Analysis of the Overhead Crane Energy Consumption Using Different Container Loading Strategies in Urban Logistics Hubs
Abstract
:1. Introduction
2. Literature Review
2.1. Intermodal Train Loading
2.2. Crane Energy Efficiency
3. Problem Description
3.1. Basic Assumptions for Train Loading
3.2. Decision Model Assumptions
- L1—priority of the wagons—algorithm chooses the first slot on the first wagon in the head of a train and then searches for the first matching container starting from the head of the yard (search for a container that satisfies pin configuration constraints as well as the wagon boogie maximum payload constraints). Pin and boogie constraints are checked in every strategy.
- L2—priority of the containers—algorithm chooses the first container starting from the head of the yard and then searches for the first matching slot on the wagon starting from the head of the train.
- L3—shortest distance from the wagon to a container—algorithm chooses the first slot on the first wagon in the head of a train and then searches for the closest matching container.
- L4—shortest distance from the container to the wagon—algorithm chooses the first container starting from the head of the yard and then searches for the closest matching slot on the wagon.
- L5—shortest distance from the current container to the wagon and from the current wagon to the container (nearest neighbour algorithm). The algorithm chooses the first available container and then searches for the closest matching slot on the wagon. In the next step, the algorithm searches for the container closest to the slot from the previous step.
- S1—containers set aside to extract a specific container were rearranged to their original positions in the storage yard in each loading cycle of the gantry crane.
- S2—containers set aside to extract a specific container were not returned to their original positions by the gantry crane.
- V1—containers prepared along the track were arranged sequentially from the beginning of the loading track, regardless of the location of a specific container in the storage yard.
- V2—containers placed along the track were positioned perpendicular to their initial position in the storage yard.
3.3. Basic Assumptions for Research Methodology
4. Simulation Research
4.1. Simulation Model and Assumptions
- RTG gantry crane,
- container storage field, containing containers that wait for loading
- rail-road, on which the train with wagons is placed for loading,
- storage lane, on which containers are laid down in a specific sequence before the loading process
- containers.
4.2. Simulation Process
- Generating an initial stock of containers in the container storage field.
- Generating a set of wagons and assigning them types of containers.
- Checking the availability of containers at the storage field that are necessary for loading. If the availability condition is not met, random containers in the storage field are replaced with those for which there is demand.
- Carrying out the container preparation process (placing containers along the rail road).
- Carrying out the train loading process (container transportation between the storage line and wagons on the rail-road).
- Collecting characteristics and parameters and estimating the energy consumption.
- Checking if all wagons are loaded. If so, the simulation ends.
4.3. Estimation of Energy Consumption
- basic stacker crane parameters (e.g., speed, lifting height) implemented in the model—see Table 1;
- distances between the places of collection and storage of containers, estimated by the simulation model at various stages of the simulation;
- operating times of individual engines of the crane’s structural elements (gantry, hoist, trolley), estimated in the model based on the distances covered and the parameters of the stacker crane (e.g., travel and lifting speed);
- functional dependencies (2)–(9) developed based on research from a previous publication [22].
4.4. Simulation Scenarios
4.5. Simulation Experiments and Results
- the percentage of gantry working time increases,
- the percentage of energy consumed by the gantry increases,
