Smart Technologies Applied in Microgrids of Renewable Energy Sources: A Systematic Review
Abstract
:1. Introduction
- (Q01) What smart technologies are used in the renewable energy sector for microgrid applications?
- (Q02) How have smart technologies been used in microgeneration?
- (Q03) Where have smart technologies been applied in the microgeneration process?
- (Q04) What are the potential risks associated with the use of smart technologies in microgeneration?
- (Q05) What limitations in the application of smart technologies in microgrids have been addressed?
2. Materials and Methods
2.1. Eligibility Criteria and Data Collection
2.2. Automation Tools Used in the Bibliometric Data Collection and Analysis Process
- Bibliometrix: 4.1.1;
- R: 4.0.4;
- RStudio: 2023.12.0 Build 369;
- Zotero: 6.0.30.
2.3. Selection Process
2.4. Assessment of Study Bias Risk
3. Results
3.1. Selection of Studies and Flow of the Methodological Process
3.2. Bibliometric Analysis of the Eligible Studies
4. Discussion
4.1. Question 1 (Q1)
4.2. Question 2 (Q2)
4.3. Question 3 (Q3)
4.4. Question 4 (Q4)
4.5. Question 5 (Q5)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
CO2 | Carbon Dioxide |
COP | Conferences of the Parties |
IEEE | Institute of Electrical and Electronics Engineers |
MAS | Multi-Agent System |
P2P | Peer to Peer |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RDS | R Data Serialization |
REM | Renewable Energy for Microgrids |
SDG | Sustainable Development Goal |
SLR | Systematic Literature Review |
References
- Russell, S.J.; Norvig, P.; Davis, E. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall Series in Artificial Intelligence; Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Faceli, K.; Lorena, A.C.; Gama, J.; Almeida, T.A.d.; Carvalho, A.C.P.d.L.F.d. Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina; LTC: Rio de Janeiro, Brazil, 2021. [Google Scholar]
- Organização das Nações Unidas. Como a Inteligência Artificial Pode Ajudar a Combater a Mudança Climática? ONU News. 12 November 2023. Available online: https://news.un.org/pt/story/2023/11/1823252 (accessed on 20 January 2024).
- Organização das Nações Unidas (ONU), NUB. COP27: O Que Você Precisa Saber Sobre a Conferência do Clima da ONU. As Nações Unidas No Brazil. 2 November 2022. Available online: https://brasil.un.org/pt-br/ (accessed on 20 January 2024).
- Organização das Nações Unidas (ONU), NUB. Energia Limpa é Chave Para Combater Pobreza Energética e Mudanças ClimáTicas, Destaca ONU. As Nações Unidas No Brasil. 24 September 2021. Available online: https://brasil.un.org/pt-br/145932-energia-limpa-%C3%A9-chave-para-combater-pobreza-energ%C3%A9tica-e-mudan%C3%A7as-clim%C3%A1ticas-destaca-onu (accessed on 21 January 2024).
- ONU. Beyond Access: 1.18 Billion in Energy Poverty Despite Rising Electricity Access. Data Futures Exchange. 12 June 2024. Available online: https://data.undp.org/blog/1-18-billion-around-the-world-in-energy-poverty (accessed on 23 June 2024).
- ONU. Causes and Effects of Climate Change; United Nations; Available online: https://www.un.org/en/climatechange/science/causes-effects-climate-change (accessed on 21 January 2024).
- Filho, A.S.N.; Borges, T.; Salvador, H.; Ferreira, P.; Saba, H. Renewable sources to promote well-being in poor regions of Brazil. Front. Phys. 2022, 10, 1048721. [Google Scholar] [CrossRef]
- Baring-Gould, I.; Burman, K.; Singh, M.; Esterly, S.; Mutiso, R.; McGregor, C. Quality Assurance Framework for Mini-Grids; Technical Report NREL/TP–5000-67374; NREL: Golden, CO, USA, 2016. [Google Scholar] [CrossRef]
- Da Costa, P.M.A. Regulação da Integração de Microgeração e Microredes em Sistemas de Distribuição de Energia Eléctrica. Ph.D. Thesis, Universidade do Porto, Porto, Portugal, 2008. [Google Scholar]
- UNDP. What Are the Sustainable Development Goals? United Nations; Available online: https://www.undp.org/sustainable-development-goals (accessed on 22 January 2024).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- UNFCCC. Adoption of the Paris Agreement. Proposal by the President|UNFCCC. 12 December 2015. Available online: https://unfccc.int/documents/9064 (accessed on 22 January 2024).
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: https://civil-protection-knowledge-network.europa.eu/media/climate-change-2023-synthesis-report-contribution-working-groups-i-ii-and-iii-sixth (accessed on 24 January 2024). [CrossRef]
- Institute of Electrical and Electronics Engineers. IEEE Taxonomy: A Subset Hierarchical Display of IEEE Thesaurus Terms; Technical Report; IEEE: New York, NY, USA, 2024. [Google Scholar]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Inf. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Moreira, P.S.D.C.; Guimarães, A.J.R.; Tsunoda, D.F. Qual ferramenta bibliométrica Escolher? Um estudo comparativo entre softwares. P2P Inov. 2020, 6, 140–158. [Google Scholar] [CrossRef]
- Zotero. Zotero|Your Personal Research Assistant. 2024. Available online: https://www.zotero.org/ (accessed on 24 January 2024).
- Free Software Foundation. GNU Affero General Public License. 2007. Available online: https://www.gnu.org/licenses/agpl-3.0.en.html (accessed on 24 January 2024).
