Optimizing Solar–Biomass Pyrolysis: Innovations in Reactor Design and Thermal–Solar System Efficiency
Abstract
:1. Introduction
2. Optimizing Solar–Biomass Pyrolysis
2.1. Solar Thermochemical Looping
2.2. Plasma-Assisted Pyrolysis
2.3. Comparison of Pyrolysis Methods
2.4. Pilot and Industrial Demonstrations of Solar–Biomass Pyrolysis
2.5. Innovations in Thermal–Solar System Design
2.5.1. Reactor Orientation Optimizations
2.5.2. Efficiency of Solar–Biomass Pyrolysis
2.6. Mechanisms of Heat Transfer, Radiation, and Convective Heat Transfer
2.6.1. Heating Mechanisms
2.6.2. Solar Receivers and Concentrators
2.6.3. Thermodynamic Models, Energy Balances, Heat Transfer Analysis, and Fluid Dynamics
Thermodynamic Models
Energy Balances
Heat Transfer Analysis
- The wall heat transmission speed is described in Equation (4) [122] through Fourier’s law. The heat flux value “q” (W/m²) depends on the thermal material conductivity “k” divided by the temperature gradient “dT/dx” found in the reactor walls. The developed equation determines the heat conduction efficiency of reactor operations.
- The absorbance of heat energy by the reactor from solar concentrators follows the Stefan–Boltzmann law presented as Equation (5) [21]. The model helps to evaluate solar energy utilization efficiency in pyrolysis by measuring the amount of heat the reactor receives. The expression for radiant heat flux uses “Qsolar” and “σ” as the Stefan–Boltzmann constant alongside ϵ representing the reactor surface emissivity and “Tsolar” indicating the incoming solar radiation temperature, alongside A describing the reactor surface area exposure and “Treactor” denoting the reactor surface temperature.
Fluid Dynamics
2.6.4. Thermal–Solar System and Reactor Orientations
Orientation of Thermal–Solar System
- Tube Configuration in Thermal–Solar System
- ➢
- Flat Plate Collectors: These collectors consist of a flat, rectangular panel with parallel tubes or channels through which a heat transfer fluid (such as water or a heat transfer oil) flows. The tubes are usually arranged in a grid pattern within the collector panel [125].
- ➢
- Evacuated Tube Collector: Individual evacuated glass tubes contain heat transfer fluid in these collectors. Each tube is a separate collector, often arranged in rows or arrays on a support structure.
- ➢
- U-shaped Tubes: Some thermal–solar collectors use U-shaped or serpentine tubes, where the heat transfer fluid flows back and forth within the collector. This configuration can provide efficient heat transfer and is often used in flat plate collectors.
- ➢
- Parabolic-Trough Collectors: These collectors use curved parabolic reflectors to focus sunlight onto a tube running along the center of the reflector. The heat transfer fluid within the tube absorbs the focused solar energy [12].
- ➢
- Parabolic-Dish Collectors: Similar to parabolic-trough collectors, parabolic-dish collectors concentrate sunlight onto a receiver at the dish’s focal point. The receiver typically consists of a network of tubes where the heat transfer fluid circulates.
3. Concentrated Heated Reactors
3.1. Heated Reactors with Light Simulators
3.1.1. Vertically Orientated
3.1.2. Horizontally Oriented
4. Economic Analysis of Solar–Biomass Pyrolysis vs. Conventional Pyrolysis
5. Conclusions
- 1.
- Identifying Technical Gaps:
- ✓
- Intermittent solar radiation continues to prove challenging for solar–biomass pyrolysis operations. Researchers should create control algorithms for solar concentrators that respond to current solar conditions.
- ✓
- Solar radiation variability causes operational problems in solar power systems. The system requires a large storage capacity to function smoothly through cloudy weather or nighttime conditions.
- ✓
- The expansion of solar–biomass systems demands solutions that handle reactor dimensions, biomass conversion methods, and electrical power delivery solutions.
- 2.
- Suggesting Research Directions:
- ✓
- The research field needs to study solar concentrators that employ feedback loops and dynamic logic to sustain stable solar flux despite varying weather patterns. Intelligent materials that detect flux require implementation as an integral component for success.
- ✓
- Scientists must create inexpensive thermal storage systems to accumulate solar energy when sunlight reduces. There is a need to investigate hybrid power systems that unite biomass technologies with solar power generation to achieve reliable heat delivery.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunawan, T.J.; Ikhwan, Y.; Restuhadi, F.; Pato, U. Effect of Light Intensity and Photoperiod on Growth of Chlorella Pyrenoidosa and CO2 Biofixation. E3S Web Conf. 2018, 31, 1–7. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, H. Utilization and development of biomass energy. Energy Sci. Policy 2023, 1, 1–6. [Google Scholar] [CrossRef]
- Ndukwu, M.C.; Horsfall, I.T.; Ubouh, E.A.; Orji, F.N.; Ekop, I.E.; Ezejiofor, N.R. Review of Solar-Biomass Pyrolysis Systems: Focus on the Configuration of Thermal-Solar Systems and Reactor Orientation. J. King Saud Univ. Eng. Sci. 2021, 33, 413–423. [Google Scholar] [CrossRef]
- Li, H.; Liang, J.; Chen, L.; Ren, M.; Zhou, C. Utilization of Walnut Shell by Deep Eutectic Solvents: Enzymatic Digestion of Cellulose and Preparation of Lignin Nanoparticles. Ind. Crops Prod. 2022, 192, 116034. [Google Scholar] [CrossRef]