- the percentage of energy consumed by the hoist and trolley decreases,
- the percentage of energy recovered from total energy consumption decreases.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Scenario | Type of Operation/Motor Usage | Distance [m] | Time of Operation [h] | Time Share [%] | Energy Consumption [kWh] | Energy Share [%] | Energy Recovery [kWh] | Energy Recovery Share [%] | Process Time [h] |
---|---|---|---|---|---|---|---|---|---|
1 | Gantry | 9561.43 | 4.024 | 72.56 | 87.75 | 86.24 | 3.25 | 3.7 | 0.000 |
1 | Trolley | 2834.32 | 0.679 | 12.51 | 3.35 | 3.37 | 0 | 0 | 0.000 |
1 | Hoist | 1108.62 | 0.373 | 6.86 | 8.17 | 8.21 | 8.11 | 99.36 | 0.000 |
1 | Picking up/Picking off/idle | 0 | 0.438 | 8.07 | 2.16 | 2.17 | 0 | 0 | 0.000 |
1 | Total | 13,504.37 | 5.514 | 100 | 101.43 | 100 | 11.36 | 11.35 | 5.719 |
2 | Gantry | 9383.35 | 3.949 | 71.5 | 86.1 | 85.52 | 3.19 | 3.7 | 0.000 |
2 | Trolley | 2873.81 | 0.688 | 13.02 | 3.4 | 3.55 | 0 | 0 | 0.000 |
2 | Hoist | 1132.48 | 0.381 | 7.18 | 8.34 | 8.67 | 8.33 | 99.79 | 0.000 |
2 | Picking up/Picking off/idle | 0 | 0.440 | 8.3 | 2.17 | 2.26 | 0 | 0 | 0.000 |
2 | Total | 13,389.64 | 5.458 | 100 | 100.01 | 100 | 11.51 | 11.82 | 5.659 |
3 | Gantry | 12,184.76 | 5.128 | 76.83 | 109.97 | 88.69 | 4.07 | 3.7 | 0.000 |
3 | Trolley | 2890.12 | 0.692 | 10.59 | 3.36 | 2.77 | 0 | 0 | 0.000 |
3 | Hoist | 1138.54 | 0.383 | 5.85 | 8.24 | 6.78 | 8.22 | 99.83 | 0.000 |
3 | Picking up/Picking off/idle | 0 | 0.440 | 6.74 | 2.14 | 1.76 | 0 | 0 | 0.000 |
3 | Total | 16,213.42 | 6.644 | 100 | 123.71 | 100 | 12.29 | 10.05 | 6.864 |
4 | Gantry | 11,567.47 | 4.868 | 76.03 | 104.88 | 88.26 | 3.88 | 3.7 | 0.000 |
4 | Trolley | 2909.58 | 0.697 | 10.89 | 3.39 | 2.86 | 0 | 0 | 0.000 |
4 | Hoist | 1151.69 | 0.387 | 6.05 | 8.37 | 7.05 | 8.32 | 99.38 | 0.000 |
4 | Picking up/Picking off/idle | 0 | 0.450 | 7.02 | 2.19 | 1.84 | 0 | 0 | 0.000 |
4 | Total | 15,628.74 | 6.402 | 100 | 118.82 | 100 | 12.2 | 10.27 | 6.615 |
5 | Gantry | 12,455.95 | 5.242 | 76.8 | 112.17 | 88.58 | 4.15 | 3.7 | 0.000 |
5 | Trolley | 2878.91 | 0.689 | 10.54 | 3.34 | 2.76 | 0 | 0 | 0.000 |
5 | Hoist | 1145.03 | 0.385 | 5.9 | 8.3 | 6.88 | 8.25 | 99.36 | 0.000 |
5 | Picking up/Picking off/idle | 0 | 0.442 | 6.77 | 2.15 | 1.78 | 0 | 0 | 0.000 |
5 | Total | 16,479.89 | 6.759 | 100 | 125.95 | 100 | 12.4 | 10.11 | 6.962 |
6 | Gantry | 9874.69 | 4.156 | 70.35 | 89.97 | 84.84 | 3.33 | 3.7 | 0.000 |
6 | Trolley | 3148.51 | 0.754 | 13.23 | 3.7 | 3.63 | 0 | 0 | 0.000 |
6 | Hoist | 1267.51 | 0.426 | 7.45 | 9.27 | 9.08 | 9.22 | 99.45 | 0.000 |
6 | Picking up/Picking off/idle | 0 | 0.511 | 8.96 | 2.51 | 2.46 | 0 | 0 | 0.000 |
6 | Total | 14,290.71 | 5.847 | 100 | 105.45 | 100 | 12.55 | 12.16 | 6.140 |
7 | Gantry | 9315.05 | 3.920 | 70.12 | 85.4 | 84.67 | 3.16 | 3.7 | 0.000 |
7 | Trolley | 3062.56 | 0.733 | 13.21 | 3.61 | 3.61 | 0 | 0 | 0.000 |
7 | Hoist | 1264.69 | 0.425 | 7.66 | 9.28 | 9.27 | 9.26 | 99.83 | 0.000 |
7 | Picking up/Picking off/idle | 0 | 0.500 | 9.01 | 2.46 | 2.46 | 0 | 0 | 0.000 |
7 | Total | 13,642.3 | 5.580 | 100 | 100.75 | 100 | 12.42 | 12.39 | 5.831 |
8 | Gantry | 14,148.45 | 5.955 | 77.65 | 126.04 | 89.1 | 4.66 | 3.7 | 0.000 |
8 | Trolley | 3084.46 | 0.739 | 9.8 | 3.54 | 2.55 | 0 | 0 | 0.000 |
8 | Hoist | 1275.88 | 0.429 | 5.7 | 9.11 | 6.57 | 9.09 | 99.86 | 0.000 |
8 | Picking up/Picking off/idle | 0 | 0.515 | 6.84 | 2.47 | 1.78 | 0 | 0 | 0.000 |
8 | Total | 18,508.8 | 7.638 | 100 | 141.14 | 100 | 13.76 | 9.86 | 7.923 |
9 | Gantry | 11,809.2 | 4.970 | 74.46 | 106.51 | 87.33 | 3.94 | 3.7 | 0.000 |
9 | Trolley | 3135.87 | 0.751 | 11.32 | 3.64 | 3 | 0 | 0 | 0.000 |
9 | Hoist | 1270.35 | 0.427 | 6.45 | 9.18 | 7.6 | 9.13 | 99.43 | 0.000 |
9 | Picking up/Picking off/idle | 0 | 0.515 | 7.77 | 2.5 | 2.06 | 0 | 0 | 0.000 |
9 | Total | 16,215.41 | 6.663 | 100 | 121.82 | 100 | 13.07 | 10.79 | 6.982 |
10 | Gantry | 7044.24 | 2.965 | 63.97 | 65.47 | 80.77 | 2.42 | 3.7 | 0.000 |
10 | Trolley | 3079.02 | 0.737 | 16.02 | 3.68 | 4.58 | 0 | 0 | 0.000 |
10 | Hoist | 1245.53 | 0.419 | 9.08 | 9.28 | 11.53 | 9.22 | 99.43 | 0.000 |
10 | Picking up/Picking off/idle | 0 | 0.504 | 10.94 | 2.52 | 3.13 | 0 | 0 | 0.000 |