- Dolara, A.; Grimaccia, F.; Leva, S.; Mussetta, M.; Ogliari, E. A physical hybrid artificial neural network for short term forecasting of PV plant power output. Energies 2015, 8, 1138–1153. [Google Scholar] [CrossRef]
- Pinto, T.; Morais, H.; Sousa, T.M.; Sousa, T.; Vale, Z.; Praça, I.; Faia, R.; Pires, E.J.S. Adaptive portfolio optimization for multiple electricity markets participation. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 1720–1733. [Google Scholar] [CrossRef]
- Mocanu, E.; Nguyen, P.H.; Gibescu, M.; Kling, W.L. Deep learning for estimating building energy consumption. Sustain. Energy Grids Netw. 2016, 6, 91–99. [Google Scholar] [CrossRef]
- Leva, S.; Dolara, A.; Grimaccia, F.; Mussetta, M.; Ogliari, E. Analysis and validation of 24 h ahead neural network forecasting of photovoltaic output power. Math. Comput. Simul. 2017, 131, 88–100. [Google Scholar] [CrossRef]
- Ogliari, E.; Dolara, A.; Manzolini, G.; Leva, S. Physical and hybrid methods comparison for the day ahead PV output power forecast. Renew. Energy 2017, 113, 11–21. [Google Scholar] [CrossRef]
- Yan, X.; Abbes, D.; Francois, B. Uncertainty analysis for day ahead power reserve quantification in an urban microgrid including PV generators. Renew. Energy 2017, 106, 288–297. [Google Scholar] [CrossRef]
- Khalid, A.; Aslam, S.; Aurangzeb, K.; Haider, S.I.; Ashraf, M.; Javaid, N. An efficient energy management approach using fog-as-a-service for sharing economy in a smart grid. Energies 2018, 11, 3500. [Google Scholar] [CrossRef]
- Oprea, S.V.; Pîrjan, A.; Căruțașu, G.; Petroșanu, D.M.; Bâra, A.; Stănică, J.L.; Coculescu, C. Developing a mixed neural network approach to forecast the residential electricity consumption based on sensor recorded data. Sensors 2018, 18, 1443. [Google Scholar] [CrossRef]
- Li, J.; Liu, L.; Zhao, C.; Hamedani, K.; Atat, R.; Yi, Y. Enabling sustainable cyber physical security systems through neuromorphic computing. IEEE Trans. Sustain. Comput. 2017, 3, 112–125. [Google Scholar] [CrossRef]
- Chou, J.S.; Tran, D.S. Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders. Energy 2018, 165, 709–726. [Google Scholar] [CrossRef]
- Kumar, K.N.; Vijayakumar, K.; Kalpesh, C. Virtual energy storage capacity estimation using ANN-based kWh modelling of refrigerators. IET Smart Grid 2018, 1, 31–39. [Google Scholar] [CrossRef]
- Rosato, A.; Panella, M.; Araneo, R.; Andreotti, A. A neural network based prediction system of distributed generation for the management of microgrids. IEEE Trans. Ind. Appl. 2019, 55, 7092–7102. [Google Scholar] [CrossRef]
- Li, B.; Roche, R.; Paire, D.; Miraoui, A. A price decision approach for multiple multi-energy-supply microgrids considering demand response. Energy 2019, 167, 117–135. [Google Scholar] [CrossRef]
- Alshehri, J.; Khalid, M.; Alzahrani, A. An intelligent battery energy storage-based controller for power quality improvement in microgrids. Energies 2019, 12, 2112. [Google Scholar] [CrossRef]
- Mitra, S.; Chattopadhyay, P. Design and implementation of flexible Numerical Overcurrent Relay on FPGA. Int. J. Electr. Power Energy Syst. 2019, 104, 797–806. [Google Scholar] [CrossRef]
- Huang, C.J.; Kuo, P.H. Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting. IEEE Access 2019, 7, 74822–74834. [Google Scholar] [CrossRef]
- Alshehri, J.; Khalid, M. Power quality improvement in microgrids under critical disturbances using an intelligent decoupled control strategy based on battery energy storage system. IEEE Access 2019, 7, 147314–147326. [Google Scholar] [CrossRef]
- Nespoli, A.; Mussetta, M.; Ogliari, E.; Leva, S.; Fernández-Ramírez, L.; García-Triviño, P. Robust 24 h ahead forecast in a microgrid: A real case study. Electronics 2019, 8, 1434. [Google Scholar] [CrossRef]
- Moreno, G.; Martin, P.; Santos, C.; Rodríguez, F.J.; Santiso, E. A day-ahead irradiance forecasting strategy for the integration of photovoltaic systems in virtual power plants. IEEE Access 2020, 8, 204226–204240. [Google Scholar] [CrossRef]
- Kobylinski, P.; Wierzbowski, M.; Piotrowski, K. High-resolution net load forecasting for micro-neighbourhoods with high penetration of renewable energy sources. Int. J. Electr. Power Energy Syst. 2020, 117, 105635. [Google Scholar] [CrossRef]
- Han, B.; Li, M.; Song, J.; Li, J.; Faraji, J. Optimal design of an on-grid microgrid considering long-term load demand forecasting: A case study. Distrib. Gener. Altern. Energy J. 2021, 35, 345–362. [Google Scholar] [CrossRef]
- Leva, S.; Nespoli, A.; Pretto, S.; Mussetta, M.; Ogliari, E.G.C. PV plant power nowcasting: A real case comparative study with an open access dataset. IEEE Access 2020, 8, 194428–194440. [Google Scholar] [CrossRef]
- Ozer, I.; Efe, S.B.; Ozbay, H. A combined deep learning application for short term load forecasting. Alex. Eng. J. 2021, 60, 3807–3818. [Google Scholar] [CrossRef]
- Anaadumba, R.; Liu, Q.; Marah, B.D.; Nakoty, F.M.; Liu, X.; Zhang, Y. A renewable energy forecasting and control approach to secured edge-level efficiency in a distributed micro-grid. Cybersecurity 2021, 4, 1–12. [Google Scholar] [CrossRef]
- Xia, M.; Shao, H.; Ma, X.; De Silva, C.W. A stacked GRU-RNN-based approach for predicting renewable energy and electricity load for smart grid operation. IEEE Trans. Ind. Inform. 2021, 17, 7050–7059. [Google Scholar] [CrossRef]
- Aslam, S.; Herodotou, H.; Mohsin, S.M.; Javaid, N.; Ashraf, N.; Aslam, S. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew. Sustain. Energy Rev. 2021, 144, 110992. [Google Scholar] [CrossRef]
- Rao, S.; Padma, K. ANN based day-ahead load demand forecasting for energy transactions at urban community level with interoperable green microgrid cluster. Int. J. Renew. Energy Res. 2021, 11, 147–157. [Google Scholar]
- Hannan, M.; Abdolrasol, M.G.; Mohamed, R.; Al-Shetwi, A.Q.; Ker, P.J.; Begum, R.A.; Muttaqi, K.M. ANN-based binary backtracking search algorithm for VPP optimal scheduling and cost-effective evaluation. IEEE Trans. Ind. Appl. 2021, 57, 5603–5613. [Google Scholar] [CrossRef]
