Strategies to Incentivize the Participation of Variable Renewable Energy Generators in Balancing Markets
Abstract
:1. Introduction
2. Literature Review on the Participation of vRES in Balancing Markets
3. Iberian Electricity Markets
4. Mechanisms to Support the Participation of vRES in BMs and Strategic Bidding
4.1. Mechanisms to Support the Participation of vRES in BMs
4.2. Strategic Bidding Using Probabilistic Forecasts with Price Arbitrage
- , are revenues from the DAM and IS, respectively;
- are revenues from the auction-based and continuous intraday markets, respectively;
- are the reserves revenue from capacity and energy markets.
5. Case Study
5.1. Forecasts and Market Data
5.2. Scenarios
5.3. Results
5.3.1. Ideal Case
5.3.2. Operational Case
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
aFRR | Automatic-activated frequency restoration reserve |
BM | Balancing market |
BRP | Balance Responsible Party |
CCGT | Combined cycle gas turbine |
CET | Central European Time |
DAM | Day-ahead market |
EIME | European Internal Market of Electricity |
EU | European Union |
EUPHEMIA | EU Pan-European Hybrid Electricity Market |
FCR | Frequency containment reserve |
FiTs | Feed-in tariffs |
GFS | Global Forecast System |
IDA | Auction-based IDM |
IDC | Continuous IDM |
IDM | Intraday market |
IS | Imbalance settlement |
KNN | K-Nearest Neighbor |
LCOE | Levelized costs of energy |
mFRR | Manually-activated frequency restoration reserve |
MIBEL | Iberian market of electricity |
NRMSE | Normalized root mean squared error |
NWP | Numerical weather prediction |
PPA | Power purchase agreement |
PV | Photovoltaic |
RR | Replacement reserve |
SR | Secondary reserve |
TSO | Transmission System Operator |
vRES | Variable renewable energy source |
WPP | Wind power producer |
Indices | |
Quantile number | |
K | Number of quantiles |
Hours | |
T | Total number of hours |
Parameters | |
Installed capacity | |
Variables | |
Observed energy | |
Forecasted energy | |
Programmed dispatch 15 min before real-time operation | |
Average remuneration | |
Hourly total revenue | |
Revenue from capacity reserve markets | |
DAM revenue | |
Revenue from energy reserve markets | |
IDA revenue | |
IDC revenue | |
IS revenue |
References
- Hunt, S.; Shuttleworth, G. Competition and Choice in Electricity; Wiley: Chichester, UK, 1996. [Google Scholar]
- Shahidehpour, M.; Yamin, H.; Li, Z. Market Operations in Electric Power Systems; Wiley: Chichester, UK, 2002. [Google Scholar]
- Kirschen, D.; Strbac, G. Fundamentals of Power System Economics; Wiley: Chichester, UK, 2018. [Google Scholar]
- Algarvio, H. Multi-step optimization of the purchasing options of power retailers to feed their portfolios of consumers. Int. J. Electr. Power Energy Syst. 2022, 142, 108260. [Google Scholar] [CrossRef]
- European Parliament. Internal Energy Market. Available online: https://www.europarl.europa.eu/factsheets/en/sheet/45/internal-energy-market (accessed on 26 March 2025).