10 | Total | 11,368.79 | 4.624 | 100 | 80.94 | 100 | 11.64 | 14.45 | 5.022 |
11 | Gantry | 7959.5 | 3.350 | 68.47 | 73.84 | 83.76 | 2.73 | 3.7 | 0.000 |
11 | Trolley | 2892.61 | 0.693 | 14.37 | 3.45 | 3.98 | 0 | 0 | 0.000 |
11 | Hoist | 1132.72 | 0.381 | 7.88 | 8.43 | 9.69 | 8.38 | 99.37 | 0.000 |
11 | Picking up/Picking off/idle | 0 | 0.448 | 9.28 | 2.24 | 2.57 | 0 | 0 | 0.000 |
11 | Total | 11,984.83 | 4.872 | 100 | 87.96 | 100 | 11.11 | 12.73 | 5.096 |
12 | Gantry | 7885.07 | 3.319 | 67.47 | 73.05 | 82.94 | 2.7 | 3.7 | 0.000 |
12 | Trolley | 2905.68 | 0.696 | 14.74 | 3.47 | 4.12 | 0 | 0 | 0.000 |
12 | Hoist | 1164.82 | 0.391 | 8.29 | 8.66 | 10.28 | 8.64 | 99.83 | 0.000 |
12 | Picking up/Picking off/idle | 0 | 0.449 | 9.5 | 2.24 | 2.66 | 0 | 0 | 0.000 |
12 | Total | 11,955.56 | 4.854 | 100 | 87.41 | 100 | 11.35 | 13.33 | 5.077 |
13 | Gantry | 10,427.73 | 4.389 | 74.34 | 95.17 | 87.29 | 3.52 | 3.7 | 0.000 |
13 | Trolley | 2869.03 | 0.687 | 11.75 | 3.37 | 3.12 | 0 | 0 | 0.000 |
13 | Hoist | 1124.87 | 0.378 | 6.46 | 8.22 | 7.61 | 8.21 | 99.83 | 0.000 |
13 | Picking up/Picking off/idle | 0 | 0.436 | 7.45 | 2.14 | 1.98 | 0 | 0 | 0.000 |
13 | Total | 14,421.63 | 5.890 | 100 | 108.9 | 100 | 11.73 | 10.83 | 6.125 |
14 | Gantry | 9937.25 | 4.182 | 72.62 | 90.86 | 86.28 | 3.36 | 3.7 | 0.000 |
14 | Trolley | 2953.69 | 0.707 | 12.53 | 3.48 | 3.38 | 0 | 0 | 0.000 |
14 | Hoist | 1151.04 | 0.387 | 6.85 | 8.44 | 8.19 | 8.39 | 99.35 | 0.000 |
14 | Picking up/Picking off/idle | 0 | 0.452 | 8 | 2.22 | 2.15 | 0 | 0 | 0.000 |
14 | Total | 14,041.98 | 5.728 | 100 | 104.99 | 100 | 11.75 | 11.33 | 5.963 |
15 | Gantry | 8162.84 | 3.436 | 68.71 | 75.49 | 83.88 | 2.79 | 3.7 | 0.000 |
15 | Trolley | 2939.12 | 0.704 | 14.2 | 3.5 | 3.92 | 0 | 0 | 0.000 |
15 | Hoist | 1158.39 | 0.389 | 7.86 | 8.59 | 9.65 | 8.53 | 99.39 | 0.000 |
15 | Picking up/Picking off/idle | 0 | 0.457 | 9.24 | 2.27 | 2.55 | 0 | 0 | 0.000 |
15 | Total | 12,260.34 | 4.986 | 100 | 89.84 | 100 | 11.32 | 12.69 | 5.303 |
16 | Gantry | 7929.61 | 3.337 | 65.67 | 73.21 | 81.75 | 2.71 | 3.7 | 0.000 |
16 | Trolley | 3136.25 | 0.751 | 15.26 | 3.73 | 4.33 | 0 | 0 | 0.000 |
16 | Hoist | 1278.09 | 0.430 | 8.73 | 9.48 | 10.99 | 9.43 | 99.43 | 0.000 |
16 | Picking up/Picking off/idle | 0 | 0.509 | 10.34 | 2.53 | 2.93 | 0 | 0 | 0.000 |
16 | Total | 12,343.95 | 5.027 | 100 | 88.94 | 100 | 12.14 | 13.96 | 5.328 |
17 | Gantry | 8893.32 | 3.743 | 67.95 | 81.53 | 83.28 | 3.02 | 3.7 | 0.000 |
17 | Trolley | 3166.66 | 0.758 | 14.18 | 3.74 | 3.95 | 0 | 0 | 0.000 |
17 | Hoist | 1292.05 | 0.435 | 8.13 | 9.5 | 10.05 | 9.48 | 99.85 | 0.000 |
17 | Picking up/Picking off/idle | 0 | 0.521 | 9.74 | 2.57 | 2.72 | 0 | 0 | 0.000 |
17 | Total | 13,352.03 | 5.457 | 100 | 97.34 | 100 | 12.5 | 13.12 | 5.757 |
18 | Gantry | 9930.75 | 4.180 | 71.13 | 90.56 | 85.28 | 3.35 | 3.7 | 0.000 |
18 | Trolley | 3079.6 | 0.737 | 12.84 | 3.62 | 3.49 | 0 | 0 | 0.000 |
18 | Hoist | 1255.15 | 0.422 | 7.36 | 9.17 | 8.87 | 9.15 | 99.81 | 0.000 |
18 | Picking up/Picking off/idle | 0 | 0.498 | 8.67 | 2.44 | 2.36 | 0 | 0 | 0.000 |
18 | Total | 14,265.51 | 5.837 | 100 | 105.78 | 100 | 12.5 | 12.01 | 6.123 |
19 | Gantry | 9355.43 | 3.937 | 69.59 | 85.61 | 84.37 | 3.17 | 3.7 | 0.000 |
19 | Trolley | 3148.74 | 0.754 | 13.58 | 3.71 | 3.73 | 0 | 0 | 0.000 |
19 | Hoist | 1267.41 | 0.426 | 7.69 | 9.31 | 9.39 | 9.25 | 99.38 | 0.000 |
19 | Picking up/Picking off/idle | 0 | 0.507 | 9.15 | 2.5 | 2.52 | 0 | 0 | 0.000 |
19 | Total | 13,771.59 | 5.625 | 100 | 101.12 | 100 | 12.42 | 12.45 | 5.919 |
20 | Gantry | 6931.09 | 2.917 | 63.07 | 64.46 | 80.19 | 2.39 | 3.7 | 0.000 |
20 | Trolley | 3153.06 | 0.755 | 16.47 | 3.77 | 4.74 | 0 | 0 | 0.000 |
20 | Hoist | 1263.16 | 0.425 | 9.27 | 9.42 | 11.85 | 9.37 | 99.4 | 0.000 |
20 | Picking up/Picking off/idle | 0 | 0.513 | 11.19 | 2.56 | 3.22 | 0 | 0 | 0.000 |
20 | Total | 11,347.31 | 4.610 | 100 | 80.21 | 100 | 11.75 | 14.75 | 4.982 |
References
- Gracias, J.S.; Parnell, G.S.; Specking, E.; Pohl, E.A.; Buchanan, R. Smart Cities—A Structured Literature Review. Smart Cities 2023, 6, 1719–1743. [Google Scholar] [CrossRef]