- Khan, N.; Ullah, F.U.M.; Ullah, A.; Lee, M.Y.; Baik, S.W. Batteries state of health estimation via efficient neural networks with multiple channel charging profiles. IEEE Access 2020, 9, 7797–7813. [Google Scholar] [CrossRef]
- Shuai, H.; Li, F.; Pulgar-Painemal, H.; Xue, Y. Branching dueling Q-network-based online scheduling of a microgrid with distributed energy storage systems. IEEE Trans. Smart Grid 2021, 12, 5479–5482. [Google Scholar] [CrossRef]
- Aliberti, A.; Fucini, D.; Bottaccioli, L.; Macii, E.; Acquaviva, A.; Patti, E. Comparative analysis of neural networks techniques to forecast Global Horizontal Irradiance. IEEE Access 2021, 9, 122829–122846. [Google Scholar] [CrossRef]
- Albogamy, F.R.; Hafeez, G.; Khan, I.; Khan, S.; Alkhammash, H.I.; Ali, F.; Rukh, G. Efficient energy optimization day-ahead energy forecasting in smart grid considering demand response and microgrids. Sustainability 2021, 13, 11429. [Google Scholar] [CrossRef]
- Xu, J.; Mahmood, H.; Xiao, H.; Anderlini, E.; Abusara, M. Electric water heaters management via reinforcement learning with time-delay in isolated microgrids. IEEE Access 2021, 9, 132569–132579. [Google Scholar] [CrossRef]
- Jarmouni, E.; Mouhsen, A.; Lamhammedi, M.; Ouldzira, H. Energy management system and supervision in a micro-grid using artificial neural network technique. Int. J. Power Electron. Drive Syst. (IJPEDS) 2021, 12, 2570–2579. [Google Scholar] [CrossRef]
- Chandrasekaran, K.; Selvaraj, J.; Amaladoss, C.R.; Veerapan, L. Hybrid renewable energy based smart grid system for reactive power management and voltage profile enhancement using artificial neural network. Energy Sources Part A Recover. Util. Environ. Eff. 2021, 43, 2419–2442. [Google Scholar] [CrossRef]
- Jarmouni, E.; Mouhsen, A.; Lamhammedi, M.; Ouldzira, H. Integration of artificial neural networks for multi-source energy management in a smart grid. Int. J. Power Electron. Drive Syst. 2021, 12, 1919. [Google Scholar] [CrossRef]
- Babbar, S.M.; Lau, C.Y.; Thang, K.F. Long term solar power generation prediction using adaboost as a hybrid of linear and non-linear machine learning model. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 11. [Google Scholar] [CrossRef]
- Qadir, Z.; Khan, S.I.; Khalaji, E.; Munawar, H.S.; Al-Turjman, F.; Mahmud, M.P.; Kouzani, A.Z.; Le, K. Predicting the energy output of hybrid PV–wind renewable energy system using feature selection technique for smart grids. Energy Rep. 2021, 7, 8465–8475. [Google Scholar] [CrossRef]
- Parejo, A.; Bracco, S.; Personal, E.; Larios, D.F.; Delfino, F.; León, C. Short-term power forecasting framework for microgrids using combined baseline and regression models. Appl. Sci. 2021, 11, 6420. [Google Scholar] [CrossRef]
- Buturache, A.N.; Stancu, S. Solar energy production forecast using standard recurrent neural networks, long short-term memory, and gated recurrent unit. Eng. Econ. 2021, 32, 313–324. [Google Scholar] [CrossRef]
- Cheng, T.; Zhu, X.; Gu, X.; Yang, F.; Mohammadi, M. Stochastic energy management and scheduling of microgrids in correlated environment: A deep learning-oriented approach. Sustain. Cities Soc. 2021, 69, 102856. [Google Scholar] [CrossRef]
- Mousavi, S.B.; Nabat, M.H.; Razmi, A.R.; Ahmadi, P. A comprehensive study and multi-criteria optimization of a novel sub-critical liquid air energy storage (SC-LAES). Energy Convers. Manag. 2022, 258, 115549. [Google Scholar] [CrossRef]
- Wen, H.; Du, Y.; Lim, E.G.; Wen, H.; Yan, K.; Li, X.; Jiang, L. A solar forecasting framework based on federated learning and distributed computing. Build. Environ. 2022, 225, 109556. [Google Scholar] [CrossRef]
- Ashtari, B.; Alizadeh Bidgoli, M.; Babaei, M.; Ahmarinejad, A. A two-stage energy management framework for optimal scheduling of multi-microgrids with generation and demand forecasting. Neural Comput. Appl. 2022, 34, 12159–12173. [Google Scholar] [CrossRef]
- Sarmas, E.; Strompolas, S.; Marinakis, V.; Santori, F.; Bucarelli, M.A.; Doukas, H. An incremental learning framework for photovoltaic production and load forecasting in energy microgrids. Electronics 2022, 11, 3962. [Google Scholar] [CrossRef]
- Iturrino-García, C.; Patrizi, G.; Bartolini, A.; Ciani, L.; Paolucci, L.; Luchetta, A.; Grasso, F. An innovative single shot power quality disturbance detector algorithm. IEEE Trans. Instrum. Meas. 2022, 71, 2517210. [Google Scholar] [CrossRef]
- Hua, W.; Jiang, J.; Sun, H.; Tonello, A.M.; Qadrdan, M.; Wu, J. Data-driven prosumer-centric energy scheduling using convolutional neural networks. Appl. Energy 2022, 308, 118361. [Google Scholar] [CrossRef]
- Rodrigues, F.M.; Cardeira, C.; Calado, J.M.; Melicio, R. Home Energy Forecast Performance Tool for Smart Living Services Suppliers under an Energy 4.0 and CPS Framework. Energies 2022, 15, 957. [Google Scholar] [CrossRef]
- Slowik, M.; Urban, W. Machine learning short-term energy consumption forecasting for microgrids in a manufacturing plant. Energies 2022, 15, 3382. [Google Scholar] [CrossRef]
- Roseline, J.F.; Dhanya, D.; Selvan, S.; Yuvaraj, M.; Duraipandy, P.; Kumar, S.S.; Prasad, A.R.; Sathyamurthy, R.; Mohanavel, V. Neural Network modelling for prediction of energy in hybrid renewable energy systems. Energy Rep. 2022, 8, 999–1008. [Google Scholar] [CrossRef]
- Albogamy, F.; Ashfaq, Y.; Hafeez, G.; Murawwat, S.; Khan, S.; Ali, F.; Aslam Khan, F.; Rehman, K. Optimal Demand-Side Management Using Flat Pricing Scheme in Smart Grid. Processes 2022, 10, 1214. [Google Scholar] [CrossRef]
- Boum, A.T.; Foba Kakeu, V.J.; Mbey, C.F.; Yem Souhe, F.G. Photovoltaic power generation forecasting using a novel hybrid intelligent model in smart grid. Comput. Intell. Neurosci. 2022, 2022, 7495548. [Google Scholar] [CrossRef]