- Algarvio, H.; Lopes, F.; Couto, A.; Santana, J.; Estanqueiro, A. Effects of Regulating the European Internal Market on the integration of Variable Renewable Energy. WIREs Energy Environ. 2019, 8, e346. [Google Scholar] [CrossRef]
- Nordström, H.; Söder, L.; Flynn, D.; Matevosyan, J.; Kiviluoma, J.; Holttinen, H.; Vrana, T.K.; van der Welle, A.; Morales-España, G.; Pudjianto, D.; et al. Strategies for Continuous Balancing in Future Power Systems with High Wind and Solar Shares. Energies 2023, 16, 5249. [Google Scholar] [CrossRef]
- Algarvio, H.; Lopes, F.; Couto, A.; Estanqueiro, A. Participation of wind power producers in day-ahead and balancing markets: An overview and a simulation-based study. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, e343. [Google Scholar] [CrossRef]
- Maris, G.; Flouros, F. The Green Deal, National Energy and Climate Plans in Europe: Member States’ Compliance and Strategies. Adm. Sci. 2021, 11, 75. [Google Scholar] [CrossRef]
- Grubb, M.; Newbery, D. UK Electricity Market Reform and the Energy Transition: Emerging Lessons. Energy J. 2018, 39, 1–26. [Google Scholar] [CrossRef]
- Strbac, G.; Papadaskalopoulos, D.; Chrysanthopoulos, N.; Estanqueiro, A.; Algarvio, H.; Lopes, F.; de Vries, L.; Morales-España, G.; Sijm, J.; Hernandez-Serna, R.; et al. Decarbonization of Electricity Systems in Europe: Market Design Challenges. IEEE Power Energy Mag. 2021, 19, 53–63. [Google Scholar] [CrossRef]
- Prema, V.; Bhaskar, M.S.; Almakhles, D.; Gowtham, N.; Rao, K.U. Critical Review of Data, Models and Performance Metrics for Wind and Solar Power Forecast. IEEE Access 2022, 10, 667–688. [Google Scholar] [CrossRef]
- Miettinen, J.; Holttinen, H. Impacts of wind power forecast errors on the real-time balancing need: A Nordic case study. IET Renew. Power Gener. 2019, 13, 227–233. [Google Scholar] [CrossRef]
- Frade, P.; Pereira, J.; Santana, J.; Catalão, J. Wind balancing costs in a power system with high wind penetration–Evidence from Portugal. Energy Policy 2019, 132, 702–713. [Google Scholar] [CrossRef]
- Martín-Martínez, S.; Lorenzo-Bonache, A.; Honrubia-Escribano, A.; Cañas-Carretón, M.; Gómez-Lázaro, E. Contribution of wind energy to balancing markets: The case of Spain. WIREs Energy Environ. 2018, 7, e300. [Google Scholar] [CrossRef]
- Prol, J.; Steininger, K.; Zilberman, D. The cannibalization effect of wind and solar in the California wholesale electricity market. Energy Econ. 2020, 85, 104552. [Google Scholar] [CrossRef]
- Hinderks, W.J.; Wagner, A. Factor models in the German electricity market: Stylized facts, seasonality, and calibration. Energy Econ. 2020, 85, 104351. [Google Scholar] [CrossRef]
- Ramirez, F.J.; Honrubia-Escribano, A.; Gomez-Lazaro, E.; Pham, A.T. Combining feed-in tariffs and net-metering schemes to balance development in adoption of photovoltaic energy: Comparative economic assessment and policy implications for European countries. Energy Policy 2017, 102, 440–452. [Google Scholar] [CrossRef]
- Bohland, M.; Schwenen, S. Renewable support and strategic pricing in electricity markets. Int. J. Ind. Organ. 2022, 80, 102792. [Google Scholar] [CrossRef]
- Anatolitis, V.; Azanbayev, A.; Fleck, A.K. How to design efficient renewable energy auctions? Empirical insights from Europe. Energy Policy 2022, 166, 112982. [Google Scholar] [CrossRef]
- Algarvio, H. Risk-Sharing Contracts and risk management of bilateral contracting in electricity markets. Int. J. Electr. Power Energy Syst. 2023, 144, 108579. [Google Scholar] [CrossRef]
- Schlecht, I.; Maurer, C.; Hirth, L. Financial contracts for differences: The problems with conventional CfDs in electricity markets and how forward contracts can help solve them. Energy Policy 2024, 186, 113981. [Google Scholar] [CrossRef]
- Brigatto, A.; Fanzeres, B. A soft robust methodology to devise hedging strategies in renewable energy trading based on electricity options. Electr. Power Syst. Res. 2022, 207, 107852. [Google Scholar] [CrossRef]
- Grubb, M.; Drummond, P.; Maximov, S. Separating electricity from gas prices through Green Power Pools: Design options and evolution. Inst. New Econ. Think. Work. Pap. Ser. 2022, 193, 1–34. [Google Scholar]
- Algarvio, H.; Lopes, F.; Santana, J. Strategic Operation of Hydroelectric Power Plants in Energy Markets: A Model and a Study on the Hydro-Wind Balance. Fluids 2020, 5, 209. [Google Scholar] [CrossRef]
- Rathod, A.A.; Subramanian, B. Scrutiny of Hybrid Renewable Energy System for Control, Power Management, Optimization and Sizing: Challenges and Future Possibilities. Sustainability 2022, 14, 16814. [Google Scholar] [CrossRef]
