Evaluation of Grain Size Effects on Porosity, Permeability, and Pore Size Distribution of Carbonate Rocks Using Nuclear Magnetic Resonance Technology
Abstract
:1. Introduction
2. Geological Setting
3. Experiments
3.1. Samples
3.2. NMR and Centrifugal Experiments
3.3. Permeability Measurement
4. Results
4.1. NMR Spectra Result for Cubes and Cuttings
4.2. NMR Results for Core Plugs at Sw and Sir
4.3. Pore and Permeability Characterizations of Limestone Samples
5. Discussion
5.1. Effect of Rock Sample Size on Porosity
5.2. Effect of Rock Sample Size on PSD
5.3. Effect of Rock Sample Size on Permeability
6. Applications
7. Conclusions
- (1)
- In laboratory analyses using NMR techniques, cuttings with a size of 1–1.7 mm can accurately measure porosity;
- (2)
- In laboratory analyses using NMR techniques, cuttings with a particle size of less than 6.75 mm do not accurately characterize the properties of extra-low porosity and extra-low permeability rocks, because of deviations in permeability and PSD;
- (3)
- For millimeter-sized limestone cuttings, PSD and permeability are severely affected by mechanical pulverization effect and interparticle water.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roehl, P.O.; Choquette, P.W. Carbonate Petroleum Reservoirs; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Santarelli, F.J.; Marsala, A.F.; Brignoli, M.; Rossi, E.; Bona, N. Formation Evaluation From Logging on Cuttings. SPE Reserv. Eval. Eng. 1998, 1, 238–244. [Google Scholar] [CrossRef]
- Mirotchnik, K.; Kryuchkov, S.; Strack, K. A Novel Method To Determine Nmr Petrophysical Parameters From Drill Cuttings. In Proceedings of the SPWLA 45th Annual Logging Symposium, Noordwijk, The Netherlands, 6–9 June 2004. [Google Scholar]
- Yu, Y.; Menouar, H. An Experimental Method to Measure the Porosity from Cuttings: Evaluation and Error Analysis. In Proceedings of the SPE Production and Operations Symposium, Oklahoma City, OK, USA, 1–5 March 2015. [Google Scholar]
- Hübner, W. Studying the Pore Space of Cuttings by NMR and μCT. J. Appl. Geophys. 2014, 104, 97–105. [Google Scholar] [CrossRef]
- Lenormand, R.; Fonta, O. Advances in Measuring Porosity and Permeability from Drill Cuttings. In Proceedings of the SPE/EAGE Reservoir Characterization and Simulation Conference, Abu Dhabi, United Arab Emirates, 28–30 October 2007. [Google Scholar]
- Solano, N.A.; Clarkson, C.R.; Krause, F.F.; Lenormand, R.; Barclay, J.E.; Aguilera, R. Drill Cuttings and Characterization of Tight Gas Reservoirs—An Example from the Nikanassin Fm. in the Deep Basin of Alberta. In Proceedings of the SPE Canadian Unconventional Resources Conference, Calgary, AB, Canada, 30 October–1 November 2012. [Google Scholar]
- Ortega, C.; Aguilera, R. A Complete Petrophysical-Evaluation Method for Tight Formations From Drill Cuttings Only in the Absence of Well Logs. SPE J. 2013, 19, 636–647. [Google Scholar] [CrossRef]
- Fellah, K.; Utsuzawa, S.; Song, Y.Q.; Kausik, R. Porosity of Drill-Cuttings Using Multinuclear 19F and 1H NMR Measurements. Energy Fuels 2018, 32, 7467–7470. [Google Scholar] [CrossRef]
- Chang, Y.H.; Yao, Y.B.; Liu, Y.; Zheng, S.J. Can cuttings replace cores for porosity and pore size distribution analyses of coal? Int. J. Coal Geol. 2020, 227, 15. [Google Scholar] [CrossRef]
- Siddiqui, S.; Grader, A.S.; Touati, M.; Loermans, A.M.; Funk, J.J. Techniques for Extracting Reliable Density and Porosity Data From Cuttings. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 9–12 October 2005. [Google Scholar]
- Egermann, P.; Doerler, N.; Fleury, M.; Behot, J.; Deflandre, F.; Lenormand, R. Petrophysical Measurements From Drill Cuttings: An Added Value for the Reservoir Characterization Process. SPE Reserv. Eval. Eng. 2006, 9, 302–307. [Google Scholar] [CrossRef]
- Munn, K.; Smith, D.M. A NMR Technique for the Analysis of Pore Structure-Numerical Inversion of Relaxation Measurements. J. Colloid Interface Sci. 1987, 119, 117–126. [Google Scholar] [CrossRef]
- Al-Mahrooqi, S.H.; Grattoni, C.A.; Moss, A.K.; Jing, X.D. An Investigation of the Effect of Wettability on NMR Characteristics of Sandstone Rock and Fluid Systems. J. Pet. Sci. Eng. 2003, 39, 389–398. [Google Scholar] [CrossRef]
- Hao, F.; Zhou, X.H.; Zhu, Y.M.; Zou, H.Y.; Yang, Y.Y. Charging of Oil Fields Surrounding the Shaleitian Uplift From Multiple Source Rock Intervals and Generative Kitchens, Bohai Bay Basin, China. Mar. Pet. Geol. 2010, 27, 1910–1926. [Google Scholar] [CrossRef]
- Ye, T.; Wei, A.J.; Gao, K.S.; Sun, Z.; Li, F. New Sequence Division Method of Shallow Platform with Natural Gamma Spectrometry Data: Implication for Reservoir Distribution—A Case Study From Majiagou Formation of Bozhong 21–22 Structure, Bohai Bay Basin. Carbonates Evaporites 2020, 35, 14. [Google Scholar] [CrossRef]
- SY/T 5162-2014; Analytical Method for Rock Sample by Scanning Electron Microscope. Petroleum Industry Press: Beijing, China, 2022.