- Pattanaik, D.; Swain, S.C.; Samanta, I.S.; Dash, R.; Swain, K. Power Quality Disturbance Detection and Monitoring of Solar Integrated Micro-Grid. WSEAS Trans. Power Syst. 2022, 17, 306–315. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Vijayakumar, K.; Nandhakumar, K. Prediction of virtual energy storage capacity of the air-conditioner using a stochastic gradient descent based artificial neural network. Electr. Power Syst. Res. 2022, 208, 107879. [Google Scholar] [CrossRef]
- Cicceri, G.; Tricomi, G.; D’Agati, L.; Longo, F.; Merlino, G.; Puliafito, A. A Deep Learning-Driven Self-Conscious Distributed Cyber-Physical System for Renewable Energy Communities. Sensors 2023, 23, 4549. [Google Scholar] [CrossRef]
- Bakeer, M.; Bakeer, A.; Magdy, G.; Aly, M.M. A new cyber-security approach for load frequency control of hybrid interconnected renewable power systems. J. Clean. Prod. 2023, 425, 138866. [Google Scholar] [CrossRef]
- Giglio, E.; Luzzani, G.; Terranova, V.; Trivigno, G.; Niccolai, A.; Grimaccia, F. An efficient artificial intelligence energy management system for urban building integrating photovoltaic and storage. IEEE Access 2023, 11, 18673–18688. [Google Scholar] [CrossRef]
- Jegajothi, B.; Arumugam, S.; Shukla, N.K.; Kathir, I.; Yamunaa, P.; Digra, M. An Efficient MPPT Tracking in Solar PV System with Smart Grid Enhancement Using CMCMAC Protocol. Comput. Syst. Sci. Eng. 2023, 47, 2417–2437. [Google Scholar] [CrossRef]
- Ghadi, Y.Y.; Iqbal, M.S.; Adnan, M.; Amjad, K.; Ahmad, I.; Farooq, U. An improved artificial neural network-based approach for total harmonic distortion reduction in cascaded H-bridge multilevel inverters. IEEE Access 2023, 11, 127348–127363. [Google Scholar] [CrossRef]
- Mansouri, S.A.; Jordehi, A.R.; Marzband, M.; Tostado-Véliz, M.; Jurado, F.; Aguado, J.A. An IoT-enabled hierarchical decentralized framework for multi-energy microgrids market management in the presence of smart prosumers using a deep learning-based forecaster. Appl. Energy 2023, 333, 120560. [Google Scholar] [CrossRef]
- Abbass, M.J.; Lis, R.; Mushtaq, Z. Artificial Neural Network (ANN)-Based Voltage Stability Prediction of Test Microgrid Grid. IEEE Access 2023, 11, 58994–59001. [Google Scholar] [CrossRef]
- Soni, P.; Subhashini, J. Artificial Neural Network-Based Development of an Efficient Energy Management Strategy for Office Building. Intell. Autom. Soft Comput. 2023, 37, 1225–1242. [Google Scholar] [CrossRef]
- Tan, B.; Lin, Z.; Zheng, X.; Xiao, F.; Wu, Q.; Yan, J. Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors. Appl. Energy 2023, 350, 121770. [Google Scholar] [CrossRef]
- Stanley, R.S.; Pavalarajan, S. Evaluation of Fuzzy-Based Artificial Neural Network for Power Quality Enhancement. Electr. Power Components Syst. 2024, 52, 250–264. [Google Scholar]
- Li, X.; Wang, T.; Li, L. Impact optical communication model in sustainable building construction over the carbon footprint detection using quantum networks. Opt. Quantum Electron. 2023, 55, 912. [Google Scholar] [CrossRef]
- Elmetwaly, A.H.; ElDesouky, A.A.; Fekry, H.M.; Younis, R.A.; Barnawi, A.B.; Elbarbary, Z.S.; Salem, A.A. Improving Power Quality Problems of Isolated MG Based on ANN Under Different Operating Conditions Through PMS and ASSC Integration. IEEE Access 2023, 11, 99822–99835. [Google Scholar] [CrossRef]
- Cardoso, D.; Nunes, D.; Faria, J.; Fael, P.; Gaspar, P.D. Intelligent Micro-Cogeneration Systems for Residential Grids: A Sustainable Solution for Efficient Energy Management. Energies 2023, 16, 5215. [Google Scholar] [CrossRef]
- Liao, J.; Yang, D.; Arshad, N.I.; Venkatachalam, K.; Ahmadian, A. MEMS: An automated multi-energy management system for smart residences using the DD-LSTM approach. Sustain. Cities Soc. 2023, 98, 104850. [Google Scholar] [CrossRef]
- Narasimman, K.; Gopalan, V.; Bakthavatsalam, A.; Elumalai, P.; Shajahan, M.I.; Michael, J.J. Modelling and real time performance evaluation of a 5 MW grid-connected solar photovoltaic plant using different artificial neural networks. Energy Convers. Manag. 2023, 279, 116767. [Google Scholar] [CrossRef]
- Alaraj, M.; Parodi, M.; Radi, M.; Alsisi, E.; Abbod, M.F.; Majdalawieh, M. Occupancy-based one-year-ahead heating, ventilation, and air-conditioning electricity consumption optimization using machine learning. J. Build. Eng. 2023, 80, 108051. [Google Scholar] [CrossRef]
- Barukčić, M.; Kurtović, G.; Benšić, T.; Jerković Štil, V. Optimal Allocation and Energy Management of Units in Distribution Networks with Multiple Renewable Energy Sources and Battery Storage Based on Computational Intelligence. Energies 2023, 16, 7567. [Google Scholar] [CrossRef]
- Jbene, M.; Saadane, R.; Tigani, S.; Chehri, A. Personalized PV system recommendation for enhanced solar energy harvesting using deep learning and collaborative filtering. Sustain. Energy Technol. Assess. 2023, 60, 103563. [Google Scholar] [CrossRef]
- Camal, S.; Michiorri, A.; Kariniotakis, G. Reliable provision of ancillary services from aggregated variable renewable energy sources through forecasting of extreme quantiles. IEEE Trans. Power Syst. 2022, 38, 3070–3084. [Google Scholar] [CrossRef]
- Nakıp, M.; Çopur, O.; Biyik, E.; Güzeliş, C. Renewable energy management in smart home environment via forecast embedded scheduling based on Recurrent Trend Predictive Neural Network. Appl. Energy 2023, 340, 121014. [Google Scholar] [CrossRef]
- Sahoo, G.K.; Choudhury, S.; Rathore, R.S.; Bajaj, M.; Dutta, A.K. Scaled conjugate-artificial neural network-based novel framework for enhancing the power quality of grid-tied microgrid systems. Alex. Eng. J. 2023, 80, 520–541. [Google Scholar] [CrossRef]
- Sharma, R.; Kamath, H.R. Simulation of Solar Based Smart Grid System Using Artificial Neural Network and Fuzzy Controller. Int. J. Ofelectrical Electron. Res 2023, 11, 132–137. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, J.; Xiao, G.; He, S.; Deng, K. TransformGraph: A novel short-term electricity net load forecasting model. Energy Rep. 2023, 9, 2705–2717. [Google Scholar] [CrossRef]
