Management of Energy Production in a Hybrid Combination of a Heat Pump and a Photovoltaic Thermal (PVT) Collector
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
- A PVT (photovoltaic thermal collector) collector of 230 Wp with a temperature coefficient −0.45%/°C;
- A 2 kW air-to-water heat pump didactic system. The device consists of 3 modules: an air heat exchanger (heat source), a heat pump module, and a water tank module (heat sink);
- A micro inverter with a rated power of 220 W;
- Measuring instruments: grid analyzer Nemo D4-DC, IME, Varese, Italy (power measurement accuracy ±1%), thermal imaging camera Flir I30, FLIR Systems, Wilsonville, OR, USA, heat meter Apator LQM III DC, Apator SA, Toruń, Poland (heat energy measurement accuracy ±1.5%), refractometer, pyranometer Kipp & Zonen—CMP3, Kipp & Zonen, Delft, The Netherlands (solar irradiance measurement accuracy ±10%), and a professional PV tester Metrel MI3108 Eurotest PV, Metrel d.o.o., Horjul, Slovenia (power measurement accuracy ±2.5%, voltage measurement accuracy ±1.5%, and current measurement accuracy ±1.5%).
2.2. Data Analysis
3. Results and Calculations
3.1. The Course of the Experiment
3.2. Electricity Generation
3.3. Thermal Energy Generation
4. Conclusions and Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yalew, S.G.; van Vliet, M.T.H.; Gernaat, D.E.H.J.; Ludwig, F.; Miara, A.; Park, C.; Byers, E.; De Cian, E.; Piontek, F.; Iyer, G.; et al. Impacts of Climate Change on Energy Systems in Global and Regional Scenarios. Nat. Energy 2020, 5, 794–802. [Google Scholar] [CrossRef]
- Lewis, T.; Tietenberg, L. Environmental and Natural Resource Economics; Routledge: New York, NY, USA, 2023; ISBN 9781003213734. [Google Scholar]
- Adefarati, T.; Bansal, R.C.; Shongwe, T.; Naidoo, R.; Bettayeb, M.; Onaolapo, A.K. Optimal Energy Management, Technical, Economic, Social, Political and Environmental Benefit Analysis of a Grid-Connected PV/WT/FC Hybrid Energy System. Energy Convers. Manag. 2023, 292, 117390. [Google Scholar] [CrossRef]
- Chatterjee, S.; Rafa, N.; Nandy, A. Welfare, Development, and Cost-Efficiency: A Global Synthesis on Incentivizing Energy Efficiency Measures through Co-Benefits. Energy Res. Soc. Sci. 2022, 89, 102666. [Google Scholar] [CrossRef]
- Demirbas, A.; Sahin-Demirbas, A.; Hilal Demirbas, A. Global Energy Sources, Energy Usage, and Future Developments. Energy Sources 2004, 26, 191–204. [Google Scholar] [CrossRef]
- Daroń, M.; Wilk, M. Management of Energy Sources and the Development Potential in the Energy Production Sector—A Comparison of EU Countries. Energies 2021, 14, 685. [Google Scholar] [CrossRef]
- Lin, B.; Ullah, S. Modeling the Impacts of Changes in Nuclear Energy, Natural Gas, and Coal in the Environment through the Novel DARDL Approach. Energy 2024, 287, 129572. [Google Scholar] [CrossRef]
- Ang, T.-Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. A Comprehensive Study of Renewable Energy Sources: Classifications, Challenges and Suggestions. Energy Strategy Rev. 2022, 43, 100939. [Google Scholar] [CrossRef]