- Lei, X.; Yu, H.; Zhong, J.; Jia, Y.; Shao, Z.; Jian, L. Exploring electric vehicle’s potential as capacity reservation through V2G operation to compensate load deviation in distribution systems. J. Clean. Prod. 2024, 451, 141997. [Google Scholar] [CrossRef]
- Johanndeiter, S.; Bertsch, V. Bidding zero? An analysis of solar power plants’ price bids in the electricity day-ahead market. Appl. Energy 2024, 371, 123672. [Google Scholar] [CrossRef]
- Fabra, N.; Imelda. Market Power and Price Exposure: Learning from Changes in Renewable Energy Regulation. Am. Econ. J. Econ. Policy 2023, 15, 323–358. [Google Scholar] [CrossRef]
- Sousa, V.; Algarvio, H. Strategic Bidding to Increase the Market Value of Variable Renewable Generators in Electricity Markets. Energies 2025, 18, 1586. [Google Scholar] [CrossRef]
- Skytte, K.; Bobo, L. Increasing the value of wind: From passive to active actors in multiple power markets. WIREs Energy Environ. 2019, 8, e328. [Google Scholar] [CrossRef]
- Dudău, R.; Simionel, T. The politics of the third energy package. Pet. Ind. Rev. 2011, 70–73. [Google Scholar]
- Nouicer, A.; Kehoe, A.; Nysten, J.; Fouquet, D.; Hancher, L.; Meeus, L. The EU Clean Energy Package, 2020 ed.; Retrieved from Cadmus, European University Institute Research Repository; Florence School of Regulation, Energy: Firenze, Italy, 2020; Available online: https://hdl.handle.net/1814/68899 (accessed on 26 March 2025).
- Erbach, G.; Jensen, L. Fit for 55 package. In BRIEFING Towards Climate Neutrality; EPRS, European Parliament: Brussels, Belgium, 2024. [Google Scholar]
- Bindu, S.; Chaves Ávila, J.P.; Olmos, L. Factors Affecting Market Participant Decision Making in the Spanish Intraday Electricity Market: Auctions vs. Continuous Trading. Energies 2023, 16, 5106. [Google Scholar] [CrossRef]
- ENTSO-E. ENTSO-E Network Code on Electricity Balancing. December 2023. Available online: https://www.acer.europa.eu/sites/default/files/documents/en/Electricity/MARKET-CODES/ELECTRICITY-BALANCING/Documents/23122013%20Network%20Code%20on%20Electricity%20Balancing.pdf (accessed on 22 May 2025).
- Algarvio, H.; Lopes, F.; Couto, A.; Estanqueiro, A.; Santana, J. Variable Renewable Energy and Market Design: New Products and a Real-World Study. Energies 2019, 12, 4576. [Google Scholar] [CrossRef]
- Gade, P.; Bindner, H.; Kazempour, J. Leveraging P90 requirement: Flexible resources bidding in Nordic ancillary service markets. In Proceedings of the 2024 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Oslo, Norway, 17–20 September 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 505–510. [Google Scholar]
- Energinet. Energinet: Prequalification and Test. Energinet, 2023. Available online: https://en.energinet.dk/electricity/ancillary-services/prequalification-and-test/ (accessed on 26 March 2025).
- Wu, Z.; Gao, W.; Gao, T.; Yan, W.; Zhang, H.; Yan, S.; Wang, X. State-of-the-art review on frequency response of wind power plants in power systems. J. Mod. Power Syst. Clean Energy 2018, 6, 1–16. [Google Scholar] [CrossRef]
- Frade, P.; Osório, G.; Santana, J.; Catalão, J. Cooperation Regional coordination in ancillary services: An innovative study for secondary control in the Iberian electrical system. Int. J. Electr. Power Energy Syst. 2019, 109, 513–525. [Google Scholar] [CrossRef]
- Frade, P.; Shafie-khah, M.; Santana, J.; Catalão, J. Cooperation in ancillary services: Portuguese strategic perspective on replacement reserves. Energy Strategy Rev. 2019, 23, 142–151. [Google Scholar] [CrossRef]
- Algarvio, H.; Couto, A.; Estanqueiro, A. RES. Trade: An Open-Access Simulator to Assess the Impact of Different Designs on Balancing Electricity Markets. Energies 2024, 17, 6212. [Google Scholar] [CrossRef]
- Poplavskaya, K.; Lago, J.; Strömer, S.; de Vries, L. Making the most of short-term flexibility in the balancing market: Opportunities and challenges of voluntary bids in the new balancing market design. Energy Policy 2021, 158, 112522. [Google Scholar] [CrossRef]
- Passagem dos Santos, J.; Algarvio, H. A Machine Learning Model for Procurement of Secondary Reserve Capacity in Power Systems with Significant vRES Penetrations. Energies 2025, 18, 1467. [Google Scholar] [CrossRef]
- Hamon, C.; Persson, M. Wind Power Participation in Frequency Regulation: A Profitability Assessment for Sweden. Available online: https://ri.diva-portal.org/smash/get/diva2:1751691/FULLTEXT01.pdf (accessed on 26 February 2025).
