Light-Driven Enhancement of Oxygen Evolution for Clean Energy Conversion: Co3O4-TiO2/CNTs P-N Heterojunction Catalysts Enabling Efficient Carrier Separation and Reduced Overpotential
Abstract
1. Introduction
2. Methods
2.1. Chemical and Materials
2.2. Material Preparation
2.2.1. Acid Treatment of CNTs
2.2.2. Preparation of TiO2/CNTs
2.2.3. Preparation of Co3O4-TiO2/CNTs
2.3. Electrochemical Property Testing of Materials
2.3.1. Configuration of Inks
2.3.2. Processing of Nickel Foam
2.3.3. Preparation of the Working Electrode
2.3.4. Testing Instruments
2.3.5. Linear Sweep Voltammetry (LSV) Test
2.4. Material Characterization and Analysis Methods
3. Discussion and Results
3.1. Physical Properties Analysis of Co3O4-TiO2/CNTs
3.2. The Electrochemical Performance Analysis of Co3O4-TiO2/CNTs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Liu, Y.; Gao, S.; Wang, H.; Bai, R.; Zhao, Y.; Zhou, Y.; Hu, G.; Zhao, X. Atomically dispersed iron & iron clusters synergistically accelerate electrocatalytic ammonia synthesis. Chem. Eng. J. 2025, 504, 158785. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Cao, X.; Chen, M.; Liu, Y.; Zhou, Y.; Huang, M.; Xia, L.; Wang, Y.; Li, T.; et al. Unveiling Cutting-Edge Developments in Electrocatalytic Nitrate-to-Ammonia Conversion. Adv. Mater. 2024, 36, 2312746. [Google Scholar] [CrossRef]
- Tabari, T.; Łabuz, P.; Singh, D.; Maximenko, A.; Gryboś, J.; Mathur, S.; Sojka, Z.; Macyk, W. 3DOM Fe/Co-containing perovskites as bifunctional ORR/OER electrocatalysts for a photo-rechargeable zinc battery. Appl. Catal. B Environ. Energy 2024, 358, 124425. [Google Scholar] [CrossRef]
- Xu, T.; Zeng, T.; Zhang, N.; He, Z.; Liu, Y.; He, H.; Liang, Z.; Zhou, Z.; He, S. Surface-engineered CeO bond architectures maximizing atomic efficiency for superior oxygen reduction in magnesium-air battery systems. J. Colloid Interface Sci. 2025, 700, 138355. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, J.; Wei, Z.; He, Q.; Zhao, Y. Recent advances and applications of machine learning in electrocatalysis. J. Mater. Inform. 2023, 3, 18. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, L.; Gong, J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645. [Google Scholar] [CrossRef]
- Yue, S.; Li, D.; Zhang, A.; Yan, Y.; Yan, H.; Feng, Z.; Wang, W. Rational design of single transition-metal atoms anchored on a PtSe2 monolayer as bifunctional OER/ORR electrocatalysts: A defect chemistry and machine learning study. J. Mater. Chem. A 2024, 12, 5451–5463. [Google Scholar] [CrossRef]
- Fan, X.; Liang, J.; Zhang, L.; Zhao, D.; Yue, L.; Luo, Y.; Liu, Q.; Xie, L.; Li, N.; Tang, B.; et al. Enhanced electrocatalytic nitrate reduction to ammonia using plasma-induced oxygen vacancies in CoTiO3-x nanofiber. Carbon Neutralization 2022, 1, 6–13. [Google Scholar] [CrossRef]
- Han, Y.; Wang, J.; Liu, Y.; Li, T.; Wang, T.; Li, X.; Ye, X.; Li, G.; Li, J.; Hu, W.; et al. Stability challenges and opportunities of NiFe-based electrocatalysts for oxygen evolution reaction in alkaline media. Carbon Neutralization 2024, 3, 172–198. [Google Scholar] [CrossRef]
- Liu, S.; Zeng, T.; He, Z.; Zuo, M.; Chen, S.; Liu, Y.; Fan, Z.; He, H.; Kong, Q.; Zhou, Z.; et al. Synergistic effect of Ru single atoms and MnO2 to boost oxygen reduction/evolution activity via strong electronic interaction. Chem. Eng. J. 2024, 499, 156051. [Google Scholar] [CrossRef]