- Amjith, L.; Bavanish, B. A Review on Biomass and Wind as Renewable Energy for Sustainable Environment. Chemosphere 2022, 293, 133579. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Haque, M.M. Environmental Impact of Renewable Energy Source Based Electrical Power Plants: Solar, Wind, Hydroelectric, Biomass, Geothermal, Tidal, Ocean, and Osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Paraschiv, L.S.; Paraschiv, S. Contribution of Renewable Energy (Hydro, Wind, Solar and Biomass) to Decarbonization and Transformation of the Electricity Generation Sector for Sustainable Development. Energy Rep. 2023, 9, 535–544. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources. Energies 2020, 13, 913. [Google Scholar] [CrossRef]
- Di Somma, M.; Yan, B.; Bianco, N.; Graditi, G.; Luh, P.B.; Mongibello, L.; Naso, V. Operation Optimization of a Distributed Energy System Considering Energy Costs and Exergy Efficiency. Energy Convers. Manag. 2015, 103, 739–751. [Google Scholar] [CrossRef]
- Valverde, L.; Pino, F.J.; Guerra, J.; Rosa, F. Definition, Analysis and Experimental Investigation of Operation Modes in Hydrogen-Renewable-Based Power Plants Incorporating Hybrid Energy Storage. Energy Convers. Manag. 2016, 113, 290–311. [Google Scholar] [CrossRef]
- Singh, R.; Akram, S.V.; Gehlot, A.; Buddhi, D.; Priyadarshi, N.; Twala, B. Energy System 4.0: Digitalization of the Energy Sector with Inclination towards Sustainability. Sensors 2022, 22, 6619. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, G. Energy Management Systems in Sustainable Smart Cities Based on the Internet of Energy: A Technical Review. Energies 2023, 16, 6903. [Google Scholar] [CrossRef]
- Cai, W.; Wang, L.; Li, L.; Xie, J.; Jia, S.; Zhang, X.; Jiang, Z.; Lai, K. A Review on Methods of Energy Performance Improvement towards Sustainable Manufacturing from Perspectives of Energy Monitoring, Evaluation, Optimization and Benchmarking. Renew. Sustain. Energy Rev. 2022, 159, 112227. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse Gases Emissions and Global Climate Change: Examining the Influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Yan, H.; Gusev, A.; Zhang, L.; He, Y.; Yang, S. Greenhouse Gas Emissions and Reduction Strategies for the World’s Largest Greenhouse Gas Emitters. Sci. Total Environ. 2024, 944, 173895. [Google Scholar] [CrossRef]
- Tian, J.; Yu, L.; Xue, R.; Zhuang, S.; Shan, Y. Global Low-Carbon Energy Transition in the Post-COVID-19 Era. Appl. Energy 2022, 307, 118205. [Google Scholar] [CrossRef]
- Sułek, A.; Borowski, P.F. Business Models on the Energy Market in the Era of a Low-Emission Economy. Energies 2024, 17, 3235. [Google Scholar] [CrossRef]
- Ravi Raj, V.; Prabakaran, M.; Selvakumar, P.; Manjunath, T.C. Energy Efficiency and Renewable Energy Adoption. In Driving Business Success Through Eco-Friendly Strategies; Kulkarni, S., Valeri, M., William, P., Eds.; IGI Global: Hershey, PA, USA, 2025; pp. 131–148. ISBN 9798369397510. [Google Scholar]
- Tan, K.M.; Babu, T.S.; Ramachandaramurthy, V.K.; Kasinathan, P.; Solanki, S.G.; Raveendran, S.K. Empowering Smart Grid: A Comprehensive Review of Energy Storage Technology and Application with Renewable Energy Integration. J. Energy Storage 2021, 39, 102591. [Google Scholar] [CrossRef]
- Meena, S.B.; Patil, P.R.; Kandharkar, S.R.; Hemalatha, N.; Khade, A.; Dixit, K.K.; Chinthamu, N. He Evolution Of Smart Grid Technologies: Integrating Renewable Energy Sources, Energy Storage, And Demand Response Systems For Efficient Energy Distribution. Nanotechnol. Percept. 2024, 20, 1098–1109. [Google Scholar]
- Fjellså, I.F.; Silvast, A.; Skjølsvold, T.M. Justice Aspects of Flexible Household Electricity Consumption in Future Smart Energy Systems. Environ. Innov. Soc. Transit. 2021, 38, 98–109. [Google Scholar] [CrossRef]