- Domínguez-Barbero, D.; García-González, J.; Sanz-Bobi, M.Á. Twin-delayed deep deterministic policy gradient algorithm for the energy management of microgrids. Eng. Appl. Artif. Intell. 2023, 125, 106693. [Google Scholar] [CrossRef]
- Ikhe, A.; Pahariya, Y. Voltage regulation using artificial neural network controller for electric spring in hybrid power system. Int. J. Intell. Syst. Appl. Eng. 2023, 11, 280–286. [Google Scholar]
- Avramescu, M. Microgrid strategies and algorithms. UPB Sci. Bull. Ser. C Electr. Eng. Comput. Sci. 2015, 77, 17–30. [Google Scholar]
- Elamhni, L.; Bouhouch, L.; Alaoui, R.; Moudden, A. Modeling and control of a hybrid microgrid by multi-agent system. Int. Rev. Electr. Eng. (IREE) 2015, 10, 145–153. [Google Scholar] [CrossRef]
- Sonnenschein, M.; Hinrichs, C.; Nieße, A.; Vogel, U. Supporting renewable power supply through distributed coordination of energy resources. In Proceedings of the ICT Innovations for Sustainability, Zurich, Switzerland, 14–16 February 2013; Springer: Berlin/Heidelberg, Germany, 2015; pp. 387–404. [Google Scholar]
- Dou, C.X.; An, X.G.; Yue, D. Multi-agent system based energy management strategies for microgrid by using renewable energy source and load forecasting. Electr. Power Compon. Syst. 2016, 44, 2059–2072. [Google Scholar] [CrossRef]
- Karavas, C.S.; Arvanitis, K.; Papadakis, G. A game theory approach to multi-agent decentralized energy management of autonomous polygeneration microgrids. Energies 2017, 10, 1756. [Google Scholar] [CrossRef]
- Astero, P.; Choi, B.J.; Liang, H. Multi-agent transactive energy management system considering high levels of renewable energy source and electric vehicles. IET Gener. Transm. Distrib. 2017, 11, 3713–3721. [Google Scholar] [CrossRef]
- Kanellos, F.D. Real-time control based on multi-agent systems for the operation of large ports as prosumer microgrids. IEEE Access 2017, 5, 9439–9452. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Xu, T.; Guo, L.; Fan, S.; Wei, Z. Decentralised voltage control with built-in incentives for participants in distribution networks. IET Gener. Transm. Distrib. 2018, 12, 790–797. [Google Scholar] [CrossRef]
- Celik, B.; Roche, R.; Bouquain, D.; Miraoui, A. Decentralized neighborhood energy management with coordinated smart home energy sharing. IEEE Trans. Smart Grid 2017, 9, 6387–6397. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, K.; Li, H.; Coelho, E.A.A.; Guerrero, J.M. MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: A comprehensive overview. IEEE Trans. Power Electron. 2017, 33, 6488–6508. [Google Scholar] [CrossRef]
- Boudoudouh, S.; Maâroufi, M. Multi agent system solution to microgrid implementation. Sustain. Cities Soc. 2018, 39, 252–261. [Google Scholar] [CrossRef]
- Jiang, W.; Yang, K.; Yang, J.; Mao, R.; Xue, N.; Zhuo, Z. A multiagent-based hierarchical energy management strategy for maximization of renewable energy consumption in interconnected multi-microgrids. IEEE Access 2019, 7, 169931–169945. [Google Scholar] [CrossRef]
- Ghorbani, S.; Unland, R.; Shokouhandeh, H.; Kowalczyk, R. An innovative stochastic multi-agent-based energy management approach for microgrids considering uncertainties. Inventions 2019, 4, 37. [Google Scholar] [CrossRef]
- Ahmad, J.; Tahir, M.; Mazumder, S.K. Dynamic economic dispatch and transient control of distributed generators in a microgrid. IEEE Syst. J. 2018, 13, 802–812. [Google Scholar] [CrossRef]
- Dou, C.; Pan, X.; Zhang, Z.; Yue, D.; Xu, S.; Hayat, T.; Alsaedi, A. Multi-agent-system-based bi-level bidding strategy of microgrid with game theory in the electricity market. Electr. Power Compon. Syst. 2019, 47, 703–719. [Google Scholar] [CrossRef]
- Sujil, A.; Kumar, R.; Bansal, R.C. Multiagent-based autonomous energy management system with self-healing capabilities for a microgrid. IEEE Trans. Ind. Inform. 2018, 15, 6280–6290. [Google Scholar]
- Kaur Saini, J.; Raj Sood, Y.; Shrivastava, R. Optimal resource management of microgrids in a competitive market environment using dual layer control approach. Electr. Power Compon. Syst. 2019, 47, 1274–1286. [Google Scholar] [CrossRef]
- Morsali, R.; Thirunavukkarasu, G.S.; Seyedmahmoudian, M.; Stojcevski, A.; Kowalczyk, R. A relaxed constrained decentralised demand side management system of a community-based residential microgrid with realistic appliance models. Appl. Energy 2020, 277, 115626. [Google Scholar] [CrossRef]
- Abdeltawab, H.M.; Mohamed, Y.A. Distributed battery energy storage co-operation for renewable energy sources integration. Energies 2020, 13, 5517. [Google Scholar] [CrossRef]
- Xiong, L.; Li, P.; Wang, Z.; Wang, J. Multi-agent based multi objective renewable energy management for diversified community power consumers. Appl. Energy 2020, 259, 114140. [Google Scholar] [CrossRef]
- Shulga, R.; Putilova, I. Multi-agent direct current systems using renewable energy sources and hydrogen fuel cells. Int. J. Hydrogen Energy 2020, 45, 6982–6993. [Google Scholar] [CrossRef]
- El Bourakadi, D.; Yahyaouy, A.; Boumhidi, J. Multi-agent system based on the extreme learning machine and fuzzy control for intelligent energy management in microgrid. J. Intell. Syst. 2019, 29, 877–893. [Google Scholar] [CrossRef]
- Tazi, K.; Abbou, F.M.; Abdi, F. Multi-agent system for microgrids: Design, optimization and performance. Artif. Intell. Rev. 2020, 53, 1233–1292. [Google Scholar] [CrossRef]
- Singh, N.; Elamvazuthi, I.; Nallagownden, P.; Ramasamy, G.; Jangra, A. Routing based multi-agent system for network reliability in the smart microgrid. Sensors 2020, 20, 2992. [Google Scholar] [CrossRef]
- Mohammad Zaheri, D.; Khederzadeh, M. Two-stage coupling of coordinated energy management and self-healing strategies in a smart distribution network considering coupling neighbouring microgrids according to autonomous decentralized restoration technique. Int. Trans. Electr. Energy Syst. 2020, 30, e12596. [Google Scholar] [CrossRef]