- Kraft, E.; Russo, M.; Keles, D.; Bertsch, V. Stochastic optimization of trading strategies in sequential electricity markets. Eur. J. Oper. Res. 2023, 308, 400–421. [Google Scholar] [CrossRef]
- Al-Lawati, R.A.; Crespo-Vazquez, J.L.; Faiz, T.I.; Fang, X.; Noor-E-Alam, M. Two-stage stochastic optimization frameworks to aid in decision-making under uncertainty for variable resource generators participating in a sequential energy market. Appl. Energy 2021, 292, 116882. [Google Scholar] [CrossRef]
- Abdeltawab, H.H.; Mohamed, Y.A.R.I. Market-oriented energy management of a hybrid wind-battery energy storage system via model predictive control with constraint optimizer. IEEE Trans. Ind. Electron. 2015, 62, 6658–6670. [Google Scholar] [CrossRef]
- Crespo-Vazquez, J.L.; Carrillo, C.; Diaz-Dorado, E.; Martinez-Lorenzo, J.A.; Noor-E-Alam, M. A machine learning based stochastic optimization framework for a wind and storage power plant participating in energy pool market. Appl. Energy 2018, 232, 341–357. [Google Scholar] [CrossRef]
- Sedzro, K.; Kishore, S.; Lamadrid, A.; Zuluaga, L. Stochastic risk-sensitive market integration for renewable energy: Application to ocean wave power plants. Appl. Energy 2018, 229, 474–481. [Google Scholar] [CrossRef]
- Silva-Rodriguez, L.; Sanjab, A.; Fumagalli, E.; Gibescu, M. Light robust co-optimization of energy and reserves in the day-ahead electricity market. Appl. Energy 2024, 353, 121982. [Google Scholar] [CrossRef]
- Fusco, A.; Gioffrè, D.; Castelli, A.F.; Bovo, C.; Martelli, E. A multi-stage stochastic programming model for the unit commitment of conventional and virtual power plants bidding in the day-ahead and ancillary services markets. Appl. Energy 2023, 336, 120739. [Google Scholar] [CrossRef]
- Silva, A.R.; Pousinho, H.; Estanqueiro, A. A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets. Energy 2022, 258, 124856. [Google Scholar] [CrossRef]
- European Commission. National Energy and Climate Plans (2021–2030), October 2024. Available online: https://commission.europa.eu/energy-climate-change-environment/implementation-eu-countries/energy-and-climate-governance-and-reporting/national-energy-and-climate-plans_en (accessed on 20 May 2025).
- Nordström, H.; Söder, L.; Eriksson, R. Estimating the future need of balancing power based on long-term power system market simulations. In Proceedings of the 11th Bulk Power Systems Dynamics and Control Symposium (IREP 2022), Banff, AB, Canada, 25–30 July 2022. [Google Scholar]
- Jha, R.; Jha, R.; Islam, M. Forecasting US data center CO2 emissions using AI models: Emissions reduction strategies and policy recommendations. Front. Sustain. 2025, 5, 1507030. [Google Scholar] [CrossRef]
- Zhao, X.; Thakurta, P.; Flynn, D. Grid-forming requirements based on stability assessment for 100% converter-based Irish power system. IET Renew. Power Gener. 2022, 16, 447–458. [Google Scholar] [CrossRef]
- Edmunds, C.; Martín-Martínez, S.; Browell, J.; Gómez-Lázaro, E.; Galloway, S. On the participation of wind energy in response and reserve markets in Great Britain and Spain. Renew. Sustain. Energy Rev. 2019, 115, 109360. [Google Scholar] [CrossRef]
- TenneT. Dutch Ancillary Services. 2023. Available online: https://www.tennet.eu/nl-en/node/119 (accessed on 22 May 2025).
