A New Two-Dimensional Electromagnetic Field Analysis and Loss Calculation Method for High-Frequency Applications Based on Vector Magnetic Circuit Theory
Abstract
:1. Introduction
2. Introduction to Vector Magnetic Circuit Theory
3. New Two-Dimensional Electromagnetic Field Analysis and Loss Calculation Method
4. Acquisition and Application of Required Parameters
4.1. Characteristics of the Magnetic Cores
4.2. Consideration of Excess Loss and Influence of Skin Effect on Magnetic Permeability μ
5. Validation
5.1. Distribution of Magnetic Flux Density in Magnetic Cores
5.2. Distribution of Core Losses in Magnetic Cores
5.3. Calculation and Comparison of Core Losses
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silveyra, J.M.; Ferrara, E.; Huber, D.L.; Monson, T.C. Soft magnetic materials for a sustainable and electrified world. Science 2018, 362, eaao0195. [Google Scholar] [CrossRef] [PubMed]
- 2023 IEEE International MagNet Challenge, 2023 MagNet Challenge Handbook. Available online: https://github.com/minjiechen/magnetchallenge/blob/main/docs/handbook.pdf (accessed on 3 March 2023).
- Cui, H.H.; Dulal, S.; Sohid, S.B.; Gu, G.; Tolbert, L.M. Unveiling the microworld inside magnetic materials via circuit models. IEEE Power Electron. Mag. 2023, 10, 14–22. [Google Scholar] [CrossRef]
- Serrano, D.; Li, H.; Wang, S.; Guillod, T.; Luo, M.; Bansal, V.; Jha, N.K.; Chen, Y.; Sullivan, C.R.; Chen, M. Why MagNet: Quantifying the complexity of modeling power magnetic material characteristics. IEEE Trans. Power Electron. 2023, 38, 14292–14316. [Google Scholar] [CrossRef]
- Mu, M.; Zheng, F.; Li, Q.; Lee, F.C. Finite element analysis of inductor core loss under DC bias condition. In Proceedings of the 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 5–9 February 2012; pp. 405–410. [Google Scholar] [CrossRef]
- Yamazaki, K.; Fukushima, N. Torque and loss calculation of rotating machines considering laminated cores using post 1-D analysis. IEEE Trans. Magn. 2011, 47, 994–997. [Google Scholar] [CrossRef]
- Courtay, A. The Preisach Model; Analogy Inc.: Austin, TX, USA, 1999. [Google Scholar]
- Jiles, D.C.; Atherton, D.L. Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater. 1986, 61, 48–60. [Google Scholar] [CrossRef]
- Mu, M.; Li, Q.; Gilham, D.J.; Lee, F.C.; Ngo, K.D.T. New core loss measurement method for high-frequency magnetic materials. IEEE Trans. Power Electron. 2014, 29, 4374–4381. [Google Scholar] [CrossRef]
- Lawton, P.A.J.; Lin, F.J.; Covic, G.A. Magnetic design considerations for high-power wireless charging systems. IEEE Trans. Power Electron. 2022, 37, 9972–9982. [Google Scholar] [CrossRef]
- Fallah, E.; Moghani, J.S. A New Approach for Finite-Element Modeling of Hysteresis and Dynamic Effects. IEEE Trans. Magn. 2006, 42, 3674–3681. [Google Scholar] [CrossRef]
- Sadowski, N.; Batistela, N.J.; Bastos, J.P.A.; Lajoie-Mazenc, M. An inverse Jiles-Atherton model to take into account hysteresis in time-stepping finite-element calculations. IEEE Trans. Magn. 2002, 38, 797–800. [Google Scholar] [CrossRef]
- Fallah, E.; Badeli, V. A New Approach for Modeling of Hysteresis in 2-D Time-Transient Analysis of Eddy Current Using FEM. IEEE Trans. Magn. 2017, 53, 1–14. [Google Scholar] [CrossRef]