- Zheng, S.; Ouyang, Z.; Liu, M.; Bi, S.; Liu, G.; Li, X.; Xu, Q.; Zeng, G. Construction of dangling and staggered stacking aldehyde in covalent organic frameworks for 2e− oxygen reduction reaction. Carbon Neutralization 2024, 3, 415–422. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, S.; Liu, Q.; Wang, W.; Hao, N.; Wang, Y.; Li, Z.; Luo, D. Recent advances in novel materials for photocatalytic carbon dioxide reduction. Carbon Neutralization 2024, 3, 142–168. [Google Scholar] [CrossRef]
- Hong, W.T.; Risch, M.; Stoerzinger, K.A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 2015, 8, 1404–1427. [Google Scholar] [CrossRef]
- Feng, J.; Li, J.; Zhang, H.; Liu, W.; Lin, Z.; Wang, T.; Sun, B.; Zhao, X.; Wang, F.; Song, J. Accelerating redox kinetics by ZIF-67 derived amorphous cobalt phosphide electrocatalyst for high-performance lithium-sulfur batteries. Energy Mater. 2023, 3, 300001. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Chen, Y.; Xu, R.; Song, C.; Yuan, T.; Tang, W.; Gao, X.; Wang, N.; Cui, L. Research advances in earth-abundant-element-based electrocatalysts for oxygen evolution reaction and oxygen reduction reaction. Energy Mater. 2023, 3, 300031. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, P.; Tao, W.; Pang, X.; Su, Y.; Peng, P.; Zheng, L.; Li, R.; Wang, S.; Huang, J.; et al. NiFe Prussian blue analog cocatalyzed TiO2/In2S3 type-II heterojunction for solar water splitting. Energy Mater. 2024, 4, 400028. [Google Scholar] [CrossRef]
- Song, J.; Wei, C.; Huang, Z.-F.; Liu, C.; Zeng, L.; Wang, X.; Xu, Z.J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Z.; Tan, X.; Zeng, G.; Zhang, C. MXene-induced electronic structure modulation of Fe-Al-LDH to boost the Fenton-like Reaction: Singlet oxygen evolution and electron-transfer mechanisms. J. Mater. Sci. Technol. 2025, 204, 224–237. [Google Scholar] [CrossRef]
- Raza, A.; Hassan, J.Z.; Qumar, U.; Zaheer, A.; Babar, Z.U.D.; Iannotti, V.; Cassinese, A. Strategies for robust electrocatalytic activity of 2D materials: ORR, OER, HER, and CO2RR. Mater. Today Adv. 2024, 22, 100488. [Google Scholar] [CrossRef]
- Xie, J.; Chen, Y.; He, Z.; Liu, S.; Liu, Y.; Li, B.; Xu, T.; Ning, X.; Chen, S.; Zeng, T.; et al. Single-Atom Ni Anchored on α-MnO2 Nanorods as an Electrocatalyst for the Oxygen Evolution and Oxygen Reduction Reactions. ACS Appl. Nano Mater. 2024, 7, 18027–18035. [Google Scholar] [CrossRef]
- Wei, K.; Wang, X.; Ge, J. PGM-free carbon-based catalysts for the electrocatalytic oxygen reduction reaction: Active sites and activity enhancement. Energy Mater. 2023, 3, 300051. [Google Scholar] [CrossRef]
- Zeng, T.; Gao, P.; Zhou, Z.; Fan, C.; Liu, Z.; Zhang, F.; Liu, J.; Liu, J. Superior electronic/ionic kinetics of LiMn0.8Fe0.2PO4@C nanoparticles cathode by doping strategy toward enhanced Li-ion storage. Energy Storage Mater. 2024, 65, 103125. [Google Scholar] [CrossRef]
- Zhou, Z.; Liang, Z.; Shao, G.; Liu, Q.; Chen, D.; Yang, W. Enhanced Capacitive Performance of Mesoporous Vanadium Nitride Nanobelts. J. Electrochem. Soc. 2021, 168, 070529. [Google Scholar] [CrossRef]
- Wang, H.-F.; Xu, Q. Materials Design for Rechargeable Metal-Air Batteries. Matter 2019, 1, 565–595. [Google Scholar] [CrossRef]
- Xu, H.G.; Zhu, C.; Lin, H.Y.; Liu, J.K.; Wu, Y.X.; Fu, H.Q.; Zhang, X.Y.; Mao, F.; Yuan, H.Y.; Sun, C.; et al. Oxygen Plasma Triggered Co−O−Fe Motif in Prussian Blue Analogue for Efficient and Robust Alkaline Water Oxidation. Angew. Chem. Int. Ed. 2025, 64, e202415423. [Google Scholar] [CrossRef]