- Sun, X.; Yao, Y.; Liu, D.; Ma, R.; Qiu, Y. Effects of Fracturing Fluids Imbibition on CBM Recovery: In Terms of Methane Desorption and Diffusion. SPE J. 2024, 29, 505–517. [Google Scholar] [CrossRef]
- Straley, C. In An Experimental Investigation of Methane in Rock Materials. In Proceedings of the SPWLA 38th Annual Logging Symposium, Houston, TX, USA, 15–18 June 1997. [Google Scholar]
- Zheng, S.J.; Yao, Y.B.; Liu, D.M.; Cai, Y.D.; Liu, Y. Characterizations of Full-scale Pore Size Distribution, Porosity and Permeability of Coals: A Novel Methodology by Nuclear Magnetic Resonance and Fractal Analysis Theory. Int. J. Coal Geol. 2018, 196, 148–158. [Google Scholar] [CrossRef]
- Wang, Z.F.; Yao, Y.B.; Ma, R.Y.; Zhang, X.A.; Zhang, G.B. Application of Multifractal Analysis Theory to Interpret T2 Cutoffs of NMR Logging Data: A Case Study of Coarse Clastic Rock Reservoirs in Southwestern Bozhong Sag, China. Fractal Fract. 2023, 7, 20. [Google Scholar] [CrossRef]
- Mai, A.; Kantzas, A. On the Characterization of Carbonate Reservoirs Using Low Field NMR Tools. In Proceedings of the SPE Gas Technology Symposium, Calgary, AB, Canada, 30 April–2 May 2002. [Google Scholar]
- Coates, G.R.; Xiao, L.; Prammer, M.G. NMR Logging: Principles and Interpretation; Halliburton Energy Services: Huston, TX, USA, 1999. [Google Scholar]
- Morriss, C.; Rossini, D.; Straley, C.; Tutunjian, P.; Vinegar, H. Core Analysis By Low-field Nmr. Log Anal. 1997, 38, 84–95. [Google Scholar]
- Westphal, H.; Surholt, I.; Kiesl, C.; Thern, H.F.; Kruspe, T. NMR Measurements in Carbonate Rocks: Problems and an Approach to a Solution. Pure Appl. Geophys. 2005, 162, 549–570. [Google Scholar] [CrossRef]
- Yao, Y.B.; Liu, D.M.; Che, Y.; Tang, D.Z.; Tang, S.H.; Huang, W.H. Petrophysical Characterization of Coals by Low-field Nuclear Magnetic Resonance (NMR). Fuel 2010, 89, 1371–1380. [Google Scholar] [CrossRef]
- Lawal, L.O.; Adebayo, A.R.; Mahmoud, M.; Dia, B.; Sultan, A.S. A Novel NMR Surface Relaxivity Measurements on Rock Cuttings for Conventional and Unconventional Reservoirs. Int. J. Coal Geol. 2020, 231, 16. [Google Scholar] [CrossRef]
- Wei, D.; Gao, Z.Q.; Zhang, C.; Fan, T.L.; Karubandika, G.M.; Meng, M.M. Pore Characteristics of the Carbonate Shoal from Fractal Perspective. J. Pet. Sci. Eng. 2019, 174, 1249–1260. [Google Scholar] [CrossRef]
- Kenyon, W.E. Petrophysical Principles of Applications of NMR Logging. Log Anal. 1997, 38, 21–43. [Google Scholar]
- Chen, T.; Wang, H.J.; Li, T.; Zheng, N. New insights into the formation of diagenetic illite from TEM studies. Am. Miner. 2013, 98, 879–887. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Barnes, H.L.; Brantley, S.L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim. Cosmochim. Acta 1996, 60, 3897–3912. [Google Scholar] [CrossRef]
- Palvanov, M.; Eren, M.; Kadir, S. EPMA analysis of a stalagmite from Küpeli Cave, southern Turkey: Implications on detrital sediments. Carbonates Evaporites 2024, 39, 11. [Google Scholar] [CrossRef]
- Zhao, F.Y.; Jiang, S.H.; Li, S.Z.; Zhang, H.X.; Wang, G.; Lei, J.P.; Gao, S. Cenozoic Tectonic Migration in the Bohai Bay Basin, East China. Geol. J. 2016, 51, 188–202. [Google Scholar] [CrossRef]
