Rapid Synthesis of Honeycomb-Structured FeP2@NHC for High-Rate and Durable Lithium Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of FeP2@NHC Nanocomposite
2.2. Synthesis of FeP-FeP2@C and Pure FeP
2.3. Materials Characterization
2.4. Electrochemical Measurements
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meng, Z.; Xu, Z.; Li, H.; Xiong, H.; Liu, X.; Qin, C.; Wang, Z. Silicon/biomass carbon composite as a low-cost anode for lithium-ion batteries. Energies 2025, 18, 972. [Google Scholar] [CrossRef]
- Yue, L.; Liang, J.; Wu, Z.; Zhong, B.; Luo, Y.; Liu, Q.; Li, T.; Kong, Q.; Liu, Y.; Asiri, A.M.; et al. Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. J. Mater. Chem. A 2021, 9, 11879–11907. [Google Scholar] [CrossRef]
- Yang, H.; Liu, L.; Ma, J.; Zhang, J.; Zhang, Q. Hydrothermal synthesis of hierarchical cage-like Co9S8 microspheres composed of nanosheets as high-capacity anode materials. Energies 2024, 17, 5553. [Google Scholar] [CrossRef]
- Lan, X.; Li, Z.; Zeng, Y.; Han, C.; Peng, J.; Cheng, H.-M. Phosphorus-based anodes for fast-charging alkali metal ion batteries. Ecomat 2024, 6, 12452. [Google Scholar] [CrossRef]
- Diao, G.; Balogun, M.-S.; Tong, S.-Y.; Guo, X.; Huang, X.; Mao, Y.; Tong, Y. Low-valence bicomponent (FeO)x(MnO)1−x nanocrystals embedded in amorphous carbon as high-performance anode materials for lithium storage. J. Mater. Chem. A 2018, 6, 15274–15283. [Google Scholar] [CrossRef]
- Chen, S.; Wu, F.; Wang, H.; Gao, S.; Chen, J.; Chen, Z.; Fu, J. N-doped graphitized carbon-coated Fe2O3 nanoparticles in highly graphitized carbon hollow fibers for advanced lithium-ion batteries anodes. Electrochim. Acta 2023, 467, 143032. [Google Scholar] [CrossRef]
- Wang, S.; Lin, X.; Chai, W.; Yu, W.; Zhang, B.; Li, L.; Wang, H. Iron sulfide quantum dots decorated on porous N-doped carbon for lithium/sodium-ion storage. ACS Appl. Nano Mater. 2024, 7, 26970–26977. [Google Scholar] [CrossRef]
- Sun, C.; Fang, S.; Zhao, K.; Zhang, H.; Qi, L.; Qin, Y.; Bao, H. An innovative double-shell layer nitrogen and sulfur co-doped carbon-encapsulated FeS composite for enhanced lithium-ion battery performance. J. Colloid Interface Sci. 2025, 678, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Sun, M.; Wu, S.; Chen, Y.; Li, L.; Zou, X.; Chen, L.; Yang, H.; Pang, H. Interfacial engineering of graphene aerogel encapsulated FeSe2-Fe2O3 heterojunction nanotubes for enhanced lithium storage. J. Alloys Compd. 2023, 934, 167939. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, Z.; Yao, S.; Gao, Y.; Jin, X.; Chen, G.; Shen, Z.; Du, F. Polymorph engineering for boosted volumetric Na-ion and Li-ion storage. Adv. Mater. 2021, 33, 2100210. [Google Scholar] [CrossRef]
- Wang, X.; Wei, Q.; Li, H.; Sun, J.; Li, H.; He, Y.; Liu, Z. Iron-chalcogenide-based electrode materials for electrochemical energy storage. J. Mater. Chem. A 2022, 10, 7517–7556. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, S.; Sun, B.; Yang, P.; Zheng, J.; Li, X. Low-temperature synthesis of honeycomb CuP2@C in molten ZnCl2 salt for high-performance lithium ion batteries. Angew. Chem. Int. Ed. 2020, 59, 1975–1979. [Google Scholar] [CrossRef]