- Glemser, M.; Heining, M.; Schmidt, J.; Becker, A.; Garbe, D.; Buchholz, R.; Brück, T. Application of Light-Emitting Diodes (LEDs) in Cultivation of Phototrophic Microalgae: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2016, 100, 1077–1088. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wang, Y.; Fang, Z.; Shi, G.; Lou, L.; Ren, K.; Cai, Q. Italian Ryegrass-Rice Rotation System for Biomass Production and Cadmium Removal from Contaminated Paddy Fields. J. Soil Sediments 2019, 20, 874–882. [Google Scholar] [CrossRef]
- Raji, J.O.; Adeel-Farooq, R.M.; Qamri, G.M. Examining the role of biomass energy for sustainable environment in African countries. Res. Sq. 2022, 8, 1–20. [Google Scholar] [CrossRef]
- Yang, W.W.; Tang, X.Y.; Ma, X.; Li, J.C.; Xu, C.; He, Y.L. Rapid Prediction, Optimization and Design of Solar Membrane Reactor by Data-Driven Surrogate Model. Energy 2023, 285, 129432. [Google Scholar] [CrossRef]
- Popp, J.; Kovács, S.; Oláh, J.; Divéki, Z.; Balázs, E. Bioeconomy: Biomass and biomass-based energy supply and demand. New Biotechnol. 2021, 60, 76–84. [Google Scholar] [CrossRef]
- Du, S.; He, Y.L.; Yang, W.W.; Liu, Z. Bin. Optimization Method for the Porous Volumetric Solar Receiver Coupling Genetic Algorithm and Heat Transfer Analysis. Int. J. Heat Mass Transf. 2018, 122, 383–390. [Google Scholar] [CrossRef]
- Wang, F.; Tan, J.; Ma, L.; Leng, Y. Effects of Key Factors on Solar Aided Methane Steam Reforming in Porous Medium Thermochemical Reactor. Energy Convers. Manag. 2015, 103, 419–430. [Google Scholar] [CrossRef]
- Ullah, F.; Kang, M. Performance Evaluation of Parabolic Trough Solar Collector with Solar Tracking Tilt Sensor for Water Distillation. Energy Environ. 2019, 30, 1219–1235. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, S.; Li, A.; Liu, P.; Wang, M. Effects of Trophic Modes, Carbon Sources, and Salinity on the Cell Growth and Lipid Accumulation of Tropic Ocean Oilgae Strain Desmodesmus Sp. WC08. Appl. Biochem. Biotechnol. 2016, 180, 452–463. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, Q.; Sun, C.; Ge, D.; Cao, J.; Liang, W.; Yin, Y.; Li, H.; Cao, H.; Zhang, W.; et al. Biomass-Based Lateral Root Morphological Parameter Models for Rapeseed (Brassica napus L.). Food Energy Secur. 2024, 12, e519. [Google Scholar] [CrossRef]
- Zeng, K.; Gauthier, D.; Minh, D.P.; Weiss-Hortala, E.; Nzihou, A.; Flamant, G. Characterization of Solar Fuels Obtained from Beech Wood Solar Pyrolysis. Fuel 2017, 188, 285–293. [Google Scholar] [CrossRef]
- da Silva, F.T.F.; Lopes, M.S.G.; Asano, L.M.; Angelkorte, G.; Costa, A.K.B.; Szklo, A.; Schaeffer, R.; Coutinho, P. Integrated systems for the production of food, energy and materials as a sustainable strategy for decarbonization and land use: The case of sugarcane in Brazil. Biomass Bioenergy 2024, 190, 107387. [Google Scholar] [CrossRef]
- Shi, X.; Xun, Y.; Dong, Y.; Wang, F.; Zhang, X.; Cheng, Z. Analysis of Biomimetic Hierarchical Porous Structure Regulating Radiation Field to Improve Solar Thermochemical Performance Based on Minimum Gibbs Free Energy. Int. J. Hydrogen Energy 2022, 47, 2832–2845. [Google Scholar] [CrossRef]
- Dou, P.-Y.; Tang, X.-Y.; Yang, W.-W.; He, Y.-L. Design of a Multi-Inlet Solar Thermochemical Reactor for Steam Methane Reforming with Improved Performance. Energy Storage Sav. 2023, 2, 403–414. [Google Scholar] [CrossRef]
- Chen, X.; Wang, F.; Han, Y.; Yu, R.; Cheng, Z. Thermochemical Storage Analysis of the Dry Reforming of Methane in Foam Solar Reactor. Energy Convers. Manag. 2018, 158, 489–498. [Google Scholar] [CrossRef]
- Abanades, S.; Rodat, S.; Boujjat, H. Solar Thermochemical Green Fuels Production: A Review of Biomass Pyro-Gasification, Solar Reactor Concepts and Modelling Methods. Energies 2021, 14, 1494. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.J. Thermochemical Conversion of Biomass: Potential Future Prospects. Renew. Sustain. Energy Rev. 2023, 187, 113754. [Google Scholar] [CrossRef]
- Bekele, E.A.; Ancha, V.R. Transient Performance Prediction of Solar Dish Concentrator Integrated with Stirling and TEG for Small Scale Irrigation System: A Case of Ethiopia. Heliyon 2022, 8, e10629. [Google Scholar] [CrossRef]
- Asadullah, M.; Rahman, M.A.; Ali, M.M.; Rahman, M.S.; Motin, M.A.; Sultan, M.B.; Alam, M.R. Production of Bio-Oil from Fixed Bed Pyrolysis of Bagasse. Fuel 2007, 86, 2514–2520. [Google Scholar] [CrossRef]
- Vaishnavi, M.; Vasanth, P.M.; Rajkumar, S.; Gopinath, K.P.; Devarajan, Y. A Critical Review of the Correlative Effect of Process Parameters on Pyrolysis of Plastic Wastes. J. Anal. Appl. Pyrolysis 2023, 170, 105907. [Google Scholar] [CrossRef]
- Sharma, A.; Anand, A.; Shukla, A.; Buddhi, D. Nanotechnology in Concentrated Solar Power Technology. In Solar Energy Harvesting, Conversion, and Storage; Elsevier: Amsterdam, The Netherlands, 2023; pp. 43–73. [Google Scholar] [CrossRef]
- Jankes, G.G.; Trninić, M.R.; Stamenić, M.S.; Simonović, T.S.; Tanasić, N.D.; Labus, J.M. Biomass Gasification with CHP Production: A Review of the State-of-the-Art Technology and near Future Perspectives. Therm. Sci. 2012, 16 (Suppl. 1), 115–130. [Google Scholar] [CrossRef]
- Morales, S.; Miranda, R.; Bustos, D.; Cazares, T.; Tran, H. Solar Biomass Pyrolysis for the Production of Bio-Fuels and Chemical Commodities. J. Anal. Appl. Pyrolysis 2014, 109, 65–78. [Google Scholar] [CrossRef]