- Leonard, P.J.; Marketos, P.; Moses, A.J.; Lu, M. Iron losses under PWM excitation using a dynamic hysteresis model and finite elements. IEEE Trans. Magn. 2006, 42, 907–910. [Google Scholar] [CrossRef]
- Patsios, C.; Tsampouris, E.; Beniakar, M.; Rovolis, P.; Kladas, A.G. Dynamic finite element hysteresis model for iron loss calculation in non-oriented grain iron laminations under PWM excitation. IEEE Trans. Magn. 2011, 47, 1130–1133. [Google Scholar] [CrossRef]
- Ceylan, D.; Zeinali, R.; Daniels, B.; Boynov, K.O.; Lomonova, E.A. A Novel modeling technique via coupled magnetic equivalent circuit with vector hysteresis characteristics of laminated steels. IEEE Trans. Ind. Appl. 2023, 59, 1481–1491. [Google Scholar] [CrossRef]
- Soda, N.; Enokizono, M. Improvement of T-joint part constructions in three-phase transformer cores by using direct loss analysis with E&S model. IEEE Trans. Magn. 2000, 36, 1285–1288. [Google Scholar] [CrossRef]
- Enokizono, M. Vector magnetic property and magnetic characteristic analysis by vector magneto-hysteretic E&S model. IEEE Trans. Magn. 2009, 45, 1148–1153. [Google Scholar] [CrossRef]
- Xie, D.; Yang, S. Numerical Analysis and Optimization of Engineering Electromagnetic Fields; China Machine Press: Beijing, China, 2017; pp. 147–185. [Google Scholar]
- Silvester, P.P.; Ferrari, R.L. Finite Elements for Electrical Engineers, 3rd ed.; Cambridge University Press: Cambridge, UK, 1996; pp. 344–403. [Google Scholar]
- Kacki, M.; Rylko, M.S.; Hayes, J.G.; Sullivan, C.R. A high-performance EMI filter based on laminated ferrite ring cores. In Proceedings of the 2022 24th European Conference on Power Electronics and Applications (EPE’22 ECCE Europe), Hanover, Germany, 5–9 September 2022; pp. 1–7. [Google Scholar]
- Lin, D.; Zhou, P.; Fu, W.N.; Badics, Z.; Cendes, Z.J. A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis. IEEE Trans. Magn. 2004, 40, 1318–1321. [Google Scholar] [CrossRef]
- ANSYS. Introduction to Icepak in AEDT. Available online: https://innovationspace.ansys.com/courses/wpcontent/uploads/sites/5/2021/07/AEDT_Icepak_Int_2020R1_EN_LE01.1.pdf (accessed on 5 July 2020).
- Cheng, M.; Qin, W.; Zhu, X.; Wang, Z. Magnetic-inductance: Concept, definition, and applications. IEEE Trans. Power Electron. 2022, 37, 12406–12414. [Google Scholar] [CrossRef]
- Li, C.; Cheng, M.; Qin, W.; Wang, Z.; Ma, X.; Wang, W. Analytical loss model for magnetic cores based on vector magnetic circuit theory. IEEE Open J. Power Electron. 2024, 5, 1659–1670. [Google Scholar] [CrossRef]
- Li, C.; Qin, W.; Wang, Z.; Ma, X.; Wang, W.; Cheng, M. Core loss model for non-sinusoidal excitations based on vector magnetic circuit theory. In Proceedings of the International Conference on Electrical Machines (ICEM), Torino, Italy, 1–4 September 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Salon, S.J.; Chari, M.V.K.; Ergene, L.T.; Burow, D.; DeBortoli, M. Eddy Currents: Theory, Modeling and Applications; Wiley-IEEE Press: New York, NY, USA, 2023; pp. 45–129. [Google Scholar]
- FERROXCUBE. Material Specification 3E6 (3E10-M). Available online: https://www.ferroxcube.com/upload/media/product/file/MDS/3e6.pdf (accessed on 18 November 2016).
- TDK. SIFERRIT Material N87. Available online: https://www.tdk-electronics.tdk.com/download/528882/990c299b916e9f3eb7e44ad563b7f0b9/pdf-n87.pdf (accessed on 22 February 2023).