- Bakare, M.S.; Abdulkarim, A.; Zeeshan, M.; Shuaibu, A.N. A Comprehensive Overview on Demand Side Energy Management towards Smart Grids: Challenges, Solutions, and Future Direction. Energy Inform. 2023, 6, 4. [Google Scholar] [CrossRef]
- Radtke, J.; Yildiz, Ö.; Roth, L. Does Energy Community Membership Change Sustainable Attitudes and Behavioral Patterns? Empirical Evidence from Community Wind Energy in Germany. Energies 2022, 15, 822. [Google Scholar] [CrossRef]
- Filho, W.L.; Trevisan, L.V.; Salvia, A.L.; Mazutti, J.; Dibbern, T.; de Maya, S.R.; Bernal, E.F.; Eustachio, J.H.P.P.; Sharifi, A.; Alarcón-del-Amo, M.-C.; et al. Prosumers and Sustainable Development: An International Assessment in the Field of Renewable Energy. Sustain. Futures 2024, 7, 100158. [Google Scholar] [CrossRef]
- Xue, Y.; Lindkvist, C.M.; Temeljotov-Salaj, A. Barriers and Potential Solutions to the Diffusion of Solar Photovoltaics from the Public-Private-People Partnership Perspective–Case Study of Norway. Renew. Sustain. Energy Rev. 2021, 137, 110636. [Google Scholar] [CrossRef]
- Pinilla-De La Cruz, G.A.; Rabetino, R.; Kantola, J. Unveiling the Shades of Partnerships for the Energy Transition and Sustainable Development: Connecting Public–Private Partnerships and Emerging Hybrid Schemes. Sustain. Dev. 2022, 30, 1370–1386. [Google Scholar] [CrossRef]
- Hossin, M.A.; Alemzero, D.; Abudu, H.; Yin, S.; Mu, L.; Panichakarn, B. Examining Public Private Partnership Investment in Energy towards Achieving Sustainable Development Goal 7 for ASEAN Region. Sci. Rep. 2024, 14, 16398. [Google Scholar] [CrossRef]
- Rabczak, S.; Mateichyk, V.; Smieszek, M.; Nowak, K.; Kolomiiets, S. Evaluating the Energy Efficiency of Combining Heat Pumps and Photovoltaic Panels in Eco-Friendly Housing. Appl. Sci. 2024, 14, 5575. [Google Scholar] [CrossRef]
- Sowa, S. The Implementation of Renewable Energy Systems, as a Way to Improve Energy Efficiency in Residential Buildings. Polityka Energetyczna–Energy Policy J. 2020, 23, 19–36. [Google Scholar] [CrossRef]
- Turoń, M.K. Operation of a Hybrid Heating System Based on Heat Pumps Using a Photovoltaic Installation. Arch. Thermodyn. 2024, 45, 153–162. [Google Scholar] [CrossRef]
- Cantor, J. Heat Pumps for the Home, 2nd ed.; The Crowood Press Ltd.: Marlborough, UK, 2020; ISBN 1847972926. [Google Scholar]
- Osterman, E.; Stritih, U. Review on Compression Heat Pump Systems with Thermal Energy Storage for Heating and Cooling of Buildings. J. Energy Storage 2021, 39, 102569. [Google Scholar] [CrossRef]
- Wang, Z.; Luther, M.B.; Amirkhani, M.; Liu, C.; Horan, P. State of the Art on Heat Pumps for Residential Buildings. Buildings 2021, 11, 350. [Google Scholar] [CrossRef]
- Rathore, N.; Panwar, N.L.; Yettou, F.; Gama, A. A Comprehensive Review of Different Types of Solar Photovoltaic Cells and Their Applications. Int. J. Ambient. Energy 2021, 42, 1200–1217. [Google Scholar] [CrossRef]
- Hao, D.; Qi, L.; Tairab, A.M.; Ahmed, A.; Azam, A.; Luo, D.; Pan, Y.; Zhang, Z.; Yan, J. Solar Energy Harvesting Technologies for PV Self-Powered Applications: A Comprehensive Review. Renew. Energy 2022, 188, 678–697. [Google Scholar] [CrossRef]
- Mohammad, A.; Mahjabeen, F. Revolutionizing Solar Energy: The Impact of Artificial Intelligence on Photovoltaic Systems. Int. J. Multidiscip. Sci. Arts 2023, 2, 591856. [Google Scholar] [CrossRef]