- Gobio-Thomas, L.B.; Darwish, M.; Stojceska, V. Environmental Impacts of Solar Thermal Power Plants Used in Industrial Supply Chains. Therm. Sci. Eng. Prog. 2023, 38, 101670. [Google Scholar] [CrossRef]
- Bu, Q.; Yu, F.; Cai, J.; Bai, J.; Xu, J.; Wang, H.; Lin, H.; Long, H. Preparation of Sugarcane Bagasse-Derived Co/Ni/N/MPC Nanocomposites and Its Application in H2O2 Detection. Ind. Crops Prod. 2024, 211, 118218. [Google Scholar] [CrossRef]
- Li, R.; Zeng, K.; Soria, J.; Mazza, G.; Gauthier, D.; Rodriguez, R.; Flamant, G. Product Distribution from Solar Pyrolysis of Agricultural and Forestry Biomass Residues. Renew. Energy 2016, 89, 27–35. [Google Scholar] [CrossRef]
- Esen, V.; Sağlam, Ş.; Oral, B. Light Sources of Solar Simulators for Photovoltaic Devices: A Review. Renew. Sustain. Energy Rev. 2017, 77, 1240–1250. [Google Scholar] [CrossRef]
- Zeng, K.; Soria, J.; Gauthier, D.; Mazza, G.; Flamant, G. Modeling of Beech Wood Pellet Pyrolysis under Concentrated Solar Radiation. Renew. Energy 2016, 99, 721–729. [Google Scholar] [CrossRef]
- Weldekidan, H.; Strezov, V.; Town, G.; Kan, T. Production and Analysis of Fuels and Chemicals Obtained from Rice Husk Pyrolysis with Concentrated Solar Radiation. Fuel 2018, 233, 396–403. [Google Scholar] [CrossRef]
- Benanti, E.; Freda, C.; Lorefice, V.; Braccio, G.; Sharma, V.K. Simulation of Olive Pits Pyrolysis in a Rotary Kiln Plant. Therm. Sci. 2011, 15, 145–158. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, P. Effect of Temperature and Light on the Growth of Algae Species: A Review. Renew. Sustain. Energy Rev. 2015, 50, 431–444. [Google Scholar] [CrossRef]
- Bu, Q.; Chen, K.; Morgan, H.M., Jr.; Liang, J.; Zhang, X.; Yan, L.; Mao, H. Thermal Behavior and Kinetic Study of the Effects of Zinc-Modified Biochar Catalyst on Lignin and Low-Density Polyethylene (Ldpe) Co-Pyrolysis. Trans. Asabe 2018, 61, 1783–1793. [Google Scholar] [CrossRef]
- Zeng, K.; Gauthier, D.; Soria, J.; Mazza, G.; Flamant, G. Solar Pyrolysis of Carbonaceous Feedstocks: A Review. Sol. Energy 2017, 156, 73–92. [Google Scholar] [CrossRef]
- Anuar Sharuddin, S.D.; Abnisa, F.; Wan Daud, W.M.A.; Aroua, M.K. A Review on Pyrolysis of Plastic Wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Tursunov, O.; Dobrowolski, J.; Zubek, K.; Czerski, G.; Grzywacz, P.; Dubert, F.; Lapczynska-Kordon, B.; Klima, K.; Handke, B. Kinetic Study of the Pyrolysis and Gasification of Rosa Multiflora and Miscanthus Giganteus Biomasses via Thermogravimetric Analysis. Therm. Sci. 2018, 22, 3057–3071. [Google Scholar] [CrossRef]
- Ayas, G.; Oztop, H.F. Thermal Analysis of Different Refuse Derived Fuels Samples. Therm. Sci. 2021, 26, 4395–4406. [Google Scholar] [CrossRef]
- Santos, R.M.; Santos, A.O.; Sussuchi, E.M.; Nascimento, J.S.; Lima, Á.S.; Freitas, L.S. Pyrolysis of Mangaba Seed: Production and Characterization of Bio-Oil. Bioresour. Technol. 2015, 196, 43–48. [Google Scholar] [CrossRef]
- Huang, D.; Song, G.; Li, R.; Han, H.; He, L.; Jiang, L.; Wang, Y.; Su, S.; Hu, S.; Xiang, J. Evolution Mechanisms of Bio-Oil from Conventional and Nitrogen-Rich Biomass during Photo-Thermal Pyrolysis. Energy 2023, 282, 128813. [Google Scholar] [CrossRef]
- Jankes, G.G.; Milovanovi, N.M. Biomass Gasification in Small-Scale Units for The Use in Agriculture and Forestry in Serbia. Therm. Sci. 2001, 5, 49–57. [Google Scholar]
- Ali, M.; Mahmood, F.; Magoua Mbeugang, C.; Tang, J.; Li, B. Influence of Hydrolysis on Pyrolysis Products from Sewage Sludge. Therm. Sci. 2024, 28, 65. [Google Scholar] [CrossRef]
- Banerjee, S.; Prasad, B.S.N.; Sivamani, S. Reactor Design for Biogas Production-A Short Review. J. Energy Power Technol. 2021, 4, 1. [Google Scholar] [CrossRef]
- Bellos, E.; Lykas, P.; Tzivanidis, C. Theoretical Analysis of a Biomass-Driven Single-Effect Absorption Heat Pump for Heating and Cooling Purposes. Appl. Syst. Innov. 2022, 5, 99. [Google Scholar] [CrossRef]
- Bisong, M.; Abubakar, A.; Yunusa, S.; Mohammed, F. Optimization of Process Parameters for Catalytic Pyrolysis of Waste Tyre Using Reactivated Fluid Catalytic Cracking Catalyst. Iran. J. Energy Environ. 2023, 15, 10. [Google Scholar] [CrossRef]
- Calvo-Flores, F.G.; Martín-Martínez, F.J. Biorefineries: Achievements and Challenges for a Bio-Based Economy [Review of Biorefineries: Achievements and Challenges for a Bio-Based Economy]. Front. Chem. 2022, 10, 973417. [Google Scholar] [CrossRef]
- Corbellini, V.; Kougias, P.; Treu, L.; Bassani, I.; Malpei, F.; Angelidaki, I. Hybrid Biogas Upgrading in a Two-Stage Thermophilic Reactor. Energy Convers. Manag. 2018, 168, 1. [Google Scholar] [CrossRef]
- Cremonez, P.A.; Teleken, J.G.; Meier, T.R.W.; Alves, H.J. Two-Stage Anaerobic Digestion in Agroindustrial Waste Treatment: A Review. J. Environ. Manag. 2020, 281, 111854. [Google Scholar] [CrossRef]
- Dębowski, M.; Kazimierowicz, J.; Zieliński, M.; Bartkowska, I. Fermentation of Microalgae Biomass and Miscanthus × Giganteus Silage—Assessment of the Substrate, Biogas Production and Digestate Characteristics. Appl. Sci. 2022, 12, 7291. [Google Scholar] [CrossRef]
- Hans, M.; Kumar, S. Biohythane Production in Two-Stage Anaerobic Digestion System. Int. J. Hydrog. Energy 2018, 32, 17363. [Google Scholar] [CrossRef]
