Breakthrough Prevention: Hungary Case Study
Abstract
1. Introduction
2. Background and Regional
2.1. Geological and Hydrogeological Setting
2.2. Hydrodynamic Systems and Pressure Regimes
2.3. Reservoir Properties and Geothermal Potential
2.4. Hydrocarbon History and Well Infrastructure
2.5. Relevance to Seasonal Heat Storage
3. Materials and Methods
3.1. Methodological Framework
3.2. Data Collection and Data Preparation
3.3. Data Modelling
3.4. Flow Zone Index Modelling
3.5. Machine Learning Setting
3.6. Machine Learning Process
3.7. Sensitivity Analysis
3.8. Model Calibration and Validation
4. Results
4.1. FZI Prediction Result
4.2. Residual Distribution and Model Robustness
5. Discussion
5.1. Interpretation of Predicted 3D FZI Clusters
5.2. Subsurface Complexity of High-FZI Regions in 3D
5.3. Enhancing Decision-Making for UTES Site Selection
5.4. Generalizing Channelization Prediction for the Szolnok Formation
5.5. Computational Efficiency in Sand Channel Prediction
5.6. Managing Model Uncertainty and Reproducibility
5.7. Recommendations and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
References
- Duggal, R.; Rayudu, R.; Hinkley, J.; Burnell, J.; Wieland, C.; Keim, M. A Comprehensive Review of Energy Extraction from Low-Temperature Geothermal Resources in Hydrocarbon Fields. Renew. Sustain. Energy Rev. 2022, 154, 111865. [Google Scholar] [CrossRef]
- REN21 RENEWABLES 2019 GLOBAL STATUS REPORT. Available online: https://www.ren21.net/gsr-2019 (accessed on 18 April 2023).
- WEF 5 Green Energy Milestones from Around the World. Available online: https://www.weforum.org/agenda/2021/04/renewables-record-capacity-solar-wind-nuclear/ (accessed on 18 April 2023).
- Bloemendal, M.; Hartog, N. Analysis of the Impact of Storage Conditions on the Thermal Recovery Efficiency of Low-Temperature ATES Systems. Geothermics 2018, 71, 306–319. [Google Scholar] [CrossRef]
- Fleuchaus, P.; Schüppler, S.; Bloemendal, M.; Guglielmetti, L.; Opel, O.; Blum, P. Risk Analysis of High-Temperature Aquifer Thermal Energy Storage (HT-ATES). Renew. Sustain. Energy Rev. 2020, 133, 110153. [Google Scholar] [CrossRef]
- Van Der Roest, E.; Beernink, S.; Hartog, N.; Van Der Hoek, J.P.; Bloemendal, M. Towards Sustainable Heat Supply with Decentralized Multi-Energy Systems by Integration of Subsurface Seasonal Heat Storage. Energies 2021, 14, 7958. [Google Scholar] [CrossRef]
- Kastner, O.; Norden, B.; Klapperer, S.; Park, S.; Urpi, L.; Cacace, M.; Blöcher, G. Thermal Solar Energy Storage in Jurassic Aquifers in Northeastern Germany: A Simulation Study. Renew. Energy 2017, 104, 290–306. [Google Scholar] [CrossRef]
- van Heekeren, V.; Bakema, G. The Netherlands Country Update on Geothermal Energy; World Geothermal Congress: Melbourne, Australia, 2015. [Google Scholar]
- Oerlemans, P.; Godschalk, B. Performance of HT-ATES in Practice; IF Technology: Arnhem, The Netherlands. Online Presentation. Available online: https://remotedesktop.google.com/access/session/8c3d9f4a-b881-5c26-d31a-436b8dec894d (accessed on 25 June 2025).