- Feng, Q.; Li, T.; Miao, Y.; Sui, Y.; Xiao, B.; Sun, Z.; Qi, J.; Wei, F.; Meng, Q.; Ren, Y.; et al. Polyvinylpyrrolidone assisted transformation of Cu-MOF into N/P-co-doped octahedron carbon encapsulated Cu3P nanoparticles as high performance anode for lithium ion batteries. J. Colloid Interface Sci. 2022, 608, 227–238. [Google Scholar] [CrossRef]
- Zong, H.; Hu, L.; Wang, Z.; Qi, R.; Yu, K.; Zhu, Z. Metal-organic frameworks-derived CoP anchored on MXene toward an efficient bifunctional electrode with enhanced lithium storage. Chem. Eng. J. 2021, 416, 129102. [Google Scholar] [CrossRef]
- Ganesan, V.; Kim, D.-H.; Park, C.-M. Robust CoP2-C hollow nanoboxes: Superior anodes for Li- and Na-ion batteries. J. Energy Storage 2024, 79, 110197. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, M.-C.; Moon, S.-H.; Kim, H.; Park, K.-W. Ni2P/graphitic carbon nanostructure electrode with superior electrochemical performance. Electrochim. Acta 2020, 341, 136045. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Bai, J.; Wang, J.; Zhao, H. Well-dispersed FeP@C nanoparticles anchored on MXene conductive network as outstanding cyclic performance anode for Li/Na-ion batteries. Carbon 2025, 234, 120008. [Google Scholar] [CrossRef]
- Liu, J.; Wu, A.; Tian, R.; Paredes Camacho, R.A.; Zhou, S.; Huang, H.; Yao, M. Progressive lithiation of FeP2 nanoparticles constrained inside the carbon shell. Mater. Today Energy 2020, 18, 100545. [Google Scholar] [CrossRef]
- Zhan, L.; Song, X.; Deng, W.; Wei, T.; Huang, L.; Wei, X.; Wang, C. Facile approach to prepare FeP2/P/C nanofiber heterostructure via electrospinning as highly performance self-supporting anode for Li/Na ion batteries. Electrochim. Acta 2022, 403, 139682. [Google Scholar] [CrossRef]
- Mao, X.; Wu, K.; Li, S.-Q.; Du, F.-H.; Xu, G.; Wu, M.; Liu, H.-K.; Dou, S.-X.; Wu, C. Honeycomb-like 3D carbon skeletons with embedded phosphorus-rich phosphide nanoparticles as advanced anodes for lithium-ion batteries. Nanoscale 2022, 14, 8744–8752. [Google Scholar] [CrossRef]
- Lin, C.; Tang, J.; Wang, S.; Gao, Q.; Liu, Y.; Wu, W.; Wang, X.; Huang, Z.; Yang, L. Fabrication of FeP2/C/CNTs@3D interconnected graphene aerogel composite for lithium-ion battery anodes and the electrochemical performance evaluation using machine learning. J. Alloys Compd. 2024, 996, 174800. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, J.; Wang, Y.; Huang, F.; Peng, J.; Li, J.; Zhai, M. Cactus-like iron diphosphide@carbon nanotubes composites as advanced anode materials for lithium-ion batteries. Electrochim. Acta 2018, 259, 321–328. [Google Scholar] [CrossRef]
- Lin, X.; Ke, Y.; Peng, X.; He, C.; Zhao, X.; Xiao, X.; Lin, X.; Nan, J. Improving the rate capacity and cycle stability of FeP anodes for lithium-ion batteries via in situ carbon encapsulation and copper doping. J. Colloid Interface Sci. 2023, 634, 346–356. [Google Scholar] [CrossRef]
- Wang, C.; Yan, J.; Li, T.; Lv, Z.; Hou, X.; Tang, Y.; Zhang, H.; Zheng, Q.; Li, X. A coral-like FeP@NC anode with increasing cycle capacity for sodium-ion and lithium-ion batteries induced by particle refinement. Angew. Chem. Int. Ed. 2021, 60, 25013–25019. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fu, W.; Lee, D.C.; Bell, C.; Drexler, M.; Ma, Z.F.; Magasinski, A.; Yushin, G.; Alamgir, F.M. Porous FeP/C composite nanofibers as high-performance anodes for Li-ion/Na-ion batteries. Mater. Today Energy 2020, 16, 100410. [Google Scholar] [CrossRef]