- Giwa, A.; Yusuf, A.; Ajumobi, O.; Dzidzienyo, P. Pyrolysis of Date Palm Waste to Biochar Using Concentrated Solar Thermal Energy: Economic and Sustainability Implications. Waste Manag. 2019, 93, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Soria, J.; Zeng, K.; Asensio, D.; Gauthier, D.; Flamant, G.; Mazza, G. Comprehensive CFD Modelling of Solar Fast Pyrolysis of Beech Wood Pellets. Fuel Process. Technol. 2017, 158, 226–237. [Google Scholar] [CrossRef]
- Bordoloi, N.; Narzari, R.; Chutia, R.S.; Bhaskar, T.; Kataki, R. Pyrolysis of Mesua Ferrea and Pongamia Glabra Seed Cover: Characterization of Bio-Oil and Its Sub-Fractions. Bioresour. Technol. 2015, 178, 83–89. [Google Scholar] [CrossRef]
- Schwenzfeier, A.; Helbig, A.; Wierenga, P.A.; Gruppen, H. Emulsion Properties of Algae Soluble Protein Isolate from Tetraselmis sp. Food Hydrocoll. 2013, 30, 258–263. [Google Scholar] [CrossRef]
- Schwenzfeier, A.; Wierenga, P.A.; Gruppen, H. Isolation and Characterization of Soluble Protein from the Green Microalgae Tetraselmis sp. Bioresour. Technol. 2011, 102, 9121–9127. [Google Scholar] [CrossRef]
- Hu, J.; Nagarajan, D.; Zhang, Q.; Chang, J.S.; Lee, D.J. Heterotrophic Cultivation of Microalgae for Pigment Production: A Review. Biotechnol. Adv. 2018, 36, 54–67. [Google Scholar] [CrossRef]
- Wang, H.M.D.; Chen, C.C.; Huynh, P.; Chang, J.S. Exploring the Potential of Using Algae in Cosmetics. Bioresour. Technol. 2015, 184, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Ursu, A.V.; Marcati, A.; Sayd, T.; Sante-Lhoutellier, V.; Djelveh, G.; Michaud, P. Extraction, Fractionation and Functional Properties of Proteins from the Microalgae Chlorella Vulgaris. Bioresour. Technol. 2014, 157, 134–139. [Google Scholar] [CrossRef]
- Sun, J.; Simsek, H. Bioavailability of Wastewater Derived Dissolved Organic Nitrogen to Green Microalgae Selenastrum Capricornutum, Chlamydomonas Reinhardtii, and Chlorella Vulgaris with/without Presence of Bacteria. J. Environ. Sci. 2017, 57, 346–355. [Google Scholar] [CrossRef]
- Pangestuti, R.; Kim, S.K. Biological Activities and Health Benefit Effects of Natural Pigments Derived from Marine Algae. J. Funct. Foods 2011, 3, 255–266. [Google Scholar] [CrossRef]
- Ribeiro, J.E.S.; Martini, M.; Altomonte, I.; Salari, F.; Nardoni, S.; Sorce, C.; Silva, F.L.H.; Andreucci, A. Production of Chlorella Protothecoides Biomass, Chlorophyll and Carotenoids Using the Dairy Industry by-Product Scotta as a Substrate. Biocatal. Agric. Biotechnol. 2017, 11, 207–213. [Google Scholar] [CrossRef]
- Smetana, S.; Sandmann, M.; Rohn, S.; Pleissner, D.; Heinz, V. Autotrophic and Heterotrophic Microalgae and Cyanobacteria Cultivation for Food and Feed: Life Cycle Assessment. Bioresour. Technol. 2017, 245, 162–170. [Google Scholar] [CrossRef]
- Hunter, T.N.; Pugh, R.J.; Franks, G.V.; Jameson, G.J. The Role of Particles in Stabilising Foams and Emulsions. Adv. Colloid Interface Sci. 2008, 137, 57–81. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.; Parsons, S.A.; Jefferson, B. The Impact of Algal Properties and Pre-Oxidation on Solid-Liquid Separation of Algae. Water Res. 2008, 42, 1827–1845. [Google Scholar] [CrossRef]
- Shao, S.; Ma, L.; Li, X.; Zhang, H.; Xiao, R. Preparation of Activated Carbon with Heavy Fraction of Bio-Oil from Rape Straw Pyrolysis as Carbon Source and Its Performance in the Aldol Condensation for Aviation Fuel as Carrier. Ind. Crops Prod. 2022, 192, 115912. [Google Scholar] [CrossRef]
- Vandamme, D.; Foubert, I.; Muylaert, K. Flocculation as a Low-Cost Method for Harvesting Microalgae for Bulk Biomass Production. Trends Biotechnol. 2013, 31, 233–239. [Google Scholar] [CrossRef]
- Okonkwo, C.E.; Hussain, S.Z.; Onyeaka, H.; Adeyanju, A.A.; Nwonuma, C.O.; Bashir, A.A.; Farooq, A.; Zhou, C.; Shittu, T.D. Lignin Polyphenol: From Biomass to Innovative Food Applications, and Influence on Gut Microflora. Ind. Crops Prod. 2023, 206, 117696. [Google Scholar] [CrossRef]
- Grossmann, L.; Hinrichs, J.; Weiss, J. Solubility of Extracted Proteins from Chlorella Sorokiniana, Phaeodactylum Tricornutum, and Nannochloropsis Oceanica: Impact of PH-Value. LWT 2019, 105, 408–416. [Google Scholar] [CrossRef]
- Raymundo, A.; Gouveia, L.; Batista, A.P.; Empis, J.; Sousa, I. Fat Mimetic Capacity of Chlorella Vulgaris Biomass in Oil-in-Water Food Emulsions Stabilized by Pea Protein. Food Res. Int. 2005, 38, 961–965. [Google Scholar] [CrossRef]
- Peters, J.F.; Iribarren, D.; Dufour, J. Biomass Pyrolysis for Biochar or Energy Applications? A Life Cycle Assessment. Environ. Sci. Technol. 2015, 49, 5195–5202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chang, J.; Wang, T.; Xu, Y. Review of Biomass Pyrolysis Oil Properties and Upgrading Research. Energy Convers. Manag. 2007, 48, 87–92. [Google Scholar] [CrossRef]
- Muniyappan, D.; Junior, A.O.P.; Ramanathan, A. Synergistic Recovery of Renewable Hydrocarbon Resources via Microwave Co-Pyrolysis of Biomass Residue and Plastic Waste over Spent Toner Catalyst towards Sustainable Solid Waste Management. Energy 2023, 278, 127652. [Google Scholar] [CrossRef]
- Zeng, K.; Gauthier, D.; Li, R.; Flamant, G. Solar Pyrolysis of Beech Wood: Effects of Pyrolysis Parameters on the Product Distribution and Gas Product Composition. Energy 2015, 93, 1648–1657. [Google Scholar] [CrossRef]
- Venkateswarlu Chintalaa, S.K.; Pandey, J.K.; Sharma, A.K.; Kumar, S. Solar Thermal Pyrolysis of Non-Edible Seeds to Biofuels and Their Feasibility Assessment—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0196890417309494 (accessed on 16 January 2024).