- Stricker, K.; Grimmer, J.C.; Egert, R.; Bremer, J.; Korzani, M.G.; Schill, E.; Kohl, T. The Potential of Depleted Oil Reservoirs for High-Temperature Storage Systems. Energies 2020, 13, 6510. [Google Scholar] [CrossRef]
- Stricker, K.; Egert, R.; Schill, E.; Kohl, T. Risk of Surface Movements and Reservoir Deformation for High-Temperature Aquifer Thermal Energy Storage (HT-ATES). Geotherm. Energy 2024, 12, 4. [Google Scholar] [CrossRef]
- Sommer, W.; Valstar, J.; van Gaans, P.; Grotenhuis, T.; Rijnaarts, H. The Impact of Aquifer Heterogeneity on the Performance of Aquifer Thermal Energy Storage. Water Resour. Res. 2013, 49, 8128–8138. [Google Scholar] [CrossRef]
- Dickinson, J.S.; Buik, N.; Matthews, M.C.; Snijders, A. Aquifer Thermal Energy Storage: Theoretical and Operational Analysis. Géotechnique 2009, 59, 249–260. [Google Scholar] [CrossRef]
- Amaefule, J.O.; Altunbay, M.; Tiab, D.; Kersey, D.G.; Keelan, D.K. Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 3–6 October 1993. Paper SPE-26436-MS. [Google Scholar] [CrossRef]
- Astsauri, T.; Habiburrahman, M.; Ibrahim, A.F.; Wang, Y. Utilizing Machine Learning for Flow Zone Indicators Prediction and Hydraulic Flow Unit Classification. Sci. Rep. 2024, 14, 4223. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Atkinson, T.A.; Doughty, C.; Neupane, G.; Spycher, N.; McLing, T.L.; Dobson, P.F.; Smith, R.; Podgorney, R. Machine-Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization. Renew. Energy 2022, 197, 384–397. [Google Scholar] [CrossRef]
- Man, H.Q.; Hien, D.H.; Thong, K.D.; Dung, B.V.; Hoa, N.M.; Hoa, T.K.; Kieu, N.V.; Ngoc, P.Q. Hydraulic Flow Unit Classification and Prediction Using Machine Learning Techniques: A Case Study from the Nam Con Son Basin, Offshore Vietnam. Energies 2021, 14, 7714. [Google Scholar] [CrossRef]
- Cao, T.; Cui, J.; He, Y.; Ma, L.; Qiao, W.; Liu, Y. The Influence of Reservoir Architecture on the Connectivity of the Shahejie Formation in the Liuzhong Oilfield. Energies 2024, 17, 115. [Google Scholar] [CrossRef]
- The Importance of Physiochemical Processes in Decarbonisation Technology Applications Utilizing the Subsurface: A Review|Earth Science, Systems and Society. Available online: https://www.lyellcollection.org/doi/full/10.3389/esss.2022.10043 (accessed on 5 July 2025).
- Duplyakin, D.; Beckers, K.F.; Siler, D.L.; Martin, M.J.; Johnston, H.E. Modeling Subsurface Performance of a Geothermal Reservoir Using Machine Learning. Energies 2022, 15, 967. [Google Scholar] [CrossRef]
- Liu, A.; Li, J.; Bi, J.; Chen, Z.; Wang, Y.; Lu, C.; Jin, Y.; Lin, B. A Novel Reservoir Simulation Model Based on Physics Informed Neural Networks. Phys. Fluids 2024, 36, 116617. [Google Scholar] [CrossRef]
- Rohmer, J.; Armandine Les Landes, A.; Loschetter, A.; Maragna, C. Fast Prediction of Aquifer Thermal Energy Storage: A Multicyclic Metamodelling Procedure. Comput. Geosci. 2023, 27, 223–243. [Google Scholar] [CrossRef]
- Pellegrini, M.; Bloemendal, M.; Hoekstra, N.; Spaak, G.; Andreu Gallego, A.; Rodriguez Comins, J.; Grotenhuis, T.; Picone, S.; Murrell, A.J.; Steeman, H.J. Low Carbon Heating and Cooling by Combining Various Technologies with Aquifer Thermal Energy Storage. Sci. Total Environ. 2019, 665, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Jurado, N.; Hawkins, A.J.; Fulton, P.M. Influence of Extreme Fracture Flow Channels on the Thermal Performance of Open-Loop Geothermal Systems at Commercial Scale. Geotherm. Energy 2023, 11, 19. [Google Scholar] [CrossRef]
- Abdulhaq, H. Predicting Thermal Performance of Aquifer Thermal Energy Storage Systems in Depleted Clastic Hydrocarbon Reservoir via Machine Learning: Case Study from Hungary. In Proceedings of the 16th European Geothermal PhD Days Book of Abstracts, EGPD 2025, Szeged, Hungary, 11 April 2025. [Google Scholar]
- Varouchakis, E.A. Median Polish Kriging and Sequential Gaussian Simulation for the Spatial Analysis of Source Rock Data. J. Mar. Sci. Eng. 2021, 9, 717. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Wang, F.; Xu, N.; Wang, Y.; Bai, B. Settling Behavior and Mechanism Analysis of Kaolinite as a Fracture Proppant of Hydrocarbon Reservoirs in CO2 Fracturing Fluid. Colloids Surf. Physicochem. Eng. Asp. 2025, 724, 137463. [Google Scholar] [CrossRef]
- Qingchao, L.; Jingjuan, W.; Qiang, L.; Fuling, W.; Yuanfang, C. Sediment Instability Caused by Gas Production from Hydrate-Bearing Sediment in Northern South China Sea by Horizontal Wellbore: Sensitivity Analysis. Nat. Resour. Res. 2025, 34, 1667–1699. [Google Scholar] [CrossRef]
- Challenges and Opportunities for Aquifer Thermal Energy Storage (ATES) in EU Energy Transition Efforts—An Overview. Available online: https://www.mdpi.com/1996-1073/18/4/1001 (accessed on 5 July 2025).
- Baird, K.; Arnold, D.; Doster, F.; Geiger, S.; Petrovskyy, D.; Hampson, G.J.; Jacquemyn, C.; Jackson, M.D.; Silva, J.M.; Rahman, F. Assessment of the Impacts of Multi-Scale Sedimentological Heterogeneity on Low-Enthalpy Geothermal Energy Production. In Proceedings of the 49th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 12–14 February 2024; Paper SGP-TR-227. Available online: https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2024/SGP-TR-227.pdf (accessed on 25 June 2025).