- Paredes, C.M.; Bayona, A.F.; Martínez, D.; Crespo, A.; González, A.; Simo, J. Approach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities. Energies 2021, 14, 5316. [Google Scholar] [CrossRef]
- Rajaei, A.; Fattaheian-Dehkordi, S.; Fotuhi-Firuzabad, M.; Moeini-Aghtaie, M.; Lehtonen, M. Developing a distributed robust energy management framework for active distribution systems. IEEE Trans. Sustain. Energy 2021, 12, 1891–1902. [Google Scholar] [CrossRef]
- Farinis, G.K.; Kanellos, F.D. Integrated energy management system for Microgrids of building prosumers. Electr. Power Syst. Res. 2021, 198, 107357. [Google Scholar] [CrossRef]
- Albarakati, A.J.; Boujoudar, Y.; Azeroual, M.; Jabeur, R.; Aljarbouh, A.; El Moussaoui, H.; Lamhamdi, T.; Ouaaline, N. Real-time energy management for DC microgrids using artificial intelligence. Energies 2021, 14, 5307. [Google Scholar] [CrossRef]
- Andrade, R.; Praça, I.; Wannous, S.; Ramos, S. The Impact of Attacks in LEM and Prevention Measures Based on Forecasting and Trust Models. Processes 2021, 9, 314. [Google Scholar] [CrossRef]
- Liu, D.; Jiang, K.; Yan, L.; Ji, X.; Cao, K.; Xiong, P. A fully distributed economic dispatch method in DC microgrid based on consensus algorithm. IEEE Access 2022, 10, 119345–119356. [Google Scholar] [CrossRef]
- Abdelhamid, A.M.; Zakzouk, N.E.; El Safty, S. A multi-agent approach for self-healing and RES-penetration in smart distribution networks. Mathematics 2022, 10, 2275. [Google Scholar] [CrossRef]
- Hamidi, M.; Raihani, A.; Youssfi, M.; Bouattane, O. A new modular nanogrid energy management system based on multi-agent architecture. Int. J. Power Electron. Drive Syst. 2022, 13, 178–190. [Google Scholar] [CrossRef]
- Tofighi-Milani, M.; Fattaheian-Dehkordi, S.; Gholami, M.; Fotuhi-Firuzabad, M.; Lehtonen, M. A novel distributed paradigm for energy scheduling of islanded multiagent microgrids. IEEE Access 2022, 10, 83636–83649. [Google Scholar] [CrossRef]
- Deshpande, K.; Möhl, P.; Hämmerle, A.; Weichhart, G.; Zörrer, H.; Pichler, A. Energy management simulation with multi-agent reinforcement learning: An approach to achieve reliability and resilience. Energies 2022, 15, 7381. [Google Scholar] [CrossRef]
- Wang, R.; Sun, Q.; Han, J.; Zhou, J.; Hu, W.; Zhang, H.; Wang, P. Energy-management strategy of battery energy storage systems in DC microgrids: A distributed dynamic event-triggered H∞ consensus control. IEEE Trans. Syst. Man Cybern. Syst. 2021, 52, 5692–5701. [Google Scholar] [CrossRef]
- Danner, D.; de Meer, H. Max-consensus protocol to determine the regulated node in distributed voltage regulation. Energy Inform. 2022, 5, 15. [Google Scholar] [CrossRef]
- Kaur, J.; Sood, Y.R.; Shrivastava, R. Optimal resource utilization in a multi-microgrid network for Tamil Nadu state in India. IETE J. Res. 2022, 68, 183–193. [Google Scholar] [CrossRef]
- Harrold, D.J.; Cao, J.; Fan, Z. Renewable energy integration and microgrid energy trading using multi-agent deep reinforcement learning. Appl. Energy 2022, 318, 119151. [Google Scholar] [CrossRef]
- Madler, J.; Harding, S.; Weibelzahl, M. A multi-agent model of urban microgrids: Assessing the effects of energy-market shocks using real-world data. Appl. Energy 2023, 343, 121180. [Google Scholar] [CrossRef]
- Alhasnawi, B.N.; Jasim, B.H.; Bureš, V.; Sedhom, B.E.; Alhasnawi, A.N.; Abbassi, R.; Alsemawai, M.R.M.; Siano, P.; Guerrero, J.M. A novel economic dispatch in the stand-alone system using improved butterfly optimization algorithm. Energy Strategy Rev. 2023, 49, 101135. [Google Scholar] [CrossRef]
- Darshi, R.; Shamaghdari, S.; Jalali, A.; Arasteh, H. Decentralized energy management system for smart microgrids using reinforcement learning. IET Gener. Transm. Distrib. 2023, 17, 2142–2155. [Google Scholar] [CrossRef]
- Billah, M.; Yousif, M.; Numan, M.; Salam, I.U.; Kazmi, S.A.A.; Alghamdi, T.A. Decentralized smart energy management in hybrid microgrids: Evaluating operational modes, resources optimization, and environmental impacts. IEEE Access 2023, 11, 143530–143548. [Google Scholar] [CrossRef]
- Gao, G.; Wen, Y.; Tao, D. Distributed energy trading and scheduling among microgrids via multiagent reinforcement learning. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 10638–10652. [Google Scholar] [CrossRef]
- Kyriakou, D.G.; Kanellos, F.D. Energy and power management system for microgrids of large-scale building prosumers. IET Energy Syst. Integr. 2023, 5, 228–244. [Google Scholar] [CrossRef]
- Chreim, B.; Esseghir, M.; Merghem-Boulahia, L. Energy management in residential communities with shared storage based on multi-agent systems: Application to smart grids. Eng. Appl. Artif. Intell. 2023, 126, 106886. [Google Scholar] [CrossRef]
- Wang, R.; Li, W.; Sun, Q.; Li, Y.; Gui, Y.; Wang, P. Fully distributed dynamic edge-event-triggered current sharing control strategy for multibus dc microgrids with power coupling. IEEE Trans. Ind. Inform. 2022, 19, 5667–5678. [Google Scholar] [CrossRef]
- Ghazimirsaeid, S.S.; Jonban, M.S.; Mudiyanselage, M.W.; Marzband, M.; Martinez, J.L.R.; Abusorrah, A. Multi-agent-based energy management of multiple grid-connected green buildings. J. Build. Eng. 2023, 74, 106866. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.; Wang, B.; Wu, H. Multi-microgrid collaborative optimization scheduling using an improved multi-agent soft actor-critic algorithm. Energies 2023, 16, 3248. [Google Scholar] [CrossRef]
- Li, J.; Zhou, T. Multiagent deep meta reinforcement learning for sea computing-based energy management of interconnected grids considering renewable energy sources in sustainable cities. Sustain. Cities Soc. 2023, 99, 104917. [Google Scholar] [CrossRef]
- Amin, M.A.; Suleman, A.; Waseem, M.; Iqbal, T.; Aziz, S.; Faiz, M.T.; Zulfiqar, L.; Saleh, A.M. Renewable energy maximization for pelagic islands network of microgrids through battery swapping using deep reinforcement learning. IEEE Access 2023, 11, 86196–86213. [Google Scholar] [CrossRef]