- Söyler, N.; Goldfarb, J.L.; Ceylan, S.; Saçan, M.T. Renewable Fuels from Pyrolysis of Dunaliella Tertiolecta: An Alternative Approach to Biochemical Conversions of Microalgae. Energy 2017, 120, 907–914. [Google Scholar] [CrossRef]
- Yuan, J.; Zhu, Y.; Wang, J.; Gan, L.; He, M.; Zhang, T.; Li, P.; Qiu, F. Preparation and Application of Mg-Al Composite Oxide/Coconut Shell Carbon Fiber for Effective Removal of Phosphorus from Domestic Sewage. Food Bioprod. Process. 2021, 126, 293–304. [Google Scholar] [CrossRef]
- Elshobary, M.E.; El-Shenody, R.A.; Ashour, M.; Zabed, H.M.; Qi, X. Antimicrobial and Antioxidant Characterization of Bioactive Components from Chlorococcum Minutum. Food Biosci. 2020, 35, 100567. [Google Scholar] [CrossRef]
- Garcia-Perez, P.; Cassani, L.; Garcia-Oliveira, P.; Xiao, J.; Simal-Gandara, J.; Prieto, M.A.; Lucini, L. Algal Nutraceuticals: A Perspective on Metabolic Diversity, Current Food Applications, and Prospects in the Field of Metabolomics. Food Chem. 2023, 409, 135295. [Google Scholar] [CrossRef]
- Shah, M.A.R.; Zhu, F.; Cui, Y.; Hu, X.; Chen, H.; Kayani, S.I.; Huo, S. Mechanistic Insights into the Nutritional and Therapeutic Potential of Spirulina (Arthrospira) Spp.: Challenges and Opportunities. Trends Food Sci. Technol. 2024, 151, 104648. [Google Scholar] [CrossRef]
- Qiu, L.; Li, C.; Zhang, S.; Wang, S.; Li, B.; Cui, Z.; Tang, Y.; Hu, X. Distinct Property of Biochar from Pyrolysis of Poplar Wood, Bark, and Leaves of the Same Origin. Ind. Crops Prod. 2023, 202, 117001. [Google Scholar] [CrossRef]
- Otero, P.; Carpena, M.; Garcia-Oliveira, P.; Echave, J.; Soria-Lopez, A.; Garcia-Perez, P.; Fraga-Corral, M.; Cao, H.; Nie, S.; Xiao, J.; et al. Seaweed Polysaccharides: Emerging Extraction Technologies, Chemical Modifications and Bioactive Properties. Crit. Rev. Food Sci. Nutr. 2021, 63, 1901–1929. [Google Scholar] [CrossRef]
- Shao, W.; Ebaid, R.; El-Sheekh, M.; Abomohra, A.; Eladel, H. Pharmaceutical Applications and Consequent Environmental Impacts of Spirulina (Arthrospira): An Overview. Grasas Y Aceites 2019, 70, e292. [Google Scholar] [CrossRef]
- Yoshida, M.; Shimasaki, Y.; Inokuchi, D.; Nakazato, A.; Otake, S.; Qiu, X.; Mukai, K.; Foloni-Neto, H.; Kato, H.; Honda, S.; et al. A New Fluorometer to Detect Harmful Algal Bloom Species and Its Application as a Long-Term HABs Monitoring Tool. J. Fac. Agric. Kyushu Univ. 2021, 66, 37–43. [Google Scholar] [CrossRef]
- Qiu, X.; Wu, M.; Mukai, K.; Shimasaki, Y.; Oshima, Y. Effects of Elevated Irradiance, Temperature, and Rapid Shifts of Salinity on the Chlorophyll a Fluorescence (OJIP) Transient of Chattonella Marina Var. Antiqua. J. Fac. Agric. Kyushu Univ. 2019, 64, 293–300. [Google Scholar] [CrossRef]
- Silva, A.; Cassani, L.; Grosso, C.; Garcia-Oliveira, P.; Morais, S.L.; Echave, J.; Carpena, M.; Xiao, J.; Fatima, B.M.; Prieto, M.A.; et al. Recent Advances in Biological Properties of Brown Algae-Derived Compounds for Nutraceutical Applications. Crit. Rev. Food Sci. Nutr. 2022, 64, 1283–1311. [Google Scholar] [CrossRef]
- Surendhiran, D.; Li, C.; Cui, H.; Lin, L. Marine Algae as Efficacious Bioresources Housing Antimicrobial Compounds for Preserving Foods-A Review. Int. J. Food Microbiol. 2021, 358, 109416. [Google Scholar] [CrossRef]
- Ouyang, Y.; Qiu, Y.; Liu, Y.; Zhu, R.; Chen, Y.; El-Seedi, H.R.; Chen, X.; Zhao, C. Cancer-Fighting Potentials of Algal Polysaccharides as Nutraceuticals. Food Res. Int. 2021, 147, 110522. [Google Scholar] [CrossRef]
- Zan, X.; Cui, F.; Sun, J.; Zhou, S.; Song, Y. Novel Dual-Functional Enzyme Lip10 Catalyzes Lipase and Acyltransferase Activities in the Oleaginous Fungus Mucor Circinelloides. J. Agric. Food Chem. 2019, 67, 1317–13184. [Google Scholar] [CrossRef]
- Banaś, J.; Utnik-Banaś, K.; Zięba, S. Optimizing biomass supply chains to power plants under ecological and social restrictions: Case study from Poland. Energies 2024, 17, 3136. [Google Scholar] [CrossRef]
- Wei, L.; Yang, H.; Niu, Y.; Zhang, Y.; Xu, L.; Chai, X. Wheat Biomass, Yield, and Straw-Grain Ratio Estimation from Multi-Temporal UAV-Based RGB and Multispectral Images. Biosyst. Eng. 2023, 234, 187–205. [Google Scholar] [CrossRef]
- Zhang, T.; Yuan, D.; Guo, Q.; Qiu, F.; Yang, D.; Ou, Z. Preparation of a Renewable Biomass Carbon Aerogel Reinforced with Sisal for Oil Spillage Clean-up: Inspired by Green Leaves to Green Tofu. Food Bioprod. Process. 2019, 114, 154–162. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; Ali, S.S.; Gao, L.; Ni, X.; Li, X.; Wu, Y.; Jiang, J. Identification and Expression Analysis of Sorghum Bicolor Gibberellin Oxidase Genes with Varied Gibberellin Levels Involved in Regulation of Stem Biomass. Ind. Crops Prod. 2020, 145, 111951. [Google Scholar] [CrossRef]
- Kung, K.S.; Thengane, S.K.; Ghoniem, A.F.; Lim, C.J.; Sokhansanj, S. Bulk Permeability Characteristics in a Biomass Moving Bed and Their Effects on Reactor Design and Scaling. Chem. Eng. J. 2021, 420, 129979. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, Y.; Han, I.; Wang, P.; Mei, Q.; Huang, Y. Effects of Different Straw Biochars on Soil Organic Carbon, Nitrogen, Available Phosphorus, and Enzyme Activity in Paddy Soil. Sci. Rep. 2020, 10, 8837. [Google Scholar] [CrossRef] [PubMed]
- Lachos-Perez, D.; Martins-Vieira, J.C.; Missau, J.; Anshu, K.; Siakpebru, O.K.; Thengane, S.K.; Morais, A.R.C.; Tanabe, E.H.; Bertuol, D.A. Review on Biomass Pyrolysis with a Focus on Bio-Oil Upgrading Techniques. Analytica 2023, 4, 182–205. [Google Scholar] [CrossRef]
- Liu, X.; Chi, J.; Mao, H.; Wang, L. Principles of Designing Electrocatalyst to Boost Reactivity for Seawater Splitting. Adv. Energy Mater. 2023, 13, 2301438. [Google Scholar] [CrossRef]