- Khosravi, R.; Simjoo, M.; Chahardowli, M. A New Insight into Pilot-Scale Development of Low-Salinity Polymer Flood Using an Intelligent-Based Proxy Model Coupled with Particle Swarm Optimization. Sci. Rep. 2024, 14, 29000. [Google Scholar] [CrossRef]
- Nádor, A. De-Risking Geothermal Exploration by Public Data Portals and Financial Incentives—Good Examples from Hungary; European Geothermal Congress: Berlin, Germany, 2022. [Google Scholar]
- Szanyi, J.D.; Kovács, B.; Abdulhaq, H.A. Harnessing Geothermal Energy in Hungary. Geol. Soc. Lond. Spec. Publ. 2025, 555, SP555–2024. [Google Scholar] [CrossRef]
- Topór, T.; Słota-Valim, M.; Kudrewicz, R. Assessing the Geothermal Potential of Selected Depleted Oil and Gas Reservoirs Based on Geological Modeling and Machine Learning Tools. Energies 2023, 16, 5211. [Google Scholar] [CrossRef]
- Magyar Geofizika (Hungarian Geophysics). Magy. Geofiz. 2011, 52(2). Journal of the Association of Hungarian Geophysicists, Budapest, Hungary. 2011. Available online: https://real-j.mtak.hu/12398/1/EPA03436_magyar_geofizika_2011_2.pdf (accessed on 25 June 2025).
- Nádor, A.; Lenkey, L. Geothermal Resources of Hungary: A Play-Based Review; Department of Geology and Laboratory, SZTFH; Department of Geophysics and Space Science, Eötvös Loránd University: Budapest, Hungary, 2023. [Google Scholar]
- B 2204-B: Pannonian Basin Province, Central Europe (Province 4808)—Petroleum Geology, Total Petroleum Systems, and Petroleum Resource Assessment. Available online: https://pubs.usgs.gov/bul/2204/b/ (accessed on 8 July 2025).
- Abdulhaq, H.A.; Geiger, J.; Vass, I.; Tóth, T.M.; Medgyes, T.; Szanyi, J. Transforming Abandoned Hydrocarbon Fields into Heat Storage Solutions: A Hungarian Case Study Using Enhanced Multi-Criteria Decision Analysis–Analytic Hierarchy Process and Geostatistical Methods. Energies 2024, 17, 3954. [Google Scholar] [CrossRef]
- Njeru, R.M.; Sofyan, A.; Halisch, M.; Kóbor, B.; Szanyi, J. Optimizing Micro-CT Resolution for Geothermal Reservoir Characterization in the Pannonian Basin. Energies 2024, 17, 3081. [Google Scholar] [CrossRef]
- Vass, I.; Tóth, T.M.; Szanyi, J.; Kovács, B. Hybrid Numerical Modelling of Fluid and Heat Transport between the Overpressured and Gravitational Flow Systems of the Pannonian Basin. Geothermics 2018, 72, 268–276. [Google Scholar] [CrossRef]
- Sendula, E.; Albrecht, R.; Conceição de Castro, C.; Keresztény-Borbás, E.; Szabó-Krausz, Z.; Kovács, J. Characteristics of Heat-Depleted Thermal Water Re-Injection-Induced Water–Rock Interactions in a Sandstone Reservoir Containing Carbonate and Silicate Minerals (Szentes, Hungary). Minerals 2025, 15, 513. [Google Scholar] [CrossRef]
- Varga, A.; Bozsó, G.; Garaguly, I.; Raucsik, B.; Bencsik, A.; Kóbor, B. Cements, Waters, and Scales: An Integrated Study of the Szeged Geothermal Systems (SE Hungary) to Characterize Natural Environmental Conditions of the Thermal Aquifer. Geofluids 2019, 2019, 4863814. [Google Scholar] [CrossRef]
- Nagymarosy, A.; Båldi-Beke, M. The Szolnok Unit and Its Probable Paleogeographic Position. Tectonophysics 1993, 226, 457–470. [Google Scholar] [CrossRef]
- Sztanó, O.; Sebe, K.; Csillag, G.; Magyar, I. Turbidites as Indicators of Paleotopography, Upper Miocene Lake Pannon, Western Mecsek Mountains (Hungary). Geol. Carpathica 2015, 66, 331–344. [Google Scholar] [CrossRef]
- Fleuchaus, P.; Godschalk, B.; Stober, I.; Blum, P. Worldwide Application of Aquifer Thermal Energy Storage—A Review. Renew. Sustain. Energy Rev. 2018, 94, 861–876. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Yoon, W.S.; Jeon, J.S.; Koo, M.-H.; Keehm, Y. Numerical Modeling of Aquifer Thermal Energy Storage System. Energy 2010, 35, 4955–4965. [Google Scholar] [CrossRef]
- GEG Group. Project Thermo-Hydro-Mechanical Description—Geothermal Energy and Geofluids. Eidgenössische Technische Hochschule (ETH) Zürich, Institute of Geophysics, Zürich, Switzerland. Available online: https://geg.ethz.ch/research (accessed on 25 June 2025).