- Wang, X.; Chen, K.; Wang, G.; Liu, X.; Wang, H. Rational design of three-dimensional graphene encapsulated with hollow FeP@Carbon nanocomposite as outstanding anode material for lithium ion and sodium ion batteries. ACS Nano 2017, 11, 11602–11616. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, B.; Pan, J.; Li, C.; Liu, C.; Liu, L.; Yang, T.; Li, W.; Li, H.; Wang, Y.; et al. Strongly coupled FeP@reduced graphene oxide nanocomposites with superior performance for lithium-ion batteries. J. Alloys Compd. 2017, 728, 328–336. [Google Scholar] [CrossRef]
- Yu, J.; He, Y.; Li, J.; Dong, C.; Dai, Y.; Gao, T.; Wang, X.; Yue, K.; Zhou, G. In-situ rooting biconical-nanorods-like Co-doped FeP @carbon architectures toward enhanced lithium storage performance. Chem. Eng. J. 2023, 477, 146996. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, W.; Wang, C.; Zhang, L.; Tang, K.; Zuo, J.; Yang, Q. Electrochemical performance of iron diphosphide/carbon tube nanohybrids in lithium-ion batteries. Electrochim. Acta 2015, 170, 140–145. [Google Scholar] [CrossRef]
- Gao, M.; Liu, X.; Yang, H.; Yu, Y. FeP nanoparticles derived from metal-organic frameworks/GO as high-performance anode material for lithium ion batteries. Sci. China Chem. 2018, 61, 1151–1158. [Google Scholar] [CrossRef]
- Chang, G.; Zhao, Y.; Dong, L.; Wilkinson, D.P.; Zhang, L.; Shao, Q.; Yan, W.; Sun, X.; Zhang, J. A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. J. Mater. Chem. A 2020, 8, 4996–5048. [Google Scholar] [CrossRef]
- Liu, W.; Zhi, H.; Yu, X. Recent progress in phosphorus based anode materials for lithium/sodium ion batteries. Energy Storage Mater. 2019, 16, 290–322. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, Q.; Ullah, S.; Yang, X.; Bachmatiuk, A.; Yang, R.; Rummeli, M.H. Phosphorus-based composites as anode materials for advanced alkali metal ion batteries. Adv. Funct. Mater. 2020, 30, 2004648. [Google Scholar] [CrossRef]
- Wang, B.; Wang, G.; Wang, H.; Bai, J. Hierarchically porous carbon nanofibers encapsulating carbon-coated mini hollow FeP nanoparticles for high performance lithium and sodium ion batteries. ChemNanoMat 2018, 4, 924–935. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, C.; Zhang, W.; He, Y.; Li, X.; Yuan, X. Controlled design for integration of FeP into 3D carbon frameworks for superior Na storage. Chem. Eng. J. 2022, 429, 132271. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, Z.; Lin, J.; Zhang, R.; Zhao, C. One-step simultaneously heteroatom doping and phosphating to construct 3D FeP/C nanocomposite for lithium storage. Appl. Surf. Sci. 2020, 500, 144055. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, W.; Bell, C.; Lee, D.-C.; Drexler, M.; Nuli, Y.; Ma, Z.-F.; Magasinski, A.; Yushin, G.; Alamgir, F.M. Iron phosphide confined in carbon nanofibers as a free-standing flexible anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 34074–34083. [Google Scholar] [CrossRef]
- Yan, Z.; Sun, Z.; Yue, K.; Li, A.; Liu, H.; Guo, Z.; Qian, L. Ni-FeP @carbon core-shell structure as advanced anode materials for superior lithium storage. Appl. Surf. Sci. 2021, 554, 149666. [Google Scholar] [CrossRef]