- Rada, A.G. Spanish hospitals show resilience amid crippling nationwide power outage. BMJ 2025, 389, r867. [Google Scholar] [CrossRef]
- Calero, I.; Canizares, C.; Bhattacharya, K.; Baldick, R. Duck-curve mitigation in power grids with high penetration of PV generation. In Proceedings of the 2022 IEEE Power Energy Society General Meeting (PESGM), Seattle, WA, USA, 17–21 July 2022. [Google Scholar]
- Dalton, J. Optimal Day-Ahead Scheduling and Bidding Strategy of Risk-Averse Electric Vehicle Aggregator: A Case Study of the Nordic Energy and Frequency Containment Reserve Markets. KTH. 2018. Available online: http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1249791&dswid=178 (accessed on 20 May 2025).
- Matevosyan, J. Evolution of ERCOT’s Frequency Control and Ancillary Services for Higher Levels of Inverter-Based Generation. 2019. Available online: https://www.esig.energy/resources/evolution-of-ercots-frequency-control-and-ancillary-services-for-higher-levels-of-inverter-based-generation-julia-matevosyan-february-2019/ (accessed on 22 May 2025).
- Strbac, G.; Pudjianto, D. Flexibility in Great Britain. 2021. Available online: https://publications.carbontrust.com/flex-gb/report (accessed on 30 May 2023).
- Ye, Y.; Papadaskalopoulos, D.; Yuan, Q.; Tang, Y.; Strbac, G. Multi-Agent Deep Reinforcement Learning for Coordinated Energy Trading and Flexibility Services Provision in Local Electricity Markets. IEEE Trans. Smart Grid 2023, 14, 1541–1554. [Google Scholar] [CrossRef]
- Sleisz, A.; Sores, P.; Raisz, D. Algorithmic properties of the all-European day-ahead electricity market. In Proceedings of the 11th International Conference on the European Energy Market (EEM-14), Krakow, Poland, 28–30 May 2014; pp. 1–6. [Google Scholar]
- Nash, J. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 1950, 36, 48–49. [Google Scholar] [CrossRef]
- Roumkos, C.; Biskas, P.N.; Marneris, I.G. Integration of European Electricity Balancing Markets. Energies 2022, 15, 2240. [Google Scholar] [CrossRef]
- Lage, M.; Castro, R. A Practical Review of the Public Policies Used to Promote the Implementation of PV Technology in Smart Grids: The Case of Portugal. Energies 2022, 15, 3567. [Google Scholar] [CrossRef]
- Peña, J.I.; Rodríguez, R.; Mayoral, S. Cannibalization, depredation, and market remuneration of power plants. Energy Policy 2022, 167, 113086. [Google Scholar] [CrossRef]
- Matsumoto, T.; Bunn, D.; Yamada, Y. Mitigation of the inefficiency in imbalance settlement designs using day-ahead prices. IEEE Trans. Power Syst. 2022, 37, 3333–3345. [Google Scholar] [CrossRef]
- Tastu, J.; Pinson, P.; Trombe, P.; Madsen, H. Probabilistic forecasts of wind power generation accounting for geographically dispersed information. IEEE Trans. Smart Grid 2014, 5, 480–489. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Wang, X. Review on probabilistic forecasting of wind power generation. Renew. Sustain. Energy Rev. 2014, 32, 255–270. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, H.; Zou, R.; Zhang, F.; Hu, Q. Dynamic non-constraint ensemble model for probabilistic wind power and wind speed forecasting. Renew. Sustain. Energy Rev. 2024, 204, 114781. [Google Scholar] [CrossRef]
- Dhaka, P.; Sreejeth, M.; Tripathi, M. A survey of artificial intelligence applications in wind energy forecasting. Arch. Comput. Methods Eng. 2024, 31, 4853–4878. [Google Scholar] [CrossRef]
- Bazionis, I.K.; Georgilakis, P.S. Review of Deterministic and Probabilistic Wind Power Forecasting: Models, Methods, and Future Research. Electricity 2021, 2, 13–47. [Google Scholar] [CrossRef]