- Haas, J. (Ed.) Geology of Hungary; Regional Geology Reviews; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-21909-2. Available online: http://www.springer.com/series/8643 (accessed on 25 June 2025).
- Mádl-Szőnyi, J.; Tóth, J. A Hydrogeological Type Section for the Duna-Tisza Interfluve, Hungary. Hydrogeol. J. 2009, 17, 961–980. [Google Scholar] [CrossRef]
- Szanyi, J.; Medgyes, T.; Kóbor, B.; Pál-Molnár, E. Technologies of Injection into Sandstone Reservoirs: Best Practices, Case Studies; GeoLitera; Institute of Geosciences, University of Szeged: Szeged, Hungary, 2015; ISBN 978-963-306-370-5. [Google Scholar]
- Tóth, J.; Almási, I. Interpretation of Observed Fluid Potential Patterns in a Deep Sedimentary Basin under Tectonic Compression: Hungarian Great Plain, Pannonian Basin. Geofluids 2001, 1, 11–36. [Google Scholar] [CrossRef]
- Elabd, M.A.; González-Guzmán, R.; Weber, B.; Solís, C.; Bernard-Romero, R.; Velasco-Tapia, F.; Marín-Camacho, P. Determination of Permeability Data and 3-D Modelling of the Host Rock and Sinters from a Geothermal Field: Los Geysers, Northern Trans-Mexican Volcanic Field. Data Brief 2022, 45, 108637. [Google Scholar] [CrossRef] [PubMed]
- Permeability and Mineralogy of the Újfalu Formation, Hungary, from Production Tests and Experimental Rock Characterization: Implications for Geothermal Heat Projects. Available online: https://www.mdpi.com/1996-1073/14/14/4332 (accessed on 5 July 2025).
- Jello, J.; Khan, M.; Malkewicz, N.; Whittaker, S.; Baser, T. Advanced Geothermal Energy Storage Systems by Repurposing Existing Oil and Gas Wells: A Full-Scale Experimental and Numerical Investigation. Renew. Energy 2022, 199, 852–865. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, Q.; Song, X.; Liu, S.; Yang, Z.; Peng, J.; Wang, L.; Guo, Y. Thermal Performance of the Aquifer Thermal Energy Storage System Considering Vertical Heat Losses through Aquitards. Renew. Energy 2023, 207, 447–460. [Google Scholar] [CrossRef]
- Bridger, D.W.; Allen, D.M. Heat Transport Simulations in a Heterogeneous Aquifer Used for Aquifer Thermal Energy Storage (ATES). Can. Geotech. J. 2010, 47, 96–115. [Google Scholar] [CrossRef]
- Elbalawy, M.A.; Balash, M.; Eid, M.H.; Takács, E.; Velledits, F. Innovative Method Integrates Play Fairway Analysis Supported with GIS and Seismic Modeling for Geothermal Potential Evaluation in a Basement Reservoir. Sci. Rep. 2025, 15, 1325. [Google Scholar] [CrossRef]
- Czauner, B.; Mádl-Szőnyi, J. Regional Hydraulic Behavior of Structural Zones and Sedimentological Heterogeneities in an Overpressured Sedimentary Basin. Mar. Pet. Geol. 2013, 48, 260–274. [Google Scholar] [CrossRef]
- Tari, G.; Bada, G.; Boote, D.R.D.; Krézsek, C.; Koroknai, B.; Kovács, G.; Lemberkovics, V.; Sachsenhofer, R.F.; Tóth, T. The Pannonian Super Basin: A Brief Overview. AAPG Bull. 2023, 107, 1391–1417. [Google Scholar] [CrossRef]
- Réveillère, A.; Hamm, V.; Lesueur, H.; Cordier, E.; Goblet, P. Geothermal Contribution to the Energy Mix of a Heating Network When Using Aquifer Thermal Energy Storage: Modeling and Application to the Paris Basin. Geothermics 2013, 47, 69–79. [Google Scholar] [CrossRef]
- Zeghici, R.M.; Oude Essink, G.H.P.; Hartog, N.; Sommer, W. Integrated Assessment of Variable Density–Viscosity Groundwater Flow for a High Temperature Mono-Well Aquifer Thermal Energy Storage (HT-ATES) System in a Geothermal Reservoir. Geothermics 2015, 55, 58–68. [Google Scholar] [CrossRef]
- Szanyi, J.; Rybach, L.; Abdulhaq, H.A. Geothermal Energy and Its Potential for Critical Metal Extraction—A Review. Energies 2023, 16, 7168. [Google Scholar] [CrossRef]
- Wesselink, M.; Liu, W.; Koornneef, J.; van den Broek, M. Conceptual Market Potential Framework of High Temperature Aquifer Thermal Energy Storage—A Case Study in the Netherlands. Energy 2018, 147, 477–489. [Google Scholar] [CrossRef]