- Symiakakis, M.S.; Kanellos, F.D. Towards the detailed modeling of deregulated electricity markets comprising Smart prosumers and peer to peer energy trading. Electr. Power Syst. Res. 2023, 217, 109158. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Nguyen, S.Q.; Vo, B.L.; Le, N.D.; Tran, M.K. Two-level distributed fully-predictive frequency control scheme for inverter-based AC Microgrid considering communication delay. Electr. Power Syst. Res. 2023, 222, 109471. [Google Scholar] [CrossRef]
- Khan, Z.A.; Jayaweera, D. Approach for smart meter load profiling in Monte Carlo simulation applications. IET Gener. Transm. Distrib. 2017, 11, 1856–1864. [Google Scholar] [CrossRef]
- Rosero, D.; Díaz, N.; Trujillo, C. Cloud and machine learning experiments applied to the energy management in a microgrid cluster. Appl. Energy 2021, 304, 117770. [Google Scholar] [CrossRef]
- Jahangir, H.; Tayarani, H.; Gougheri, S.S.; Golkar, M.A.; Ahmadian, A.; Elkamel, A. Deep learning-based forecasting approach in smart grids with microclustering and bidirectional LSTM network. IEEE Trans. Ind. Electron. 2020, 68, 8298–8309. [Google Scholar] [CrossRef]
- Ahmad, T.; Manzoor, S.; Zhang, D. Forecasting high penetration of solar and wind power in the smart grid environment using robust ensemble learning approach for large-dimensional data. Sustain. Cities Soc. 2021, 75, 103269. [Google Scholar] [CrossRef]
- Krč, R.; Kratochvílová, M.; Podroužek, J.; Apeltauer, T.; Stupka, V.; Pitner, T. Machine learning-based node characterization for smart grid demand response flexibility assessment. Sustainability 2021, 13, 2954. [Google Scholar] [CrossRef]
- Malatesta, T.; Breadsell, J. Identifying home system of practices for energy use with k-means clustering techniques. Sustainability 2022, 14, 9017. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Alidaee, B.; Huang, J.; Yang, H. Leveraging the Influence of Power Grid Links in Renewable Energy Power Generation. IEEE Access 2022, 10, 100234–100246. [Google Scholar] [CrossRef]
- Chreim, B.; Esseghir, M.; Merghem-Boulahia, L. LOSISH—LOad Scheduling In Smart Homes based on demand response: Application to smart grids. Appl. Energy 2022, 323, 119606. [Google Scholar] [CrossRef]
- Akbari, S.; Hashemi-Dezaki, H.; Fazel, S.S. Optimal clustering-based operation of smart railway stations considering uncertainties of renewable energy sources and regenerative braking energies. Electr. Power Syst. Res. 2022, 213, 108744. [Google Scholar] [CrossRef]
- Sonnenschein, M.; Lünsdorf, O.; Bremer, J.; Tröschel, M. Decentralized control of units in smart grids for the support of renewable energy supply. Environ. Impact Assess. Rev. 2015, 52, 40–52. [Google Scholar] [CrossRef]
- Burger, E.M.; Moura, S.J. Gated ensemble learning method for demand-side electricity load forecasting. Energy Build. 2015, 109, 23–34. [Google Scholar] [CrossRef]
- Panda, M. Intelligent data analysis for sustainable smart grids using hybrid classification by genetic algorithm based discretization. Intell. Decis. Technol. 2017, 11, 137–151. [Google Scholar] [CrossRef]
- Hettiarachchi, H.; Hemapala, K.U.; Jayasekara, A.B.P. Review of applications of fuzzy logic in multi-agent-based control system of AC-DC hybrid microgrid. IEEE Access 2018, 7, 1284–1299. [Google Scholar] [CrossRef]
- Koukaras, P.; Tjortjis, C.; Gkaidatzis, P.; Bezas, N.; Ioannidis, D.; Tzovaras, D. An interdisciplinary approach on efficient virtual microgrid to virtual microgrid energy balancing incorporating data preprocessing techniques. Computing 2022, 104, 209–250. [Google Scholar] [CrossRef]
- Aldhyani, T.H.; Alkahtani, H. Artificial intelligence algorithm-based economic denial of sustainability attack detection systems: Cloud computing environments. Sensors 2022, 22, 4685. [Google Scholar] [CrossRef]
- Al Sumarmad, K.A.; Sulaiman, N.; Wahab, N.I.A.; Hizam, H. Energy management and voltage control in microgrids using artificial neural networks, PID, and fuzzy logic controllers. Energies 2022, 15, 303. [Google Scholar] [CrossRef]
- De Caro, F.; Collin, J.A.; Vaccaro, A. Evaluation of classification models for forecasting critical voltage events in power systems. Smart Grids Sustain. Energy 2022, 8, 1. [Google Scholar] [CrossRef]
- Giamarelos, N.; Papadimitrakis, M.; Stogiannos, M.; Zois, E.N.; Livanos, N.A.I.; Alexandridis, A. A machine learning model ensemble for mixed power load forecasting across multiple time horizons. Sensors 2023, 23, 5436. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, N.; Genç, İ. Design of Graphical User Interface for Artificial Intelligence-Based Energy Management System for Microgrids. Electrica 2023, 23, 202–211. [Google Scholar] [CrossRef]
- Mukherjee, A.; Mukherjee, P.; Dey, N.; De, D.; Panigrahi, B.K. Lightweight sustainable intelligent load forecasting platform for smart grid applications. Sustain. Comput. Inform. Syst. 2020, 25, 100356. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, C.; Qi, J. Data-driven power flow method based on exact linear regression equations. J. Mod. Power Syst. Clean Energy 2021, 10, 800–804. [Google Scholar] [CrossRef]
- Issa, E.; Al-Gazzar, M.; Seif, M. Energy management of Renewable Energy Sources based on Support Vector Machine. Int. J. Renew. Energy Res. (IJRER) 2022, 12, 730–740. [Google Scholar]
- Jiang, J.; Yu, L.; Zhang, X.; Ding, X.; Wu, C. EV-Based reconfigurable smart grid management using support vector regression learning technique machine learning. Sustain. Cities Soc. 2022, 76, 103477. [Google Scholar] [CrossRef]
- Benavides, D.J.; Arévalo-Cordero, P.; Gonzalez, L.G.; Hernández-Callejo, L.; Jurado, F.; Aguado, J.A. Method of monitoring and detection of failures in PV system based on machine learning. Rev. Fac. Ing. Univ. Antioq. 2022, 102, 26–43. [Google Scholar] [CrossRef]
- BIBLIOMETRIX. Web of Science Core Collection Field Tags. Technical Report. 2018. Available online: https://www.bibliometrix.org/documents/Field_Tags_bibliometrix.pdf (accessed on 24 January 2024).