- Bertotti, G. General properties of power loss in soft ferromagnetic materials. IEEE Trans. Magn. 1988, 21, 621–630. [Google Scholar] [CrossRef]
- Serpico, C.; Visone, C.; Mayergoyz, I.D.; Basso, V.; Miano, G. Eddy current losses in ferromagnetic laminations. J. Appl. Phys. 2000, 87, 6923–6925. [Google Scholar] [CrossRef]
- Mayergoyz, I.; Serpico, C. Nonlinear diffusion of electromagnetic fields and excess eddy current losses. J. Appl. Phys. 1999, 85, 4910–4912. [Google Scholar] [CrossRef]
- Cheng, M.; Qin, W.; Zhu, X.; Wang, Z.; Hua, W. High-performance breathable magnetic core for high-frequency power electronic systems. Fundam. Res. 2024. [Google Scholar] [CrossRef]
- Li, H.; Serrano, D.; Wang, S.; Chen, M. MagNet-AI: Neural network as datasheet for magnetics modeling and material recommendation. IEEE Trans. Power Electron. 2023, 38, 15854–15869. [Google Scholar] [CrossRef]
Parameters | 3E6 | N87 |
---|---|---|
Manufacturer | FERROXCUBE (El Paso, TX, USA) | TDK (Tokyo, Japan) |
Effective magnetic length l | 0.0542 m | 0.082 m |
Effective magnetic cross-section S | 2.48 × 10−5 m2 | 8.26 × 10−5 m2 |
Effective magnetic volume V | 1.34 × 10−6 m3 | 6.78 × 10−6 m3 |
Turn number of primary and secondary windings N1 = N2 | 5 | 6 |
Initial permeability μi (T = 25 °C) | 10,000 ± 30% | 2200 ± 25% |
Conductivity σ (T = 25 °C) | 10 S/m | 0.1 S/m |
f (kHz) | Bavg (T) | ||||
---|---|---|---|---|---|
0.1 | 0.15 | 0.19 | |||
200 | Ex_PV | 290 | 803 | 1243 | |
Cal | Cal_Ph | 151 | 441 | 735 | |
Cal_Pe | 133 | 300 | 471 | ||
Cal_PV | 284 | 229.17 | 1206 | ||
error | 2.0% | 7.9% | 2.9% | ||
ANSYS_PV | 323 | 760 | 1408 | ||
error | 11.4% | 5.4% | 13.3% | ||
400 | Ex _PV | 1002.1 | 2157.6 | 3877 | |
Cal | Cal_Ph | 463 | 1103 | 2041 | |
Cal_Pe | 576 | 1105 | 1731 | ||
Cal_PV | 1039 | 2208 | 3772 | ||
error | 3.7% | 2.3% | 2.7% | ||
ANSYS_PV | 1109 | 2859.2 | 5043 | ||
error | 10.7% | 32.5% | 30.0% |
f (kHz) | Bavg (T) | |||
---|---|---|---|---|
0.05 | 0.075 | 0.1 | ||
200 | Ex_PV | 72 | 200 | 406 |
Cal_PV | 75 | 192 | 396 | |
error | 4.4% | 4% | 2.5% | |
ANSYS_ PV | 81 | 192 | 443 | |
error | 12.5% | 4% | 9.1% | |
300 | Ex _PV | 133 | 370 | 741 |
Cal_PV | 138 | 349 | 687 | |
error | 3.8% | 5.7% | 7.3% | |
ANSYS_ PV | 140 | 333 | 660 | |
error | 5.3% | 10% | 10.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Cheng, M.; Wang, W. A New Two-Dimensional Electromagnetic Field Analysis and Loss Calculation Method for High-Frequency Applications Based on Vector Magnetic Circuit Theory. Energies 2025, 18, 2639. https://doi.org/10.3390/en18102639
Li C, Cheng M, Wang W. A New Two-Dimensional Electromagnetic Field Analysis and Loss Calculation Method for High-Frequency Applications Based on Vector Magnetic Circuit Theory. Energies. 2025; 18(10):2639. https://doi.org/10.3390/en18102639
Chicago/Turabian StyleLi, Chengbo, Ming Cheng, and Wei Wang. 2025. "A New Two-Dimensional Electromagnetic Field Analysis and Loss Calculation Method for High-Frequency Applications Based on Vector Magnetic Circuit Theory" Energies 18, no. 10: 2639. https://doi.org/10.3390/en18102639
APA StyleLi, C., Cheng, M., & Wang, W. (2025). A New Two-Dimensional Electromagnetic Field Analysis and Loss Calculation Method for High-Frequency Applications Based on Vector Magnetic Circuit Theory. Energies, 18(10), 2639. https://doi.org/10.3390/en18102639