- Perrella, S.; Bisegna, F.; Bevilacqua, P.; Cirone, D.; Bruno, R. Solar-Assisted Heat Pump with Electric and Thermal Storage: The Role of Appropriate Control Strategies for the Exploitation of the Solar Source. Buildings 2024, 14, 296. [Google Scholar] [CrossRef]
- Toradmal, A.; Kemmler, T.; Thomas, B. Boosting the Share of Onsite PV-Electricity Utilization by Optimized Scheduling of a Heat Pump Using Buildings Thermal Inertia. Appl. Therm. Eng. 2018, 137, 248–258. [Google Scholar] [CrossRef]
- Pinamonti, M.; Baggio, P. Energy and Economic Optimization of Solar-Assisted Heat Pump Systems with Storage Technologies for Heating and Cooling in Residential Buildings. Renew. Energy 2020, 157, 90–99. [Google Scholar] [CrossRef]
- Nicoletti, F.; Cucumo, M.A.; Arcuri, N. Cost Optimal Sizing of Photovoltaic-Battery System and Air–Water Heat Pump in the Mediterranean Area. Energy Convers. Manag. 2022, 270, 116274. [Google Scholar] [CrossRef]
- Rosati, A.; Facci, A.L.; Ubertini, S. Techno-Economic Analysis of Battery Electricity Storage towards Self-Sufficient Buildings. Energy Convers. Manag. 2022, 256, 115313. [Google Scholar] [CrossRef]
- Meriläinen, A.; Montonen, J.-H.; Kosonen, A.; Lindh, T.; Ahola, J. Cost-Optimal Dimensioning and Operation of a Solar PV–BESS–Heat Pump-Based on-Grid Energy System for a Nordic Climate Townhouse. Energy Build. 2023, 295, 113328. [Google Scholar] [CrossRef]
- Kavian, S.; Aghanajafi, C.; Jafari Mosleh, H.; Nazari, A.; Nazari, A. Exergy, Economic and Environmental Evaluation of an Optimized Hybrid Photovoltaic-Geothermal Heat Pump System. Appl. Energy 2020, 276, 115469. [Google Scholar] [CrossRef]
- Riva, C.; Roumpedakis, T.C.; Kallis, G.; Rocco, M.V.; Karellas, S. Life Cycle Analysis of a Photovoltaic Driven Reversible Heat Pump. Energy Build. 2021, 240, 110894. [Google Scholar] [CrossRef]
- Niekurzak, M.; Lewicki, W.; Drożdż, W.; Miązek, P. Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household. Energies 2022, 15, 6089. [Google Scholar] [CrossRef]
- Qu, M.; Yan, X.; Wang, H.; Hei, Y.; Liu, H.; Li, Z. Energy, Exergy, Economic and Environmental Analysis of Photovoltaic/Thermal Integrated Water Source Heat Pump Water Heater. Renew. Energy 2022, 194, 1084–1097. [Google Scholar] [CrossRef]
- Teresa Pintanel, M.; Martínez-Gracia, A.; Uche, J.; del Amo, A.; Bayod-Rújula, Á.A.; Usón, S.; Arauzo, I. Energy and Environmental Benefits of an Integrated Solar Photovoltaic and Thermal Hybrid, Seasonal Storage and Heat Pump System for Social Housing. Appl. Therm. Eng. 2022, 213, 118662. [Google Scholar] [CrossRef]
- Obalanlege, M.A.; Xu, J.; Markides, C.N.; Mahmoudi, Y. Techno-Economic Analysis of a Hybrid Photovoltaic-Thermal Solar-Assisted Heat Pump System for Domestic Hot Water and Power Generation. Renew. Energy 2022, 196, 720–736. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, J.; Xu, F.; Zhang, R.; Deng, G. Integrated Operation of PV Assisted Ground Source Heat Pump and Air Source Heat Pump System: Performance Analysis and Economic Optimization. Energy Convers. Manag. 2022, 269, 116091. [Google Scholar] [CrossRef]
- Samykano, M. Hybrid Photovoltaic Thermal Systems: Present and Future Feasibilities for Industrial and Building Applications. Buildings 2023, 13, 1950. [Google Scholar] [CrossRef]
- Kanawala, D.N. Optimization of Heating and Cooling Systems Consisting of PVT Collectors, Seasonal Storage and Heat Pumps, 1st ed.; Delft University of Technology: Delft, The Netherlands, 2024. [Google Scholar]