- Lu, X.; Qiu, J.; Yang, Y.; Zhang, C.; Lin, J.; An, S. Large Language Model-based Bidding Behavior Agent and Market Sentiment Agent-Assisted Electricity Price Prediction. IEEE Trans. Energy Mark. Policy Regul. 2024, in press. [Google Scholar]
System | 2024 Share (%) | 2030 Share (%) | 2024 Balancing Services | Future Balancing Services |
---|---|---|---|---|
Denmark | 69 | 80 | Down regulation aggregated | P90 to incentivize participation in FRR |
Finland | 25 | 44 | mFRR and FRR with storage | Same as 2024 |
Germany | 45 | 80 | With storage | Most but not attractive |
Great Britain | 51 | 77 | With storage | Same as 2024 |
Ireland | 34 | 80 | Most balancing services | Fully RES by 2028 |
Norway | 10 | 15 | - | Down-regulation |
Portugal | 71 | 80 | FRR with storage | Most balancing services |
Spain | 40 | 56 | Most balancing services | Priority to hybridized storage solutions |
Sweden | 26 | 32 | With storage in FFR | Down-regulation or all with storage |
Texas | 34 | 23 | With storage | Priority to hybridized storage solutions |
The Netherlands | 45 | 74 | FCR and aFRR | Most balancing services |
Features | Past | Actual | P90 | D90 | DP90 |
---|---|---|---|---|---|
Date | By September 2024 | Since September 2024 | - | - | - |
Size | Small | Medium | High | Medium+ | High |
TSO risk | Medium− | Low | High | Low+ | High |
vRES incentive vRES risk | Low High | Low+ High− | Medium− Medium+ | Medium+ Low+ | High− Low |
Variable | Balancing Requirement | |||
---|---|---|---|---|
Baseline | P90 | D90 | DP90 | |
Average remuneration (EUR/MWh) | 104.76 | 86.05 | 84.98 | 95.85 |
Total reserve capacity allocated (GW) | 3700.63 | 1873.26 | 2104.73 | 2401.85 |
Total reserve activated (GWh) | 320.37 | 386.09 | 392.47 | 376.50 |
Total curtailment (GWh) | 55.89 | 36.87 | 41.08 | 17.69 |
Total positive imbalances (GWh) | 28.51 | 51.26 | 43.04 | 84.45 |
Total negative imbalances (GWh) | 427.40 | 68.61 | 46.47 | 115.16 |
Total positive imbalances cost (M€) | 0.72 | 2.01 | 1.44 | 3.03 |
Total negative imbalances cost (M€) | −23.83 | −2.02 | −1.64 | −3.65 |
Variable | Balancing Requirement | |||
---|---|---|---|---|
Baseline | P90 | D90 | DP90 | |
Average remuneration (€/MWh) | 43.94 | 43.47 | 42.02 | 45.51 |
Total reserve capacity allocated (GW) | 336.58 | 335.60 | 276.68 | 337.73 |
Total reserve activated (GWh) | 97.07 | 97.58 | 81.66 | 97.61 |
Total curtailment (GWh) | 53.44 | 108.66 | 90.28 | 10.72 |
Total positive imbalances (GWh) | 29.32 | 18.79 | 51.81 | 75.73 |
Total negative imbalances (GWh) | 14.01 | 13.22 | 10.40 | 14.06 |
Total positive imbalances cost (M€) | 0.55 | 0.68 | 1.55 | 2.41 |
Total negative imbalances cost (M€) | −0.91 | −0.64 | −0.54 | −0.65 |
Imbalances (MWh) | Baseline | P90 | D90 | DP90 |
---|---|---|---|---|
Min | −20.28 | −20.28 | −20.28 | −20.28 |
Max | 161.91 | 234.88 | 24.70 | 169.75 |
Median | −0.36 | −0.43 | 0.49 | −0.04 |
Mean | 1.08 | 0.43 | 2.43 | 3.61 |
Standard deviation | 7.96 | 7.90 | 5.34 | 12.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algarvio, H.; Sousa, V. Strategies to Incentivize the Participation of Variable Renewable Energy Generators in Balancing Markets. Energies 2025, 18, 2800. https://doi.org/10.3390/en18112800
Algarvio H, Sousa V. Strategies to Incentivize the Participation of Variable Renewable Energy Generators in Balancing Markets. Energies. 2025; 18(11):2800. https://doi.org/10.3390/en18112800
Chicago/Turabian StyleAlgarvio, Hugo, and Vivian Sousa. 2025. "Strategies to Incentivize the Participation of Variable Renewable Energy Generators in Balancing Markets" Energies 18, no. 11: 2800. https://doi.org/10.3390/en18112800
APA StyleAlgarvio, H., & Sousa, V. (2025). Strategies to Incentivize the Participation of Variable Renewable Energy Generators in Balancing Markets. Energies, 18(11), 2800. https://doi.org/10.3390/en18112800