- Pečar, M.; Papa, G. Transportation problems and their potential solutions in smart cities. In Proceedings of the 2017 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 18–20 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 195–199. [Google Scholar]
- Potdar, V.; Batool, S.; Krishna, A. Risks and challenges of adopting electric vehicles in smart cities. In Smart Cities: Development and Governance Frameworks; Springer: Cham, Switzerland, 2018; pp. 207–240. [Google Scholar]
- Lagorio, A.; Pinto, R.; Golini, R. Research in urban logistics: A systematic literature review. Int. J. Phys. Distrib. Logist. Manag. 2016, 46, 908–931. [Google Scholar] [CrossRef]
- Allen, J.; Browne, M.; Woodburn, A.; Leonardi, J. The role of urban consolidation centres in sustainable freight transport. Transp. Rev. 2012, 32, 473–490. [Google Scholar] [CrossRef]
- Paddeu, D.; Fancello, G.; Fadda, P. An experimental customer satisfaction index to evaluate the performance of city logistics services. Transport 2017, 32, 262–271. [Google Scholar] [CrossRef]
- Nordtømme, M.E.; Bjerkan, K.Y.; Sund, A.B. Barriers to urban freight policy implementation: The case of urban consolidation center in Oslo. Transp. Policy 2015, 44, 179–186. [Google Scholar] [CrossRef]
- Allen, J.; Browne, M.; Woodburn, A.; Leonardi, J. A review of urban consolidation centres in the supply chain based on a case study approach. Supply Chain Forum Int. J. 2014, 15, 100–112. [Google Scholar] [CrossRef]
- Gronalt, M.; Schultze, R.C.; Posset, M. Intermodal transport—Basics, structure, and planning approaches. In Sustainable Transportation and Smart Logistics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 123–149. [Google Scholar]
- Statista Container Shipping. Available online: https://www.statista.com/topics/1367/container-shipping/ (accessed on 23 December 2023).
- Škultéty, F.; Beňová, D.; Gnap, J. City logistics as an imperative smart city mechanism: Scrutiny of clustered EU27 capitals. Sustainability 2021, 13, 3641. [Google Scholar] [CrossRef]
- European Commission (EC). Roadmap to a Single European Transport Area—Towards a Competitive and Resource Efficient Transport System; White Paper; European Commission: Brussels, Belgium, 28 March 2011; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0144&from=EN (accessed on 23 December 2023).
- Buchari, E.; Putranto, D.D.A.; Rahman, A. Analysis of model loading and unloading time of ships at Boom Baru Port, Palembang, Indonesia. MATEC Web Conf. 2017, 138, 07012. [Google Scholar] [CrossRef]
- Koo, P.H.; Lee, W.S.; Jang, A.D.W. Fleet sizing and vehicle routing for container transportation in a static environment. OR Spectr. 2004, 26, 193–209. [Google Scholar] [CrossRef]
- Martinov, S. Increasing the accuracy of evaluation in selecting a location for establishing an intermodal terminal. MATEC Web Conf. 2018, 234, 06004. [Google Scholar] [CrossRef]
- Lee, E. Spatial analysis for an intermodal terminal to support agricultural logistics: A case study in the upper great plains. Manag. Res. Rev. 2015, 38, 299–319. [Google Scholar] [CrossRef]
- Raicu, R.; Raicu, Ş.; Popa, M.; Costescu, D. On the evaluation of urban logistics intermodal terminal projects. Procedia-Soc. Behav. Sci. 2012, 39, 726–738. [Google Scholar] [CrossRef]
- Görçün, Ö.F. Analysis of the Effects of Intermodal Terminals for the Solutions of Urban Logistics Problems in Istan-bul City. In Dynamics in Logistics: Proceedings of the 4th International Conference LDIC; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 685–691. [Google Scholar]
- Grubisic, N.; Krljan, T.; Maglić, L.; Vilke, S. The microsimulation model for assessing the impact of inbound traffic flows for container terminals located near city centers. Sustainability 2020, 12, 9478. [Google Scholar] [CrossRef]
- Brnjac, N.; Badanjak, D.; Babi, D. Reducing congestion in urban transport by using intermodal transport solutions. WIT Trans. Built Environ. 2007, 96, 45–52. [Google Scholar]
- Wang, L.; Zhu, X. Container Loading Optimization in Rail–Truck Intermodal Terminals Considering Energy Consumption. Sustainability 2019, 11, 2383. [Google Scholar] [CrossRef]
- Papaioannou, V.; Pietrosanti, S.; Holderbaum, W.; Becerra, V.M.; Mayer, R. Analysis of energy usage for RTG cranes. Energy 2017, 125, 337–344. [Google Scholar] [CrossRef]