- Arson, C.; Pereira, J.M. Influence of Damage on Pore Size Distribution and Permeability of Rocks. Int. J. Numer. Anal. Methods Geomech. 2013, 37, 810–831. [Google Scholar] [CrossRef]
- Han, M.L.; Wei, X.L.; Zhang, J.C.; Liu, Y.; Tang, X.; Li, P.; Liu, Z.Y. Influence of Structural Damage on Evaluation of Microscopic Pore Structure in Marine Continental Transitional Shale of the Southern North China Basin: A Method Based on the Low-temperature N2 Adsorption Experiment. Pet. Sci. 2022, 19, 100–115. [Google Scholar] [CrossRef]
- Smith, D.M.; Schentrup, S. Mercury Porosimetry of Fine Particles—Particle Interaction and Compression Effects. Powder Technol. 1987, 49, 241–247. [Google Scholar] [CrossRef]
- Fleury, M.; Deflandre, F.; Godefroy, S. Validity of Permeability Prediction from NMR Measurements. Comptes Rendus Acad. Sci. Ser. II Chem. 2001, 4, 869–872. [Google Scholar] [CrossRef]
- Amabeoku, M.O.; Funk, J.J.; Al-Dossary, S.M.; Al-Ali, H.A. Calibration of Permeability Derived from NMR Logs in Carbonate Reservoirs. In Proceedings of the SPE Middle East Oil Show, Manama, Bahrain, 17–20 March 2001. [Google Scholar]
- Amaefule, J.O.; Altunbay, M.; Tiab, D.; Kersey, D.G.; Keelan, D.K. Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 3–6 October 1993. [Google Scholar]
- Georgi, D.T.; Harville, D.G.; Robertson, H.A. Advances In Cuttings Collection And Analysis. In Proceedings of the SPWLA 34th Annual Logging Symposium, Calgary, AB, Canada, 28–30 September 1993. [Google Scholar]
Serial | Vt (cm3) | n1(%) | Sir (%) | T2g (ms) | Kp (×10−3 μm2) |
---|---|---|---|---|---|
C1 | 24.943 | 1.03 | 94.51 | 10.155 | 0.00252 |
C2 | 25.013 | 1.19 | 94.05 | 10.243 | 0.00502 |
C3 | 24.943 | 1.21 | 95.70 | 8.478 | 0.00313 |
C4 | 25.057 | 1.14 | 95.62 | 8.441 | 0.00329 |
C5 | 25.575 | 0.96 | 93.84 | 10.605 | 0.00353 |
Serial | m (g) | n2 (%) | Sir (%) | T2g (ms) |
---|---|---|---|---|
Cube–4 × 4 × 4 cm | 178.04 | 1.05 | 92.22 | 11.305 |
Cube–4 × 4 × 2 cm | 98.34 | 1.02 | 95.45 | 8.762 |
Cube–4 × 2 × 2 cm | 44.48 | 0.89 | 91.76 | 9.278 |
Cube–2 × 2 × 2 cm | 31.66 | 0.93 | 95.48 | 7.902 |
Powder–a | 102.33 | 1.10 | 89.48 | 18.542 |
Powder–b | 130.48 | 1.00 | 61.95 | 64.468 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Chang, Y.; Wang, Z.; Sun, X. Evaluation of Grain Size Effects on Porosity, Permeability, and Pore Size Distribution of Carbonate Rocks Using Nuclear Magnetic Resonance Technology. Energies 2024, 17, 1370. https://doi.org/10.3390/en17061370
Wang S, Chang Y, Wang Z, Sun X. Evaluation of Grain Size Effects on Porosity, Permeability, and Pore Size Distribution of Carbonate Rocks Using Nuclear Magnetic Resonance Technology. Energies. 2024; 17(6):1370. https://doi.org/10.3390/en17061370
Chicago/Turabian StyleWang, Shutong, Yanhai Chang, Zefan Wang, and Xiaoxiao Sun. 2024. "Evaluation of Grain Size Effects on Porosity, Permeability, and Pore Size Distribution of Carbonate Rocks Using Nuclear Magnetic Resonance Technology" Energies 17, no. 6: 1370. https://doi.org/10.3390/en17061370
APA StyleWang, S., Chang, Y., Wang, Z., & Sun, X. (2024). Evaluation of Grain Size Effects on Porosity, Permeability, and Pore Size Distribution of Carbonate Rocks Using Nuclear Magnetic Resonance Technology. Energies, 17(6), 1370. https://doi.org/10.3390/en17061370