- Farhoosh, S.; Liu, S.; Beyer, P.; Mebs, S.; Haumann, M.; Dau, H. Water Electrooxidation Kinetics Clarified by Time-Resolved X-Ray Absorption and Electrochemical Impedance Spectroscopy for a Bulk-Active Cobalt Material. Adv. Energy Mater. 2025, 15, 2403818. [Google Scholar] [CrossRef]
- Huang, K.; Liang, G.; Sun, S.; Hu, H.; Peng, X.; Shen, R.; Li, X. Interface-induced charge transfer pathway switching of a Cu2O-TiO2 photocatalyst from p-n to S-scheme heterojunction for effective photocatalytic H2 evolution. J. Mater. Sci. Technol. 2024, 193, 98–106. [Google Scholar] [CrossRef]
- Fernandes, S.M.; Barrocas, B.T.; Nardeli, J.V.; Montemor, M.F.; Maçoas, E.; Oliveira, M.C.; de Carvalho, C.C.C.R.; Lauria, A.; Niederberger, M.; Marques, A.C. Maximizing photocatalytic efficiency with minimal amount of gold: Solar-driven TiO2 photocatalysis supported by MICROSCAFS® for facile catalyst recovery. J. Environ. Chem. Eng. 2024, 12, 112043. [Google Scholar] [CrossRef]
- Zhang, K.; Guo, C.; Wu, Y.; Yao, R.; Zhao, Q.; Li, J.; Liu, G. Amorphous iridium oxide coating on TiO2 for efficient electrocatalytic oxygen evolution reaction. Int. J. Hydrogen Energy 2024, 69, 1105–1112. [Google Scholar] [CrossRef]
- Ridenour, J.A.; Baturina, O.; Hudak, B.M.; Chaloux, B.L.; Maza, W.A.; Finn, M.T.; Le Magueres, P.; Epshteyn, A. Direct Pyrolytic Transformation of a Cocrystal of Pt(acac)2 with Hexaaminotriphenylene into a Novel Composite ORR Electrocatalyst. ACS Appl. Energy Mater. 2025, 8, 6353–6363. [Google Scholar] [CrossRef]
- Oakton, E.; Lebedev, D.; Povia, M.; Abbott, D.F.; Fabbri, E.; Fedorov, A.; Nachtegaal, M.; Copéret, C.; Schmidt, T.J. IrO2-TiO2: A High-Surface-Area, Active, and Stable Electrocatalyst for the Oxygen Evolution Reaction. ACS Catal. 2017, 7, 2346–2352. [Google Scholar] [CrossRef]
- Liu, X.; Long, Q.; Jiang, C.; Zhan, B.; Li, C.; Liu, S.; Zhao, Q.; Huang, W.; Dong, X. Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors. Nanoscale 2013, 5, 6525–6529. [Google Scholar] [CrossRef]
- Gu, L.; Wang, J.; Cheng, H.; Du, Y.; Han, X. Synthesis of nano-sized anatase TiO2 with reactive {001} facets using lamellar protonated titanate as precursor. Chem. Commun. 2012, 48, 6978–6980. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Boyd, I.W.; O’Sullivan, B.J.; Hurley, P.K.; Kelly, P.V.; Sénateur, J.P. Nanocrystalline TiO2 films studied by optical, XRD and FTIR spectroscopy. J. Non-Cryst. Solids 2002, 303, 134–138. [Google Scholar] [CrossRef]
- Makhlouf, S.A.; Bakr, Z.H.; Aly, K.I.; Moustafa, M.S. Structural, electrical and optical properties of Co3O4 nanoparticles. Superlattices Microstruct. 2013, 64, 107–117. [Google Scholar] [CrossRef]
- Bekermann, D.; Gasparotto, A.; Barreca, D.; Maccato, C.; Comini, E.; Sada, C.; Sberveglieri, G.; Devi, A.; Fischer, R.A. Co3O4/ZnO Nanocomposites: From Plasma Synthesis to Gas Sensing Applications. ACS Appl. Mater. Interfaces 2012, 4, 928–934. [Google Scholar] [CrossRef]
- Pan, S.; Liu, X.; Guo, M.; Yu, S.f.; Huang, H.; Fan, H.; Li, G. Engineering the intermediate band states in amorphous Ti3+-doped TiO2 for hybrid dye-sensitized solar cell applications. J. Mater. Chem. A 2015, 3, 11437–11443. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, S.; Bi, F.; Chen, J.; Wang, Y.; Cui, L.; Xu, J.; Zhang, X. Highly efficient photothermal catalysis of toluene over Co3O4/TiO2 p-n heterojunction: The crucial roles of interface defects and band structure. Appl. Catal. B Environ. 2022, 315, 121550. [Google Scholar] [CrossRef]