- Zhou, C.; Riaz, A.; Wang, J.; Zhang, J.; Xu, L. Photovoltaic Thermal Heat Pump Assessment for Power and Domestic Hot Water Generation. Energies 2023, 16, 6984. [Google Scholar] [CrossRef]
- Rijvers, L.; Rindt, C.; de Keizer, C. Numerical Analysis of a Residential Energy System That Integrates Hybrid Solar Modules (PVT) with a Heat Pump. Energies 2021, 15, 96. [Google Scholar] [CrossRef]
- Yue, H.; Xu, Z.; Chu, S.; Cheng, C.; Zhang, H.; Chen, H.; Ai, D. Study on the Performance of Photovoltaic/Thermal Collector–Heat Pump–Absorption Chiller Tri-Generation Supply System. Energies 2023, 16, 3034. [Google Scholar] [CrossRef]
- Beltrán, F.; Sommerfeldt, N.; Eskola, J.; Madani, H. Empirical Investigation of Solar Photovoltaic-Thermal Collectors for Heat Pump Integration. Appl. Therm. Eng. 2024, 248, 123175. [Google Scholar] [CrossRef]
- Miglioli, A.; Aste, N.; Del Pero, C.; Leonforte, F. Photovoltaic-Thermal Solar-Assisted Heat Pump Systems for Building Applications: Integration and Design Methods. Energy Built Environ. 2023, 4, 39–56. [Google Scholar] [CrossRef]
- Zohri, M.; Prabowo; Suwarno; Fudholi, A.; Suyono, T.; Priandana, E.R.; Utomo, Y.S. Performance Review of Solar-Assisted Heat Pump Systems Using Solar Collectors, PV, and PVT Technologies. Int. J. Heat Technol. 2023, 41, 657–665. [Google Scholar] [CrossRef]
- Lamnatou, C.; Chemisana, D. Photovoltaic/Thermal (PVT) Systems: A Review with Emphasis on Environmental Issues. Renew. Energy 2017, 105, 270–287. [Google Scholar] [CrossRef]
- Kazemian, A.; Salari, A.; Hakkaki-Fard, A.; Ma, T. Numerical Investigation and Parametric Analysis of a Photovoltaic Thermal System Integrated with Phase Change Material. Appl. Energy 2019, 238, 734–746. [Google Scholar] [CrossRef]
- Figura, R.; Zientarski, W. The PV Module Operating Parameters Analysis. Autobusy Tech. Eksploat. Syst. Transp. 2016, 17, 602–6011. [Google Scholar]
- Luboń, W.; Pełka, G.; Janowski, M.; Pająk, L.; Stefaniuk, M.; Kotyza, J.; Reczek, P. Assessing the Impact of Water Cooling on PV Modules Efficiency. Energies 2020, 13, 2414. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luboń, W.; Jachimowski, A.; Łyczba, M.; Pełka, G.; Wygoda, M.; Dawiec, D.; Książek, R.; Sorociak, W.; Krawiec, K. Management of Energy Production in a Hybrid Combination of a Heat Pump and a Photovoltaic Thermal (PVT) Collector. Energies 2025, 18, 3463. https://doi.org/10.3390/en18133463
Luboń W, Jachimowski A, Łyczba M, Pełka G, Wygoda M, Dawiec D, Książek R, Sorociak W, Krawiec K. Management of Energy Production in a Hybrid Combination of a Heat Pump and a Photovoltaic Thermal (PVT) Collector. Energies. 2025; 18(13):3463. https://doi.org/10.3390/en18133463
Chicago/Turabian StyleLuboń, Wojciech, Artur Jachimowski, Michał Łyczba, Grzegorz Pełka, Mateusz Wygoda, Dominika Dawiec, Roger Książek, Wojciech Sorociak, and Klaudia Krawiec. 2025. "Management of Energy Production in a Hybrid Combination of a Heat Pump and a Photovoltaic Thermal (PVT) Collector" Energies 18, no. 13: 3463. https://doi.org/10.3390/en18133463
APA StyleLuboń, W., Jachimowski, A., Łyczba, M., Pełka, G., Wygoda, M., Dawiec, D., Książek, R., Sorociak, W., & Krawiec, K. (2025). Management of Energy Production in a Hybrid Combination of a Heat Pump and a Photovoltaic Thermal (PVT) Collector. Energies, 18(13), 3463. https://doi.org/10.3390/en18133463