- Krishna, R.; Sathish, H.; Zhou, N. Forecasting Uncertainty Parameters of Virtual Power Plants Using Decision Tree Algorithm. Electr. Power Compon. Syst. 2023, 51, 1756–1769. [Google Scholar] [CrossRef]
- Mohan, N.; Kumar, S.; Soman, K.; Sujadevi, V.; Poornachandran, P.; Acharya, U. A Data-Driven Hybrid Methodology Using Randomized Low-Rank DMD Approximation and Flat-Top FIR Filter for Voltage Fluctuations Monitoring in Grid-Connected Distributed Generation Systems. IEEE Access 2023, 11, 39228–39242. [Google Scholar] [CrossRef]
- Kumar, A.; Rizwan, M.; Nangia, U. A hybrid optimization technique for proficient energy management in smart grid environment. Int. J. Hydrogen Energy 2022, 47, 5564–5576. [Google Scholar] [CrossRef]
- Barbaro, M.; Castro, R. Design optimisation for a hybrid renewable microgrid: Application to the case of Faial island, Azores archipelago. Renew. Energy 2020, 151, 434–445. [Google Scholar] [CrossRef]
- Suresh, K.; Jagatheeswari, P. Economic analysis of a hybrid intelligent optimization-based renewable energy system using smart grids. J. Intell. Fuzzy Syst. 2022, 43, 6651–6662. [Google Scholar] [CrossRef]
- Totaro, S.; Boukas, I.; Jonsson, A.; Cornélusse, B. Lifelong control of off-grid microgrid with model-based reinforcement learning. Energy 2021, 232, 121035. [Google Scholar] [CrossRef]
- Yang, J.; Su, C. Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty. Energy 2021, 223, 120043. [Google Scholar] [CrossRef]
- Haider, H.; Jun, Y.; Rashed, G.I.; Peixiao, F.; Kamel, S.; Li, Y. A robust optimization model for microgrid considering hybrid renewable energy sources under uncertainties. Environ. Sci. Pollut. Res. 2023, 30, 82470–82484. [Google Scholar] [CrossRef] [PubMed]
- Nammouchi, A.; Aupke, P.; D’andreagiovanni, F.; Ghazzai, H.; Theocharis, A.; Kassler, A. Robust opportunistic optimal energy management of a mixed microgrid under asymmetrical uncertainties. Sustain. Energy Grids Netw. 2023, 36, 101184. [Google Scholar] [CrossRef]
- Yang, M.; Wang, J.; Chen, Y.; Zeng, Y.; Su, X. Data-driven robust optimization scheduling for microgrid day-ahead to intra-day operations based on renewable energy interval prediction. Energy 2024, 313, 134058. [Google Scholar] [CrossRef]
Search String | Base |
---|---|
(“Renewable Energy Sources” OR “Sustainable Development” OR “Net zero”) AND (“Intelligent systems” OR ”Machine learning“ OR “Artificial neural networks” OR “Multi-agent systems” OR “Computational modeling”) AND (microgrids OR “Smart grids”) | Scopus |
Web of Science |
Principal Area | Sub-Area |
---|---|
Industrial electronics | Renewable energy sources |
Sustainable development | |
Net zero | |
Computational and artificial intelligence | Intelligent systems |
Machine learning | |
Artificial neural networks | |
Systems engineering and theory | Multi-agent systems |
Computational modeling | |
Power engineering and energy | Microgrids |
Smart grids |
Code | Description |
---|---|
I1 | Smart Technology identified for renewable energy microgrids in the article abstract. |
I2 | Smart Technology not identified in code I1, but identified in the methodology of the article. |
E1 | Smart Technology not identified in the article. |
Techniques | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|---|---|---|
Artificial Neural Network | [20] | [21,22] | [23,24,25] | [26,27,28,29,30] | [31,32,33,34,35,36,37] | [38,39,40,41] | [42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60] | [61,62,63,64,65,66,67,68,69,70,71,72,73] | [74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98] |
Multi-Agent System | [99,100,101] | [102] | [103,104,105] | [106,107,108,109] | [110,111,112,113,114,115] | [116,117,118,119,120,121,122,123] | [124,125,126,127,128] | [129,130,131,132,133,134,135,136,137] | [138,139,140,141,142,143,144,145,146,147,148,149,150,151] |
Clustering | - | - | [152] | - | - | - | [153,154,155,156] | [157,158,159,160] | - |
Multiple Model | [161,162] | - | [163] | - | [164] | - | - | [165,166,167,168] | [169,170] |
Regression Models | - | - | - | - | - | [171] | - | [172,173,174,175] | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, T.A.R.; Brito, F.C.; dos Santos, R.G.O.; Nascimento, P.d.T.; da Silva, C.B.; Panizio, R.M.; Saba, H.; Nascimento Filho, A.S. Smart Technologies Applied in Microgrids of Renewable Energy Sources: A Systematic Review. Energies 2025, 18, 2676. https://doi.org/10.3390/en18112676
Borges TAR, Brito FC, dos Santos RGO, Nascimento PdT, da Silva CB, Panizio RM, Saba H, Nascimento Filho AS. Smart Technologies Applied in Microgrids of Renewable Energy Sources: A Systematic Review. Energies. 2025; 18(11):2676. https://doi.org/10.3390/en18112676
Chicago/Turabian StyleBorges, Toni Alex Reis, Filipe Cardoso Brito, Rafael Guimarães Oliveira dos Santos, Paulo de Tarso Nascimento, Celso Barreto da Silva, Roberta Mota Panizio, Hugo Saba, and Aloísio Santos Nascimento Filho. 2025. "Smart Technologies Applied in Microgrids of Renewable Energy Sources: A Systematic Review" Energies 18, no. 11: 2676. https://doi.org/10.3390/en18112676
APA StyleBorges, T. A. R., Brito, F. C., dos Santos, R. G. O., Nascimento, P. d. T., da Silva, C. B., Panizio, R. M., Saba, H., & Nascimento Filho, A. S. (2025). Smart Technologies Applied in Microgrids of Renewable Energy Sources: A Systematic Review. Energies, 18(11), 2676. https://doi.org/10.3390/en18112676