- Tang, R.; Zhou, S.; Yuan, Z.; Yin, L. Metal–Organic Framework Derived Co3O4/TiO2/Si Heterostructured Nanorod Array Photoanodes for Efficient Photoelectrochemical Water Oxidation. Adv. Funct. Mater. 2017, 27, 1701102. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, W.; Li, Y.; Wang, P.; Zhang, Y. Synthesis of Co3O4@TiO2 catalysts for oxygen evolution and oxygen reduction reactions. Microporous Mesoporous Mater. 2022, 335, 111844. [Google Scholar] [CrossRef]
- Ishimaki, K.; Uchiyama, T.; Okazaki, M.; Lu, D.; Uchimoto, Y.; Maeda, K. Influence of TiO2 Support on Activity of Co3O4/TiO2 Photocatalysts for Visible-Light Water Oxidation. Bull. Chem. Soc. Jpn. 2018, 91, 486–491. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, X.; Jia, B.; Zhang, C.; Wu, G.; Yuan, Y.; Ma, Y.; Li, Y.; Yu, J.; Guan, X.; et al. TM-N4 doped in 4,6,8-biphenylene as an efficient trifunctional electrocatalyst for oxygen reduction reaction, oxygen evolution reaction and hydrogen evolution reaction. Appl. Surf. Sci. 2025, 687, 162279. [Google Scholar] [CrossRef]
- Ling, C.; Shi, L.; Ouyang, Y.; Zeng, X.C.; Wang, J. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting. Nano Lett. 2017, 17, 5133–5139. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, J.; Zhang, Z.; Ma, X.; Zhao, M. Nitrogen-Doped Triphenylene-Graphdiyne as Metal-Free Multifunctional (Photo)Electrocatalysts for Overall Water Splitting. ACS Appl. Nano Mater. 2023, 6, 13037–13047. [Google Scholar] [CrossRef]
- Xie, L.; Zhou, W.; Qu, Z.; Huang, Y.; Li, L.; Yang, C.; Li, J.; Meng, X.; Sun, F.; Gao, J.; et al. Edge-doped substituents as an emerging atomic-level strategy for enhancing M–N4–C single-atom catalysts in electrocatalysis of the ORR, OER, and HER. Nanoscale Horiz. 2025, 10, 322–335. [Google Scholar] [CrossRef]
- Zhan, Y.; Du, G.; Yang, S.; Xu, C.; Lu, M.; Liu, Z.; Lee, J.Y. Development of Cobalt Hydroxide as a Bifunctional Catalyst for Oxygen Electrocatalysis in Alkaline Solution. ACS Appl. Mater. Interfaces 2015, 7, 12930–12936. [Google Scholar] [CrossRef]
- Rodriguez, M.; Stolzemburg, M.C.P.; Bruziquesi, C.G.O.; Silva, A.C.; Abreu, C.G.; Siqueira, K.P.F.; Oliveira, L.C.A.; S. Pires, M.; Lacerda, L.C.T.; Ramalho, T.C.; et al. Electrocatalytic performance of different cobalt molybdate structures for water oxidation in alkaline media. CrystEngComm 2018, 20, 5592–5601. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zeng, T.; Yu, Y.; Liu, Y.; He, H.; Li, P.; Zhou, Z. Light-Driven Enhancement of Oxygen Evolution for Clean Energy Conversion: Co3O4-TiO2/CNTs P-N Heterojunction Catalysts Enabling Efficient Carrier Separation and Reduced Overpotential. Energies 2025, 18, 4185. https://doi.org/10.3390/en18154185
Zhang W, Zeng T, Yu Y, Liu Y, He H, Li P, Zhou Z. Light-Driven Enhancement of Oxygen Evolution for Clean Energy Conversion: Co3O4-TiO2/CNTs P-N Heterojunction Catalysts Enabling Efficient Carrier Separation and Reduced Overpotential. Energies. 2025; 18(15):4185. https://doi.org/10.3390/en18154185
Chicago/Turabian StyleZhang, Weicheng, Taotao Zeng, Yi Yu, Yuling Liu, Hao He, Ping Li, and Zeyan Zhou. 2025. "Light-Driven Enhancement of Oxygen Evolution for Clean Energy Conversion: Co3O4-TiO2/CNTs P-N Heterojunction Catalysts Enabling Efficient Carrier Separation and Reduced Overpotential" Energies 18, no. 15: 4185. https://doi.org/10.3390/en18154185
APA StyleZhang, W., Zeng, T., Yu, Y., Liu, Y., He, H., Li, P., & Zhou, Z. (2025). Light-Driven Enhancement of Oxygen Evolution for Clean Energy Conversion: Co3O4-TiO2/CNTs P-N Heterojunction Catalysts Enabling Efficient Carrier Separation and Reduced Overpotential. Energies, 18(15), 4185. https://doi.org/10.3390/en18154185