- Holstenkamp, L.; Meisel, M.; Neidig, P.; Opel, O.; Steffahn, J.; Strodel, N.; Lauer, J.J.; Vogel, M.; Degenhart, H.; Michalzik, D.; et al. Interdisciplinary Review of Medium-Deep Aquifer Thermal Energy Storage in North Germany. Energy Procedia 2017, 135, 327–336. [Google Scholar] [CrossRef]
- Egbele, E.; Ezuka, I.; Onyekonwu, M. Net-To-Gross Ratios: Implications in Integrated Reservoir Management Studies. In Proceedings of the Nigeria Annual International Conference and Exhibition, Abuja, Nigeria, 1–3 August 2005. [Google Scholar] [CrossRef]
- Zecchin, M.; Catuneanu, O. High-Resolution Sequence Stratigraphy of Clastic Shelves III: Applications to Reservoir Geology. Mar. Pet. Geol. 2015, 62, 161–175. [Google Scholar] [CrossRef]
- Kassab, M.A.; Abbas, A.E.; Osman, I.A.; Eid, A.A. Reservoir Rock Typing for Optimum Permeability Prediction of Nubia Formation in October Field, Gulf of Suez, Egypt. J. Pet. Explor. Prod. Technol. 2024, 14, 1395–1416. [Google Scholar] [CrossRef]
- Abdallah, S.; Sid Ali, O.; Benmalek, S. Rock Type and Permeability Prediction Using Flow-Zone Indicator with an Application to Berkine Basin (Algerian Sahara). In SEG Technical Program Expanded Abstracts 2016; SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Tulsa, OK, USA, 2016; pp. 3068–3072. [Google Scholar]
- Czauner, B.; Szabó, Z.; Márton, B.; Mádl-Szőnyi, J. Basin-Scale Hydraulic Evaluation of Groundwater Flow Controlled Biogenic Gas Migration and Accumulation in the Central Pannonian Basin. Water 2023, 15, 3272. [Google Scholar] [CrossRef]
- Malvić, T.; Ivšinović, J.; Velić, J.; Sremac, J.; Barudžija, U. Application of the Modified Shepard’s Method (MSM): A Case Study with the Interpolation of Neogene Reservoir Variables in Northern Croatia. Stats 2020, 3, 68–83. [Google Scholar] [CrossRef]
- Sandstone Heterogeneity—3-D Reservoir Characterization. Available online: https://pubs.usgs.gov/dds/dds-033/USGS_3D/ssx_txt/heterog.htm (accessed on 4 July 2025).
- Cheng, X.; Zhao, B.; Gao, C.; Gao, Y. Reservoir Permeability Calculation under Flow Unit Control. Energies 2022, 15, 7637. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, H.; Zhang, L.; Cheng, M.; Shi, H.; Guo, C.; Chen, P.; Yu, W. Depositional and Diagenetic Controls on Reservoir Quality of Callovian-Oxfordian Stage on the Right Bank of Amu Darya. Energies 2022, 15, 6923. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Fujii, H.; Fujimoto, F. Permeability Prediction by Hydraulic Flow Units—Theory and Applications. SPE Form. Eval. 1996, 11, 263–271. [Google Scholar] [CrossRef]
- Corbett, P.; Ellabad, Y.; Mohammed, K.; Pososyaev, A. Global Hydraulic Elements—Elementary Petrophysics for Reduced Reservoir Modelling; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2 June 2003; p. cp-6. [Google Scholar]
- Svirsky, D.; Ryazanov, A.; Pankov, M.; Corbett, P.W.M.; Posysoev, A. Hydraulic Flow Units Resolve Reservoir Description Challenges in a Siberian Oil Field. In Proceedings of the SPE Asia Pacific Conference on Integrated Modelling for Asset Management, Kuala Lumpur, Malaysia, 29–30 March 2004. Paper SPE-87056-MS. [Google Scholar] [CrossRef]
- Baisad, K.; Chutsagulprom, N.; Moonchai, S. A Non-Linear Trend Function for Kriging with External Drift Using Least Squares Support Vector Regression. Mathematics 2023, 11, 4799. [Google Scholar] [CrossRef]
- Otchere, D.A.; Hodgetts, D.; Ganat, T.A.O.; Ullah, N.; Rashid, A. Static Reservoir Modeling Comparing Inverse Distance Weighting to Kriging Interpolation Algorithm in Volumetric Estimation. Case Study: Gullfaks Field. In Proceedings of the Offshore Technology Conference, Virtual and Houston, TX, USA, 16–19 August 2021. Paper OTC-30919-MS. [Google Scholar] [CrossRef]
- Al-Dousari, D.M.; Almudhhi, S.; Garrouch, A. Predicting the Flow Zone Indicator of Carbonate Reservoirs Using NMR Echo Transforms, and Routine Open-Hole Log Measurements. J. Eng. Res. 2022, 10, 330–346. [Google Scholar] [CrossRef]