- Jacyna, M.; Jachimowski, R.; Szczepański, E.; Izdebski, M. Road vehicle sequencing problem in a rail-road intermodal terminal–simulation research. Bull. Pol. Acad. Sci. Tech. Sci. 2020, 68, 135–1148. [Google Scholar]
- Boysen, N.; Fliedner, M.; Jaehn, F.; Pesch, E. A survey on container processing in railway yards. Transp. Sci. 2013, 47, 312–329. [Google Scholar] [CrossRef]
- Nehring, K.; Jachimowski, R. Modelling of container train handling in the land intermodal terminal. In Carpathian Logistics Congress 2019; Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie: Kraków, Poland, 2020. [Google Scholar]
- Steenken, D.; Voß, S.; Stahlbock, R. Container Terminal Operation and Operations Research—A Classification and Literature Review. OR Spectr. 2004, 26, 3–49. [Google Scholar]
- Stahlbock, R.; Voß, S. Operations research at container terminals: A literature update. OR Spectr 2008, 30, 1–52. [Google Scholar] [CrossRef]
- Heggen, H.; Braekers, K.; Caris, A. Optimising train load planning: Review and decision support for train planners. In Computational Logistics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 193–208. [Google Scholar]
- Corry, P.; Kozan, E. Optimised loading patterns for intermodal trains. OR Spectr. 2008, 30, 721–750. [Google Scholar] [CrossRef]
- Bruns, F.; Knust, S. Optimised load planning of trains in intermodal transportation. OR Spectr. 2012, 34, 511–533. [Google Scholar] [CrossRef]
- Bruns, F.; Goerigk, M.; Knust, S.; Schöbel, A. Robust load planning of trains in intermodal transportation. OR Spectr. 2014, 36, 631–668. [Google Scholar] [CrossRef]
- Heggen, H.; Braekers, K.; Caris, A. A multi-objective approach for intermodal train load planning. OR Spectr. 2018, 40, 341–366. [Google Scholar] [CrossRef]
- Li, C.; Burton, D.; Kost, M.; Sherida, J.; Thompson, M.C. Flow Topology of a Container Train Wagon Subjected to Varying Local Loading Configurations. J. Wind Eng. Ind. Aerodyn. 2017, 169, 12–29. [Google Scholar] [CrossRef]
- Ambrosino, D.; Siri, S. Models for train load planning problems in a container terminal. In Computer-based Modelling and Optimisation in Transportation; Springer: Berlin/Heidelberg, Germany, 2014; Volume 262, pp. 15–25. [Google Scholar]
- Ambrosino, D.; Caballini, C.; Siri, S. A mathematical model to evaluate different train loading and stacking policies in a container terminal. Marit. Econ. Logist. 2013, 15, 292–308. [Google Scholar] [CrossRef]
- Li, X.; Otto, A.; Pesch, E. Solving the single crane scheduling problem at rail transshipment yards. Discret. Appl. Math. 2019, 264, 134–147. [Google Scholar] [CrossRef]
- Jacyna, M.; Pyza, D.; Jachimowski, R. Intermodal Terminal Designing—Case Study; Warsaw University of Technology: Warsaw, Poland, 2019. [Google Scholar]
- Carboni, A.; Deflorio, F. Simulation of rail-road terminal operations and traffic control strategies in critical scenarios. Transp. Res. Procedia 2020, 45, 325–332. [Google Scholar] [CrossRef]
- Konecranes Rubber Tired Gantry Cranes. Available online: www.konecranes.com/port-equipment-services/container-handling-equipment/rubber-tired-gantry-cranes (accessed on 21 December 2023).
- Kalmar. Kalmar Hands over Its First Fully Electric Straddle Carrier. Available online: https://www.kalmarglobal.com/news--insights/press_releases/2023/kalmar-hands-over-its-first-fully/ (accessed on 21 December 2023).
- Parise, G.; Parise, L.; Malerba, A.; Pepe, F.M.; Honorati, A.; Chavdarian, P.B. Comprehensive peak-shaving solutions for port cranes. IEEE Trans. Ind. Appl. 2017, 53, 1799–1806. [Google Scholar] [CrossRef]
- Mahlia, T.M.I.; Saktisahdan, T.J.; Jannifar, A.; Hasan, M.H.; Matseelar, H.S.C. A review of available methods and development on energy storage; technology update. Renew. Sustain. Energy Rev. 2014, 33, 532–545. [Google Scholar] [CrossRef]
- Flynn, M.M.; McMullen, P.; Solis, O. High-speed flywheel and motor drive operation for energy recovery in a mobile gantry crane. In Proceedings of the APEC 07-Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 25 February–1 March 2007; p. 11511157. [Google Scholar]