- Xu, X.; Feng, J.; Liu, J.; Lv, F.; Hu, R.; Fang, F.; Yang, L.; Ouyang, L.; Zhu, M. Robust spindle-structured FeP@C for high-performance alkali-ion batteries anode. Electrochim. Acta 2019, 312, 224–233. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, R.; Dong, S.; Miao, X.; Zhang, Z.; Wang, C.; Yin, L. Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 2019, 12, 2422–2432. [Google Scholar] [CrossRef]
- Yang, F.; Gao, H.; Hao, J.; Zhang, S.; Li, P.; Liu, Y.; Chen, J.; Guo, Z. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808291. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Liu, P.; Zhu, X.; Ali, R.N.; Naz, H.; Yu, Y.; Xiang, B. Self-supporting hybrid fiber mats of Cu3P-Co2P/N-C endowed with enhanced lithium/sodium ions storage performances. ACS Appl. Mater. Interfaces 2019, 11, 11442–11450. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Qin, Z.; Guo, J.; Guo, S.; Zhou, Z.; Shi, Q.; Zhang, Y.; Chang, Z.; Geng, M. Iron-cobalt phosphide/nitrogen-doped carbon composite derived from prussian blue analogues as anode materials for sodium-ion batteries. J. Energy Storage 2024, 98, 113131. [Google Scholar] [CrossRef]
- Li, J.; Liu, Q.; Zhang, Y.; Jiang, J.; Wu, H.B.; Yu, X.-Y. Copper and carbon-incorporated yolk-shelled FeP spheres with enhanced sodium storage properties. Chem. Eng. J. 2021, 421, 127776. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Zhao, Z.; Pathak, R.; Hao, S.; Qiu, X.; Qiao, Q. Microstructure controlled synthesis of Ni, N-codoped CoP/carbon fiber hybrids with improving reaction kinetics for superior sodium storage. J. Mater. Sci. Technol. 2022, 99, 184–192. [Google Scholar] [CrossRef]
- Liu, S.; Shi, Q.; Liu, X.; Lin, F.; Geng, M.; Ren, L.; Qin, Z.; Tong, J. Biomass derived 3D N, P co-doped porous carbon incorporated with Ni-Cu bimetallic phosphide: Synergistic effect of Ni-Cu boosting Na+ storage performance. J. Alloys Compd. 2024, 1009, 177013. [Google Scholar] [CrossRef]
Materials | Electric Current Density/A g−1 | Capacity/mA h g−1 | Ref. |
---|---|---|---|
FeP2@NHC | 0.1 2 10 | 1136.1 851.9 399.9 | Our work |
FeP@C/Ti3C2 | 0.1 2 5 | 816 563.5 466.7 | [17] |
FeP2@C | 0.1 3 | 932 339 | [18] |
FeP2@CNs | 0.1 2 5 | 1132.2 695.9 580.7 | [19] |
FeP2 NPs@CK | 0.1 2 | 1023 724 | [20] |
FeP2/C/CNTs@GA | 0.1 2 5 | 886 691 685 | [21] |
FeP@NC | 0.1 2 10 | 704.6 434.3 305.9 | [24] |
FeP/C | 0.2 2 5 | 990 490 314 | [25] |
FeP2/CNT | 0.137 1.37 6.85 | 590 380 240 | [29] |
Fe2P/C | 0.1 2 5 | 727 500 365 | [37] |
FeP@CNBs | 0.1 2 | 608 380 | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Wang, X.; Ceng, H.; Hu, L.; Su, Z. Rapid Synthesis of Honeycomb-Structured FeP2@NHC for High-Rate and Durable Lithium Storage. Energies 2025, 18, 1358. https://doi.org/10.3390/en18061358
Shao J, Wang X, Ceng H, Hu L, Su Z. Rapid Synthesis of Honeycomb-Structured FeP2@NHC for High-Rate and Durable Lithium Storage. Energies. 2025; 18(6):1358. https://doi.org/10.3390/en18061358
Chicago/Turabian StyleShao, Junjie, Xiaodong Wang, Houhua Ceng, Lan Hu, and Zhean Su. 2025. "Rapid Synthesis of Honeycomb-Structured FeP2@NHC for High-Rate and Durable Lithium Storage" Energies 18, no. 6: 1358. https://doi.org/10.3390/en18061358
APA StyleShao, J., Wang, X., Ceng, H., Hu, L., & Su, Z. (2025). Rapid Synthesis of Honeycomb-Structured FeP2@NHC for High-Rate and Durable Lithium Storage. Energies, 18(6), 1358. https://doi.org/10.3390/en18061358