- Maschio, G.; Koufopanos, C.; Lucchesi, A. Pyrolysis, a Promising Route for Biomass Utilization. Bioresour. Technol. 1992, 42, 219. [Google Scholar] [CrossRef]
- Meier, D. Pyrolysis Oil Biorefinery. Adv. Biochem. Eng. Biotechnol. 2017, 301, 301–337. [Google Scholar]
- Postawa, K.; Szczygieł, J.; Kułażyński, M. Innovations in Anaerobic Digestion: A Model-Based Study. Biotechnol. Biofuels 2021, 14, 1. [Google Scholar] [CrossRef]
- Rajendran, K.; Mahapatra, D.; Venkatraman, A.; Muthuswamy, S.; Pugazhendhi, A. Advancing Anaerobic Digestion through Two-Stage Processes: Current Developments and Future Trends. Renew. Sustain. Energy Rev. 2020, 123, 109746. [Google Scholar] [CrossRef]
- Rizvi, A.A.; Danish, S.N.; El-Leathy, A.; Al-Ansary, H.; Yang, D. A Review and Classification of Layouts and Optimization Techniques Used in Design of Heliostat Fields in Solar Central Receiver Systems. Sol. Energy 2021, 218, 296. [Google Scholar] [CrossRef]
- Santhoshkumar, A.; Ramanathan, A. Energy and Life Cycle Assessment of Solar Assisted Microwave Pyrolysis of Waste Biomass. In Proceedings of the IOP Conference Series Earth and Environmental Science, Russky Island, Russia, 4–6 March 2019. [Google Scholar]
- Shao, S.; Li, X.; Liu, Z.; Wu, S. Preparation of Heavy Bio-Oil-Based Porous Carbon by Pyrolysis Gas Activation and Its Performance in the Aldol Condensation for Aviation Fuel as Catalyst Carrier. Ind. Crop. Prod. 2024, 214, 118963. [Google Scholar] [CrossRef]
- Wu, D.; Peng, X.; Li, L.; Yang, P.; Peng, Y.; Liu, H.; Wang, X. Commercial Biogas Plants: Review on Operational Parameters and Guide for Performance Optimization. Fuel 2021, 303, 121282. [Google Scholar] [CrossRef]
- Xu, M.; Mukarakate, C.; Iisa, K.; Budhi, S.; Menart, M.J.; Davidson, M.; Robichaud, D.J.; Nimlos, M.R.; Trewyn, B.G.; Richards, R.M. Deactivation of Multilayered MFI Nanosheet Zeolite during Upgrading of Biomass Pyrolysis Vapors. ACS Sustain. Chem. Eng. 2017, 5, 5477. [Google Scholar] [CrossRef]
- Yellezuome, D.; Zhu, X.; Liu, X.; Liu, X.; Liu, R.; Wang, Z.; Li, Y.; Sun, C.; Abd-Alla, M.H.; Rasmey, A.-H.M. Integration of Two-Stage Anaerobic Digestion Process with in Situ Biogas Upgrading. Bioresour. Technol. 2022, 369, 128475. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, L.; Bai, L.; Lv, W.; Agarwal, R.K. Effects of Particle Diameter and Inlet Flow Rate on Gas–Solid Flow Patterns of Fluidized Bed. Am. Chem. Soc. 2023, 8, 7151. [Google Scholar] [CrossRef]
- Mesarovic, M. Sustainable Energy from Biomass. Therm. Sci. 2001, 5, 5–32. [Google Scholar]
- White, J.E.; Catallo, W.J.; Legendre, B.L. Biomass Pyrolysis Kinetics: A Comparative Critical Review with Relevant Agricultural Residue Case Studies. J. Anal. Appl. Pyrolysis 2011, 91, 1–33. [Google Scholar] [CrossRef]
- Goyal, H.B.; Seal, D.; Saxena, R.C. Bio-Fuels from Thermochemical Conversion of Renewable Resources: A Review. Renew. Sustain. Energy Rev. 2008, 12, 504–517. [Google Scholar] [CrossRef]
- Anis, S.; Zainal, Z.A. Tar Reduction in Biomass Producer Gas via Mechanical, Catalytic and Thermal Methods: A Review. Renew. Sustain. Energy Rev. 2011, 15, 2355–2377. [Google Scholar] [CrossRef]
- Younis, M.; Farag, H.A.; Alhamdan, A.; Aboelasaad, G.; Zein El-Abedein, A.I.; Kamel, R.M. Utilization of Palm Residues for Biochar Production Using Continuous Flow Pyrolysis Unit. Food Chem. X 2023, 20, 100903. [Google Scholar] [CrossRef] [PubMed]
- Miyatake, K.; Haraguchi, M.; Toyota, T.; Nagai, Y.; Taniguchi, M. Feed-in-tariff is key to Japan’s current biomass power’s viability, even with environmental externalities. Environ. Res. Commun. 2024, 6, 055018. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Renewable Fuels and Chemicals by Thermal Processing of Biomass. Chem. Eng. J. 2003, 91, 87–102. [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Halder, P.K.; Rahim, M.A.; Masud, M.H. Solar Pyrolysis: Converting Waste Into Asset Using Solar Energy. In Clean Energy for Sustainable Development; Academic Press: Cambridge, MA, USA, 2017; pp. 213–235. [Google Scholar] [CrossRef]
- Andrade, L.A.; Barrozo, M.A.S.; Vieira, L.G.M. Catalytic Solar Pyrolysis of Microalgae Chlamydomonas Reinhardtii. Sol. Energy 2018, 173, 928–938. [Google Scholar] [CrossRef]
- Liu, Y.; Jing, Z.; Zhang, T.; Chen, Q.; Qiu, F.; Peng, Y.; Tang, S. Fabrication of Functional Biomass Carbon Aerogels Derived from Sisal Fibers for Application in Selenium Extraction. Food Bioprod. Process. 2018, 111, 93–103. [Google Scholar] [CrossRef]
- Sun, L.; Liu, L.; Yang, L.; Wang, Y.; Dabbour, M.; Mintah, B.H.; Hey, R.; Mom, H. Effects of Low-Intensity Ultrasound on the Biomass and Metabolite of Ganoderma Lucidum in Liquid Fermentation. J. Food Process Eng. 2020, 44, e13601. [Google Scholar] [CrossRef]
- Pan, S.; Zabed, H.M.; Wei, Y.; Qi, X. Technoeconomic and Environmental Perspectives of Biofuel Production from Sugarcane Bagasse: Current Status, Challenges and Future Outlook. Ind. Crops Prod. 2022, 188, 115684. [Google Scholar] [CrossRef]
- Zeng, K.; Minh, D.P.; Gauthier, D.; Weiss-Hortala, E.; Nzihou, A.; Flamant, G. The Effect of Temperature and Heating Rate on Char Properties Obtained from Solar Pyrolysis of Beech Wood. Bioresour. Technol. 2015, 182, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.; Ding, J.; Zhang, T.; Yang, D.; Qiu, F.; Chen, Q.; Xu, J. Flexible, Versatility and Superhydrophobic Biomass Carbon Aerogels Derived from Corn Bracts for Efficient Oil/Water Separation. Food Bioprod. Process. 2019, 115, 134–142. [Google Scholar] [CrossRef]