- Kim, S.; Sul, S. Control of rubber tyred gantry crane with energy storage based on supercapacitor. IEEE Trans. Power Electron. 2006, 21, 1420–1427. [Google Scholar] [CrossRef]
- Baalbergen, F.; Bauer, P.; Ferreira, J.A. Energy storage and power management for typical 4Q-load. IEEE Trans. Ind. Electron. 2009, 56, 1485–1498. [Google Scholar] [CrossRef]
- Pietrosanti, S.; Alasali, F.; Holderbaum, W. Power management system for RTG crane using fuzzy logic controller. Sustain. Energy Technol. Assess. 2020, 37, 100639. [Google Scholar] [CrossRef]
- Zhang, C.; Guan, H.; Yuan, Y.; Chen, W. Machine learning-driven algorithms for the container relocation problem. Transp. Res. Part B Methodol. 2020, 139, 102–131. [Google Scholar] [CrossRef]
- Li, Y.; Chu, F.; Zheng, F.; Liu, M. A bi-objective optimisation for integrated berth allocation and quay crane assignment with preventive maintenance activities. IEEE Trans. Intell. Transp. Syst. 2022, 23, 2938–2955. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, X.; Ali, H. Multiple Equipment Integrated Scheduling and Storage Space Allocation in Rail-Water Intermodal Container Terminals Considering Energy Efficiency. Transp. Res. Rec. 2019, 2673, 199–209. [Google Scholar] [CrossRef]
- Zhong, M.; Yang, Y.; Zhou, Y.; Postolache, O. Adaptive auto-tuning mathematical approaches for integrated optimisation of automated container terminal. Math. Probl. Eng. 2019, 2019, 7641670. [Google Scholar] [CrossRef]
- Chen, X.; He, S.; Zhang, Y.; Tong, L.; Zhou, X. Yard crane and AGV scheduling in automated container terminal: A multi-robot task allocation framework. Transp. Res. Part C Emerg. Technol. 2020, 114, 241–271. [Google Scholar] [CrossRef]
- Jonker, T.; Duinkerken, M.B.; Yorke-Smith, S.; de Waal, A.; Negenborn, R.R. Coordinated optimisation of equipment operations in a container terminal. Flex. Serv. Manuf. J. 2021, 33, 281–311. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, L.; Xu, L. Multi-AGV dispatching and routing problem based on a three-stage decomposition method. Math. Biosci. Eng. 2020, 17, 5150–5172. [Google Scholar] [CrossRef]
- Budiyanto, M.A.; Huzaifi, M.H.; Sirait, S.J.; Prayoga, P.H.N. Evaluation of CO2 emissions and energy use with different container terminal layouts. Sci. Rep. 2021, 11, 5476. [Google Scholar] [CrossRef]
- Okşaş, O. Carbon emission strategies for container handling equipment using the activity-based method: A case study of Ambarlı container port in Turkiye. Mar. Policy 2023, 149, 105480. [Google Scholar] [CrossRef]
- Linder, A.J. CO2 restrictions and cargo throughput limitations at California ports: A closer look at AB 32 and port-to-port shipping. Public Work. Manag. Policy 2010, 14, 374–391. [Google Scholar] [CrossRef]
- Garg, A.; Shukla, P.R.; Kankal, B.; Mahapatra, D. CO2 emission in India: Trends and management at sectoral, sub-regional and plant levels. Carbon Manag. 2017, 8, 111–123. [Google Scholar] [CrossRef]
- Geerlings, H.; Heij, R.; van Duin, R. Opportunities for peak shaving the energy demand of ship-to-shore quay cranes at container terminals. J. Shipp. Trade 2018, 3, 3. [Google Scholar] [CrossRef]
- PKP Cargo. Rail Wagons Catalogue. Available online: www.pkpcargo.com/wp-content/uploads/2023/10/pkpcargo_katalogwagonow_3008_19.pdf/ (accessed on 28 December 2023).
- Ember—Yearly Electricity Data (2023); Ember—European Electricity Review (2022); Energy Institute—Statistical Review of World Energy (2023). Available online: https://ourworldindata.org/grapher/carbon-intensity-electricity (accessed on 30 December 2023).
Parameter | Value |
---|---|
Gantry speed [m/s] | 0.66 |
Gantry acceleration [m/s2] | 1 |
Trolley speed [m/s] | 1.16 |
Trolley acceleration [m/s2] | 1 |
Hoist lift speed [m/s] | , depending on the container’s weight |
Hoist drop speed [m/s] | , depending on the container’s weight |
Hoist acceleration [m/s2] | 1 |
Lift height [m] | 10.5 |
Container picking up time [s] | 5 |
Container put off time [s] | 10 |
Characteristics | Unit | Description |
---|---|---|
LX | [m] | Total distance travelled by gantry |
LY | [m] | Total distance travelled by trolley |