- Fadel, M.; Reinecker, J.; Bruss, D.; Moeck, I. Causes of a Premature Thermal Breakthrough of a Hydrothermal Project in Germany. Geothermics 2022, 105, 102523. [Google Scholar] [CrossRef]
- Iglesias, F.; Massana, J.; Burgas, L.; Planellas, N.; Colomer, J. Methodological Advances in Temperature Dynamics Modeling for Energy-Efficient Indoor Air Management Systems. Appl. Sci. 2025, 15, 4291. [Google Scholar] [CrossRef]
- Ahmadi, M. Interpretable Machine Learning for High-Accuracy Reservoir Temperature Prediction in Geothermal Energy Systems. Energies 2025, 18, 3366. [Google Scholar] [CrossRef]
- Shen, J.; Chen, L.; Wu, Y.; Jing, N. Approach to Accelerating Dissolved Vector Buffer Generation in Distributed In-Memory Cluster Architecture. ISPRS Int. J. Geo-Inf. 2018, 7, 26. [Google Scholar] [CrossRef]
- Nieminen, P. Application of Standardized Regression Coefficient in Meta-Analysis. BioMedInformatics 2022, 2, 434–458. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, R.; Jia, A.; Feng, N. Optimization and Application of XGBoost Logging Prediction Model for Porosity and Permeability Based on K-Means Method. Appl. Sci. 2024, 14, 3956. [Google Scholar] [CrossRef]
- Ge, Y.; Thomasson, J.A.; Sui, R.; Wooten, J. Regression-Kriging for Characterizing Soils with Remotesensing Data. Front. Earth Sci. 2011, 5, 239–244. [Google Scholar] [CrossRef]
- Badem, A.C.; Yılmaz, R.; Cesur, M.R.; Cesur, E. Advanced Predictive Modeling for Dam Occupancy Using Historical and Meteorological Data. Sustainability 2024, 16, 7696. [Google Scholar] [CrossRef]
- Das, A. A Data-Driven Approach Utilizing Machine Learning (ML) and Geographical Information System (GIS)-Based Time Series Analysis with Data Augmentation for Water Quality Assessment in Mahanadi River Basin, Odisha, India. Discov. Sustain. 2025, 6, 555. [Google Scholar] [CrossRef]
- Zhao, N. An Efficient Downscaling Scheme for High-Resolution Precipitation Estimates over a High Mountainous Watershed. Remote Sens. 2021, 13, 234. [Google Scholar] [CrossRef]
- Mellal, I.; Latrach, A.; Rasouli, V.; Bakelli, O.; Dehdouh, A.; Ouadi, H. Water Saturation Prediction in the Middle Bakken Formation Using Machine Learning. Eng 2023, 4, 1951–1964. [Google Scholar] [CrossRef]
- Hosamo, H.; Mazzetto, S. Performance Evaluation of Machine Learning Models for Predicting Energy Consumption and Occupant Dissatisfaction in Buildings. Buildings 2025, 15, 39. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Y.; Ye, J.; Chen, A.; Wen, M.; Wang, D.; Du, B.; Li, S.; Cui, Q. Machine Learning-Based Prediction of Laser Ablation Impulse from Plasma Spectra. Phys. Plasmas 2025, 32, 063301. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Saliba, Y. Sensitivity Analysis of the Inverse Distance Weighting and Bicubic Spline Smoothing Models for MERRA-2 Reanalysis PM2.5 Series in the Persian Gulf Region. Atmosphere 2024, 15, 748. [Google Scholar] [CrossRef]
- Abraham-A, R.M.; Taioli, F.; Nzekwu, A.I. Physical Properties of Sandstone Reservoirs: Implication for Fluid Mobility. Energy Geosci. 2022, 3, 349–359. [Google Scholar] [CrossRef]
- Djebbas, F.; Ameur-Zaimeche, O.; Kechiched, R.; Heddam, S.; Wood, D.A.; Movahed, Z. Integrating Hydraulic Flow Unit Concept and Adaptive Neuro-Fuzzy Inference System to Accurately Estimate Permeability in Heterogeneous Reservoirs: Case Study Sif Fatima Oilfield, Southern Algeria. J. Afr. Earth Sci. 2023, 206, 105027. [Google Scholar] [CrossRef]
- Mohammadian, E.; Kheirollahi, M.; Liu, B.; Ostadhassan, M.; Sabet, M. A Case Study of Petrophysical Rock Typing and Permeability Prediction Using Machine Learning in a Heterogenous Carbonate Reservoir in Iran. Sci. Rep. 2022, 12, 4505. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour, M.; Roshan, H.; Arashpour, M.; Masoumi, H. Machine Learning Assisted Kriging to Capture Spatial Variability in Petrophysical Property Modelling. Mar. Pet. Geol. 2024, 167, 106967. [Google Scholar] [CrossRef]