- Grossmann, L.; Ebert, S.; Hinrichs, J.; Weiss, J. Production of Protein-Rich Extracts from Disrupted Microalgae Cells: Impact of Solvent Treatment and Lyophilization. Algal Res. 2018, 36, 67–76. [Google Scholar] [CrossRef]
- Ullah, F.; Khattak, M.K.; Kang, M.; Fu, X.; Hengtai, N.; Hengzheng, L.; Li, N. Experimental Study On A Flat Plate Collector Assisted For Solar Water Heating Unit. In Proceedings of the 2016 5th International Conference on Sustainable Energy and Environment Engineering (ICSEEE 2016), Zhuhai, China, 12–13 November 2016; pp. 12–13. [Google Scholar]
- Ayala-Cortés, A.; Arancibia-Bulnes, C.A.; Villafán-Vidales, H.I.; Lobato-Peralta, D.R.; Martínez-Casillas, D.C.; Cuentas-Gallegos, A.K. Solar Pyrolysis of Agave and Tomato Pruning Wastes: Insights of the Effect of Pyrolysis Operation Parameters on the Physicochemical Properties of Biochar. AIP Conf. Proc. 2019, 2126, 5117681. [Google Scholar] [CrossRef]
- McKendry, P. Energy Production from Biomass (Part 1): Overview of Biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, D.; Singh, R.K.; Bendu, H.; Mund, R. Pyrolysis of Mahua Seed (Madhuca Indica)—Production of Biofuel and Its Characterization. Energy Convers. Manag. 2016, 108, 529–538. [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Halder, P.K.; Rahim, A.; Paul, N. Solar Assisted Fast Pyrolysis: A Novel Approach of Renewable Energy Production. J. Eng. 2014, 2014, 252848. [Google Scholar] [CrossRef]
- Zeng, K.; Flamant, G.; Gauthier, D.; Guillot, E. Solar Pyrolysis of Wood in a Lab-Scale Solar Reactor: Influence of Temperature and Sweep Gas Flow Rate on Products Distribution. Energy Procedia 2015, 69, 1849–1858. [Google Scholar] [CrossRef]
- Zeng, K.; Gauthier, D.; Lu, J.; Flamant, G. Parametric Study and Process Optimization for Solar Pyrolysis of Beech Wood. Energy Convers. Manag. 2015, 106, 987–998. [Google Scholar] [CrossRef]
- Maytorena, V.M.; Hinojosa, J.F.; Iriarte-Cornejo, C.; Orozco, D.A. Biomass Solar Fast Pyrolysis with a Biomimetic Mini Heliostat Field and Thermal Receiver for Nitrogen Heating. Energy Convers. Manag. 2023, 291, 117307. [Google Scholar] [CrossRef]
- Choudhury, N.D.; Chutia, R.S.; Bhaskar, T.; Kataki, R. Pyrolysis of Jute Dust: Effect of Reaction Parameters and Analysis of Products. J. Mater. Cycles Waste Manag. 2014, 16, 449–459. [Google Scholar] [CrossRef]
- Rahman, M.A.; Parvej, A.M.; Aziz, M.A. Concentrating Technologies with Reactor Integration and Effect of Process Variables on Solar Assisted Pyrolysis: A Critical Review. Therm. Sci. Eng. Prog. 2021, 25, 100957. [Google Scholar] [CrossRef]
- Naveen, S.; Gopinath, K.P.; Malolan, R.; Ramesh, S.J.; Aakriti, K.; Arun, J. Novel Solar Parabolic Trough Collector Cum Reactor for the Production of Biodiesel from Waste Cooking Oil Using Calcium Oxide Catalyst Derived from Seashells Waste. Chem. Eng. Process. Process Intensif. 2020, 157, 108145. [Google Scholar] [CrossRef]
Parameter | Conventional Pyrolysis | Plasma-Assisted Pyrolysis | Solar Thermochemical Looping |
---|---|---|---|
Temperature Range | 400–600 °C | 500–900 °C | 900–1000 °C |
Product Yields | Bio-oil: 40–70%, syngas: 10–30%, char: 20–40% | Bio-oil: 50–70%, syngas: 15–30%, char: 10–30% | Bio-oil: 50–60%, syngas: 30–40%, char: 10–20% |
Efficiency | Moderate efficiency (~50–70%) | High efficiency (~80–90%) | High efficiency (~85–95%) |
Environmental Impact | High emissions due to fossil fuels, CO2, and particulate matter | Lower emissions but energy-intensive plasma generation | Reduced CO2 emissions, uses renewable solar energy |
Energy Source | Fossil fuels, electricity | Electricity (for plasma generation) | Solar energy |
System Complexity | Low (standard reactors) | High (requires plasma generators) | Moderate (requires solar concentrators) |
Cost | Low (relatively inexpensive) | High (due to plasma generation) | Moderate (solar infrastructure costs) |
Reactor Type | Advantages | Limitations | Practical Viability |
---|---|---|---|
Fluidized Bed Reactor |
|
|
|
Auger Reactor |
|
|
|
Fixed-Bed Reactor |
|
|
|
Solar Cavity Receiver |
|
|
|
Innovation Area | Key Innovations | Description |
---|---|---|
Solar collector efficiency | - | Improved solar panel design for higher energy absorption and conversion rates |
Heat transfer mechanism | - | Enhanced heat exchangers using advanced materials for better thermal conduction |
Reactor orientation | - | Optimal reactor positioning (e.g., fixed vs. rotating) for maximum solar exposure |
Solar tracking technology | - | Automated systems to track the sun’s movement, ensuring constant energy input |
Pyrolysis temperature control | - | Precision control systems to maintain consistent pyrolysis |
Gaseous emission management | - | Implementation of gas scrubbers and condensers to reduce harmful emission |
Biomass feeding mechanism | - | Advanced biomass feeding systems that ensure uniform biomass flow into the reactor |
Reactor insulation | - | High-performance insulation reactor to reduce heat loss and improve efficiency |
Hybrid solar–biomass energy systems | - | Integration of solar and biomass systems to enhance energy availability |
Automation and process control | - | Automated monitoring and adjustment systems to optimize pyrolysis |
Advanced materials for reactor | - | Use of durable, high-temperature-resistant materials for the construction of pyrolysis |
Post-pyrolysis processing | - | Technologies for refining bio-oil and improving its storage and transportability |
Cost-effective design | - | Design innovations that reduce system costs while maintaining efficiency |
Modular and scalable systems | - | Designs that allow for easy scalability and facility based on biomass availability |