LZ (LZDL, LZDE, LZUL, LZUE) | [m] | Total distance travelled by hoist (down loaded, down empty, up loaded, up empty) |
TX | [s] | Total time of gantry working |
TY | [s] | Total time of trolley working |
TZ (TZDL, TZDE, TZUL, TZUE) | [s] | Total time of hoist working (down loaded, down empty, up loaded, up empty) |
TCC | [s] | Total time of container pick-up |
TCD | [s] | Total time of container picking-off |
TP | [s] | Total time of the whole process |
TPP | [s] | Total time of the container preparation process |
TPD | [s] | Total time of the container reshuffling process |
TPC | [s] | Total time of the additional container reshuffling process |
ECX | [kWh] | Total energy consumed by gantry operations |
ECY | [kWh] | Total energy consumed by trolley operations |
ECZ | [kWh] | Total energy consumed by hoist operations |
EC | [kWh] | Total energy consumed during the whole process |
ERX | [kWh] | Total energy recovered from gantry operations |
ERZ | [kWh] | Total energy recovered from hoist operations |
ER | [kWh] | Total energy recovered during the whole process |
ECPP (ERPP) | [kWh] | Total energy consumed during the preparation process (Total energy recovered during the preparation process) |
ECPD (ERPD) | [kWh] | Total energy consumed during the reshuffling process (Total energy recovered during the reshuffling process) |
ECPC (ERPC) | [kWh] | Total energy consumed during the additional reshuffling process (Total energy recovered during the additional reshuffling process) |
Day | Working Time | Total | Gantry | Hoist | Trolley and Losses | |||
---|---|---|---|---|---|---|---|---|
Energy Consumption | Energy Recovery Share | Energy Consumption | Energy Recovery Share | Energy Consumption | Energy Recovery Share | Energy Consumption | ||
[h] | [kWh] | [%] | [kWh] | [%] | [kWh] | [%] | [kWh] | |
1 | 10.3 | 711.2 | 57.1 | 220.47 | 5.06 | 440.94 | 89.00 | 49.784 |
2 | 11.1 | 748.36 | 50.1 | 231.99 | 4.09 | 463.99 | 86.50 | 52.38 |
3 | 11.9 | 785.53 | 57.7 | 243.51 | 4.47 | 487.03 | 83.80 | 54.99 |
4 | 12.7 | 822.7 | 51.9 | 255.04 | 4.30 | 510.07 | 84.10 | 57.59 |
5 | 6.7 | 439.9 | 50.8 | 136.37 | 2.68 | 272.74 | 84.30 | 30.79 |
6 | 7.3 | 499.2 | 54.0 | 154.75 | 2.80 | 309.50 | 72.60 | 34.94 |
7 | 1.4 | 112.8 | 49.8 | 34.97 | 3.54 | 69.94 | 67.10 | 7.89 |
8 | 2.1 | 160.8 | 30.2 | 49.85 | 2.87 | 99.69 | 84.20 | 11.25 |
Scenario No. | Crane Operation Strategy | Additional Reshuffling | Container Preparing Method | Scenario No. | Crane Operation Strategy | Additional Reshuffle | Container Preparing Method |
---|---|---|---|---|---|---|---|
Scenario 1 | 1 | No | 1 | Scenario 11 | 1 | No | 2 |
Scenario 2 | 2 | No | 1 | Scenario 12 | 2 | No | 2 |
Scenario 3 | 3 | No | 1 | Scenario 13 | 3 | No | 2 |
Scenario 4 | 4 | No | 1 | Scenario 14 | 4 | No | 2 |
Scenario 5 | 5 | No | 1 | Scenario 15 | 5 | No | 2 |
Scenario 6 | 1 | Yes | 1 | Scenario 16 | 1 | 1 | 2 |
Scenario 7 | 2 | Yes | 1 | Scenario 17 | 2 | 1 | 2 |
Scenario 8 | 3 | Yes | 1 | Scenario 18 | 3 | 1 | 2 |
Scenario 9 | 4 | Yes | 1 | Scenario 19 | 4 | 1 | 2 |
Scenario 10 | 5 | Yes | 1 | Scenario 20 | 5 | 1 | 2 |
Scenario | Total Distance [m] | Total Operations Time [h] | Total Energy Consumption [kWh] | Total Energy Recovery [kWh] | Total Energy Recovery Share [%] | Process Time [h] |
---|---|---|---|---|---|---|
1 | 13,504.37 | 5.51 | 101.43 | 11.36 | 11.35 | 5.72 |
2 | 13,389.64 | 5.46 | 100.01 | 11.51 | 11.82 | 5.66 |
3 | 16,213.42 | 6.64 | 123.71 | 12.29 | 10.05 | 6.86 |
4 | 15,628.74 | 6.40 | 118.82 | 12.20 | 10.27 | 6.62 |
5 | 16,479.89 | 6.76 | 125.95 | 12.40 | 10.11 | 6.96 |
6 | 14,290.71 | 5.85 | 105.45 | 12.55 | 12.16 | 6.14 |
7 | 13,642.30 | 5.58 | 100.75 | 12.42 | 12.39 | 5.83 |
8 | 18,508.80 | 7.64 | 141.14 | 13.76 | 9.86 | 7.92 |
9 | 16,215.41 | 6.66 | 121.82 | 13.07 | 10.79 | 6.98 |
10 | 11,368.79 | 4.62 | 80.94 | 11.64 | 14.45 | 5.02 |
11 | 11,984.83 | 4.87 | 87.96 | 11.11 | 12.73 | 5.10 |
12 | 11,955.56 | 4.85 | 87.41 | 11.35 | 13.33 | 5.08 |
13 | 14,421.63 | 5.89 | 108.90 | 11.73 | 10.83 | 6.12 |
14 | 14,041.98 | 5.73 | 104.99 | 11.75 | 11.33 | 5.96 |
15 | 12,260.34 | 4.99 | 89.84 | 11.32 | 12.69 | 5.30 |
16 | 12,343.95 | 5.03 | 88.94 | 12.14 | 13.96 | 5.33 |
17 | 13,352.03 | 5.46 | 97.34 | 12.50 | 13.12 | 5.76 |