- Al-Dhafeeri, A.M.; Nasr-El-Din, H.A. Characteristics of High-Permeability Zones Using Core Analysis, and Production Logging Data. J. Pet. Sci. Eng. 2007, 55, 18–36. [Google Scholar] [CrossRef]
- Koroncz, P.; Vizhányó, Z.; Farkas, M.P.; Kuncz, M.; Ács, P.; Kocsis, G.; Mucsi, P.; Fedorné Szász, A.; Fedor, F.; Kovács, J. Experimental Rock Characterisation of Upper Pannonian Sandstones from Szentes Geothermal Field, Hungary. Energies 2022, 15, 9136. [Google Scholar] [CrossRef]
- Nabawy, B.S.; Basal, A.M.K.; Sarhan, M.A.; Safa, M.G. Reservoir Zonation, Rock Typing and Compartmentalization of the Tortonian-Serravallian Sequence, Temsah Gas Field, Offshore Nile Delta, Egypt. Mar. Pet. Geol. 2018, 92, 609–631. [Google Scholar] [CrossRef]
- Fu, L.; Wang, X.; Zhong, X.; Cao, X. Technology and Applications for the Interpretation and Modeling of Advanced Sand Body Architectures. Energies 2025, 18, 504. [Google Scholar] [CrossRef]
- Steventon, M.J.; Jackson, C.A.-L.; Johnson, H.D.; Hodgson, D.M.; Kelly, S.; Omma, J.; Gopon, C.; Stevenson, C.; Fitch, P. Evolution of a Sand-Rich Submarine Channel–Lobe System, and the Impact of Mass-Transport and Transitional-Flow Deposits on Reservoir Heterogeneity: Magnus Field, Northern North Sea. Pet. Geosci. 2021, 27, petgeo2020-095. [Google Scholar] [CrossRef]
- Shirinkin, D.; Kochnev, A.; Krivoshchekov, S.; Putilov, I.; Botalov, A.; Kozyrev, N.; Ozhgibesov, E. High Permeability Streak Identification and Modelling Approach for Carbonate Reef Reservoir. Energies 2024, 17, 236. [Google Scholar] [CrossRef]
- Singh, M.; Mahmoodpour, S.; Schmidt-Hattenberger, C.; Sass, I.; Drews, M. Influence of Reservoir Heterogeneity on Simultaneous Geothermal Energy Extraction and CO2 Storage. Sustainability 2024, 16, 387. [Google Scholar] [CrossRef]
- Fathy, M.; Reda, M.; Abdel-Fattah, M.I.; Raef, A.; Al-Hashim, M.H. Seismic and Petrophysical Characterization of the Sequoia Pliocene Channel Reservoirs: Insights into Hydrocarbon Potential in the West Delta Deep Marine, Egypt. Pet. Geosci. 2025, 31, petgeo2024-070. [Google Scholar] [CrossRef]
- El-Gendy, N.H.; Mabrouk, W.M.; Waziry, M.A.; Dodd, T.J.; Abdalla, F.A.; Alexakis, D.E.; Barakat, M.K. An Integrated Approach for Saturation Modeling Using Hydraulic Flow Units: Examples from the Upper Messinian Reservoir. Water 2023, 15, 4204. [Google Scholar] [CrossRef]
- Mahbaz, S.B.; Yaghoubi, A.; Dehghani-Sanij, A.; Sarvaramini, E.; Leonenko, Y.; Dusseault, M.B. Well-Doublets: A First-Order Assessment of Geothermal SedHeat Systems. Appl. Sci. 2021, 11, 697. [Google Scholar] [CrossRef]
- Wachowicz-Pyzik, A.; Sowiżdżał, A.; Pająk, L.; Ziółkowski, P.; Badur, J. Assessment of the Effective Variants Leading to Higher Efficiency for the Geothermal Doublet, Using Numerical Analysis–Case Study from Poland (Szczecin Trough). Energies 2020, 13, 2174. [Google Scholar] [CrossRef]
- Györe, D.; Király, C.; Cseresznyés, D.; Szabó, Z.; Czuppon, G.; Szamosfalvi, Á.; Falus, G.; Szabó, C.; Stuart, F.M. CO2 Mineralization in a Saline Aquifer-Like Environment, Pannonian Basin, Hungary. In Proceedings of the Goldschmidt2019 Conference, Barcelona, Spain, 18–23 August 2019; Available online: https://www.researchgate.net/publication/335620633 (accessed on 25 June 2025).
- Farkas, M.P.; Magyar, G.; Hofmann, H.; Zimmermann, G.; Fedor, F. Comparison of Stimulation Techniques in a Geothermal Injection Well in a Sedimentary Aquifer in Szentes, Hungary. Geotherm. Energy 2025, 13, 20. [Google Scholar] [CrossRef]
- Otmane, M.; Imtiaz, S.; Jaluta, A.M.; Aborig, A. Boosting Reservoir Prediction Accuracy: A Hybrid Methodology Combining Traditional Reservoir Simulation and Modern Machine Learning Approaches. Energies 2025, 18, 657. [Google Scholar] [CrossRef]
- Geostatistical Modeling of Porosity and Evaluating the Local and Global Distribution|Journal of Petroleum Exploration and Production Technology. Available online: https://link.springer.com/article/10.1007/s13202-021-01308-w (accessed on 20 July 2025).