Thermal–solar system design | Integrated solar collectors and pyrolysis reactors | Combines solar collectors with reactors for direct thermal input to biomass. Reduces reliance on external heating |
Solar concentrators for high-temperature control | Concentrators focus solar radiation to achieve temperatures above 500 °C, enhancing pyrolysis efficiency | |
Heat storage integration | Thermal energy storage allows for continuous pyrolysis even during cloudy periods | |
Dual-mode hybrid systems (solar and biomass combustion) | Utilizes solar and biomass combustion to sustain the system’s operation when solar radiation is insufficient | |
Reactor orientation | Vertical reactor orientation | Vertical design enhances heat transfer and promotes better biomass flow for more uniform pyrolysis |
Solar tracking systems for optimal orientation | Automated tracking maximizes solar exposure by adjusting the reactor position relative to the sun | |
Multi-layer reactor design with gradient temperature zones | Temperature gradients within the reactor optimize the thermal profile for different stages of biomass pyrolysis |
S/No | Biomass | Reactor | Rector Configuration | Concentrator | Power | Max. Flux Density | Outcomes | Source |
---|---|---|---|---|---|---|---|---|
1 | Orange peel | Borosilicate glass tube | Horizontal | Parabolic trough covered with a silver mirror coating placed according to the angle of sunlight | – | 27,088 W/m2 | 1.4, 21, and 77.6 wt.% for gas, char, and oil, respectively | [8] |
2 | Agave leaves and tomato waste | Borosilicate spherical-shape | Vertical | Parabolic | Temperature range 450–1550 °C 25 kW, | Biochar produced at a low temperature of less than 900 °C had a good surface area and capacitance | [10] | |
3 | Date palm | Steel reactor (partial heating) | Vertical | Double parabolic dish | - | - | 50 wt.% found for liquid oil at a 500 °C operating temperature, a gas flow rate of 6 L/min, a 120 min residence time, and 32.4% of CO2 | [11] |
4 | Rice straw | Cylindrical silica glass tube | Horizontal | Dish concentrator | - | - | - | [17] |
5 | Wheat straw | Rotary stainless cylindrical kiln | Horizontal retort | Linear mirror II | - | - | Solar carbon of 16.9 MJ/kg energy density | [23] |
Solar Simulated Biomass Pyrolysis | ||||||||
6 | Chicken litter | Copper, Indirect (conduction) | Vertical | Elliptical reflector | 2.2 MWm−2 | 0.6 kW Xenon arc lamps | The maximum CO and H2 yields were 63 wt.% and 15 wt.%, obtained at 50% CaO in situ loading at 800 °C | [24] |
7 | Pine sawdust | Cylindrical quartz reactor | Vertical | Deep-dish parabolic concentrator | - | 5 kW Xenon arc lamps | - | [25] |
8 | Waste biomass | Copper, indirect (conduction) | Vertical | Elliptical reflector | 2.2 MWm−2 | 1.6 kW Xenon arc lamp | - | [111] |
9 | Wood | Quartz tube | Vertical | Direct concentration | - | 5 kW arc Xenon bulb | Heavy tar and light bio-oil | [27] |
10 | Foam material | Solar-driven DRM in a foam reactor | Horizontal | Direct concentration | - | Maximum values of 55.74% and 45.58% are observed at ϕ = 0.9, dp = 1.5 mm | - | [28] |
11 | Jatropha biomass seeds | FTIR, TGA, and GC–MS analysis | Vertical | Direct concentration | - | Jatropha seeds biomass consists of 55.8% C, 4.78% H, 7.36% N, 0.93% S, 31.13% O | Three pyrolysis products: (i) bio-oil, (ii) biochar, (iii) pyrolytic gas | [114] |
Parameter | Solar–Biomass Pyrolysis | Conventional Pyrolysis (Fossil-Fuel-Based) |
---|---|---|
Initial Capital Cost | High (due to solar concentrators, tracking systems, and thermal storage) | Low (standard reactor design and fossil fuel infrastructure) |
Fuel Costs | Low (solar energy is free once the system is established) | High (dependence on fossil fuels for heating) |
Energy Input (per unit energy output) | Low (solar energy) | High (fossil fuel consumption) |
Energy Return on Investment (EROI) | High (due to renewable energy input and lower operational costs) | Low (due to fossil fuel input and associated environmental costs) |
Operational and Maintenance Costs | Moderate (solar systems are low-maintenance, but initial setup costs are high) | High (continuous fuel purchase, maintenance of fossil fuel infrastructure) |
Environmental Impact | Low (carbon-neutral, renewable energy source) | High (emissions from fossil fuels, environmental degradation) |
Product Yields | Bio-oil: 50–60%, syngas: 30–40%, char: 10–20% | Bio-oil: 40–70%, syngas: 10–30%, char: 20–40% |
System Scalability | Moderate (scaling is possible but requires extensive solar infrastructure) | High (easier to scale with existing infrastructure) |
Payback Period | Longer (due to high initial capital costs but savings in fuel costs over time) | Shorter (lower initial investment but higher long-term fuel costs) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, F.; Hasrat, K.; Mu, M.; Wang, S.; Kumar, S. Optimizing Solar–Biomass Pyrolysis: Innovations in Reactor Design and Thermal–Solar System Efficiency. Energies 2025, 18, 2640. https://doi.org/10.3390/en18102640
Ullah F, Hasrat K, Mu M, Wang S, Kumar S. Optimizing Solar–Biomass Pyrolysis: Innovations in Reactor Design and Thermal–Solar System Efficiency. Energies. 2025; 18(10):2640. https://doi.org/10.3390/en18102640
Chicago/Turabian StyleUllah, Fahim, Kamran Hasrat, Mao Mu, Shuang Wang, and Sunel Kumar. 2025. "Optimizing Solar–Biomass Pyrolysis: Innovations in Reactor Design and Thermal–Solar System Efficiency" Energies 18, no. 10: 2640. https://doi.org/10.3390/en18102640
APA StyleUllah, F., Hasrat, K., Mu, M., Wang, S., & Kumar, S. (2025). Optimizing Solar–Biomass Pyrolysis: Innovations in Reactor Design and Thermal–Solar System Efficiency. Energies, 18(10), 2640. https://doi.org/10.3390/en18102640