18 | 14,265.51 | 5.84 | 105.78 | 12.50 | 12.01 | 6.12 |
19 | 13,771.59 | 5.63 | 101.12 | 12.42 | 12.45 | 5.92 |
20 | 11,347.31 | 4.61 | 80.21 | 11.75 | 14.75 | 4.98 |
Criterion | Scenarios from the Best to the Worst | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Energy consumption | 20 | 10 | 12 | 11 | 16 | 15 | 17 | 2 | 7 | 19 | 1 | 14 | 6 | 18 | 13 | 4 | 9 | 3 | 5 | 8 |
Process time | 20 | 10 | 12 | 11 | 15 | 16 | 2 | 1 | 17 | 7 | 19 | 14 | 18 | 13 | 6 | 4 | 3 | 5 | 9 | 8 |
Scenario | 20 | 10 | 12 | 11 | 16 | 15 | 17 | 2 | 7 | 19 | 1 | 14 | 6 | 18 | 13 | 4 | 9 | 3 | 5 | 8 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Energy consumption share [%] | ||||||||||||||||||||
Gantry | 80.2 | 80.8 | 82.9 | 83.8 | 81.8 | 83.9 | 83.3 | 85.5 | 79.6 | 84.4 | 86.2 | 86.3 | 84.8 | 85.3 | 87.3 | 88.3 | 87.3 | 88.7 | 88.6 | 89.1 |
Hoist | 11.9 | 11.5 | 10.3 | 9.7 | 11.0 | 9.7 | 10.1 | 8.7 | 12.3 | 9.4 | 8.2 | 8.2 | 9.1 | 8.9 | 7.6 | 7.0 | 7.6 | 6.8 | 6.9 | 6.6 |
Trolley | 4.7 | 4.6 | 4.1 | 4.0 | 4.3 | 3.9 | 4.0 | 3.6 | 4.8 | 3.7 | 3.4 | 3.4 | 3.6 | 3.5 | 3.1 | 2.9 | 3.0 | 2.8 | 2.8 | 2.6 |
Picking up/off | 3.2 | 3.1 | 2.7 | 2.6 | 2.9 | 2.6 | 2.7 | 2.3 | 3.3 | 2.5 | 2.2 | 2.2 | 2.5 | 2.4 | 2.0 | 1.8 | 2.1 | 1.8 | 1.8 | 1.8 |
Energy recovery share [%] | ||||||||||||||||||||
Total | 14.7 | 14.4 | 13.3 | 12.7 | 14.0 | 12.7 | 13.1 | 11.8 | 12.4 | 12.4 | 11.4 | 11.3 | 12.2 | 12.0 | 10.8 | 10.3 | 10.8 | 10.1 | 10.1 | 9.9 |
Time consumption share [%] | ||||||||||||||||||||
Gantry | 72.6 | 71.5 | 76.8 | 76.0 | 76.8 | 70.4 | 62.4 | 77.7 | 74.5 | 64.0 | 68.5 | 67.5 | 74.3 | 72.6 | 68.7 | 65.7 | 68.0 | 71.1 | 69.6 | 63.1 |
Hoist | 6.9 | 7.2 | 5.9 | 6.1 | 5.9 | 7.5 | 9.6 | 5.7 | 6.5 | 9.1 | 7.9 | 8.3 | 6.5 | 6.9 | 7.9 | 8.7 | 8.1 | 7.4 | 7.7 | 9.3 |
Trolley | 12.5 | 13.0 | 10.6 | 10.9 | 10.5 | 13.2 | 16.6 | 9.8 | 11.3 | 16.0 | 14.4 | 14.7 | 11.8 | 12.5 | 14.2 | 15.3 | 14.2 | 12.8 | 13.6 | 16.5 |
Picking up/off | 8.1 | 8.3 | 6.7 | 7.0 | 6.8 | 9.0 | 11.4 | 6.8 | 7.8 | 10.9 | 9.3 | 9.5 | 7.5 | 8.0 | 9.2 | 10.3 | 9.7 | 8.7 | 9.1 | 11.2 |
Crane Operation Strategy | Total Distance [m] | Total Energy [kWh] | Process Time [h] | Energy Consumption Share [%] | ||||
---|---|---|---|---|---|---|---|---|
Consumption | Recovery | Gantry | Trolley | Hoist | Picking Up/Off | |||
5 | 12,864.08 | 94.23 | 11.78 | 5.56 | 83.36 | 4.00 | 9.98 | 2.67 |
1 | 13,030.96 | 95.94 | 11.79 | 5.57 | 84.15 | 3.83 | 9.49 | 2.53 |
2 | 13,084.88 | 96.38 | 11.94 | 5.58 | 84.44 | 3.73 | 9.36 | 2.48 |
4 | 14,914.43 | 111.69 | 12.36 | 6.37 | 86.56 | 3.24 | 8.06 | 2.14 |
3 | 15,852.34 | 119.88 | 12.57 | 6.76 | 87.59 | 2.98 | 7.46 | 1.97 |
Crane Operation Strategy | Additional Reshuffling | Energy Consumption Reduction [%] | Time Consumption Reduction [%] | ||
---|---|---|---|---|---|
Comparing Scenarios | Average | Comparing Scenarios | Average | ||
1 | No | 13.3 | 14 | 10.9 | 12 |
Yes | 15.6 | 13.2 | |||
2 | No | 12.6 | 10.3 | ||
Yes | 3.4 | 1.3 | |||
3 | No | 12.0 | 10.8 | ||
Yes | 25.1 | 22.7 | |||
4 | No | 11.6 | 9.9 | ||
Yes | 17.0 | 15.2 | |||
5 | No | 28.7 | 23.8 | ||
Yes | 0.9 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kłodawski, M.; Jachimowski, R.; Chamier-Gliszczyński, N. Analysis of the Overhead Crane Energy Consumption Using Different Container Loading Strategies in Urban Logistics Hubs. Energies 2024, 17, 985. https://doi.org/10.3390/en17050985
Kłodawski M, Jachimowski R, Chamier-Gliszczyński N. Analysis of the Overhead Crane Energy Consumption Using Different Container Loading Strategies in Urban Logistics Hubs. Energies. 2024; 17(5):985. https://doi.org/10.3390/en17050985
Chicago/Turabian StyleKłodawski, Michał, Roland Jachimowski, and Norbert Chamier-Gliszczyński. 2024. "Analysis of the Overhead Crane Energy Consumption Using Different Container Loading Strategies in Urban Logistics Hubs" Energies 17, no. 5: 985. https://doi.org/10.3390/en17050985
APA StyleKłodawski, M., Jachimowski, R., & Chamier-Gliszczyński, N. (2024). Analysis of the Overhead Crane Energy Consumption Using Different Container Loading Strategies in Urban Logistics Hubs. Energies, 17(5), 985. https://doi.org/10.3390/en17050985