- Zarei, M.; Bozorg-Haddad, O.; Baghban, S.; Delpasand, M.; Goharian, E.; Loáiciga, H.A. Machine-Learning Algorithms for Forecast-Informed Reservoir Operation (FIRO) to Reduce Flood Damages. Sci. Rep. 2021, 11, 24295. [Google Scholar] [CrossRef] [PubMed]
- Brcković, A.; Orešković, J.; Cvetković, M.; Marić-Đureković, Ž. Enhancing the Understanding of Subsurface Relations: Machine Learning Approaches for Well Data Analysis in the Drava Basin, Pannonian Super Basin. Appl. Sci. 2024, 14, 6039. [Google Scholar] [CrossRef]
- Liu, H.; Wu, Y.; Cao, Y.; Lv, W.; Han, H.; Li, Z.; Chang, J. Well Logging Based Lithology Identification Model Establishment Under Data Drift: A Transfer Learning Method. Sensors 2020, 20, 3643. [Google Scholar] [CrossRef]
- Clayton, J.L.; Spencer, C.W.; Koncz, I. Tótkomlós–Szolnok Petroleum System of Southeastern Hungary. In The Petroleum System—From Source to Trap; Magoon, L.B., Dow, W.G., Eds.; American Association of Petroleum Geologists Memoir 60: Tulsa, OK, USA, 1994; pp. 587–598. ISBN 978-1-62981-092-8. [Google Scholar]
- Abdulhaq, H.A. XGBoost Machine Learning Model for 3D FZI Prediction in Szolnok Formation [Dataset]; Zenodo: 2025. Available online: https://zenodo.org/records/16217944 (accessed on 25 June 2025).
- Abdulhaq, H.A. 3D FZI Prediction Pipeline and Interactive Streamlit App for Well Log Analysis [Model]; Zenodo: 2025. Available online: https://zenodo.org/records/15814254 (accessed on 25 June 2025).
- Digitalization of Legacy Datasets and Machine Learning Regression Yields Insights for Reservoir Property Prediction and Submarine-Fan Evolution: A Subsurface Example From the Lewis Shale, Wyoming|Published in The Sedimentary Record. Available online: https://thesedimentaryrecord.scholasticahq.com/article/36638 (accessed on 5 July 2025).
- Mahjour, S.K.; Saleh, A.; Mahjour, S.S. Dimension-Adaptive Machine Learning for Efficient Uncertainty Quantification in Geological Carbon Storage Models. Processes 2025, 13, 1834. [Google Scholar] [CrossRef]
IDW Neighbors (idw_k_neigh) | RBF Neighbors (rbf_neigh) | Learning Rate | Z-Threshold | CV R2 | Test R2 | Test MAE | Test RMSE |
---|---|---|---|---|---|---|---|
7 | 40 | 0.05 | 3 | 0.961 | 0.971 | 0.093 | 0.178 |
9 | 40 | 0.05 | 3 | 0.961 | 0.971 | 0.094 | 0.18 |
9 | 60 | 0.05 | 3 | 0.961 | 0.971 | 0.094 | 0.18 |
5 | 60 | 0.05 | 3 | 0.961 | 0.972 | 0.093 | 0.177 |
5 | 20 | 0.05 | 4 | 0.955 | 0.962 | 0.098 | 0.211 |
3 | 40 | 0.05 | 4 | 0.954 | 0.963 | 0.098 | 0.209 |
5 | 40 | 0.05 | 3.5 | 0.958 | 0.965 | 0.098 | 0.2 |
3 | 60 | 0.05 | 3.5 | 0.957 | 0.965 | 0.098 | 0.2 |
9 | 20 | 0.05 | 3.5 | 0.958 | 0.964 | 0.099 | 0.202 |
9 | 40 | 0.05 | 4 | 0.954 | 0.962 | 0.099 | 0.212 |
Method | RMSE | Computational Time |
---|---|---|
XGBoost + RBF (this study) | 0.24 | ~15 min |
Sequential Gaussian Simulation | ~0.35–0.45 * | ~8–12 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulhaq, H.A.; Geiger, J.; Vass, I.; Tóth, T.M.; Bozsó, G.; Szanyi, J. A Data-Driven ML Model for Sand Channel Prediction from Well Logs for UTES Site Optimization and Thermal Breakthrough Prevention: Hungary Case Study. Energies 2025, 18, 4230. https://doi.org/10.3390/en18164230
Abdulhaq HA, Geiger J, Vass I, Tóth TM, Bozsó G, Szanyi J. A Data-Driven ML Model for Sand Channel Prediction from Well Logs for UTES Site Optimization and Thermal Breakthrough Prevention: Hungary Case Study. Energies. 2025; 18(16):4230. https://doi.org/10.3390/en18164230
Chicago/Turabian StyleAbdulhaq, Hawkar Ali, János Geiger, István Vass, Tivadar M. Tóth, Gábor Bozsó, and János Szanyi. 2025. "A Data-Driven ML Model for Sand Channel Prediction from Well Logs for UTES Site Optimization and Thermal Breakthrough Prevention: Hungary Case Study" Energies 18, no. 16: 4230. https://doi.org/10.3390/en18164230
APA StyleAbdulhaq, H. A., Geiger, J., Vass, I., Tóth, T. M., Bozsó, G., & Szanyi, J. (2025). A Data-Driven ML Model for Sand Channel Prediction from Well Logs for UTES Site Optimization and Thermal Breakthrough Prevention: Hungary Case Study. Energies, 18(16), 4230. https://doi.org/10.3390/en18164230