Electric Vehicle Charging from Tramway Infrastructure: A New Concept and the Turin Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Recharging DC-Based Concept
2.2. The Case Study of Turin: Current EV Charging Stations Deployment
3. Results
3.1. Typical Grid Load and Marginal Electricity Availability
3.2. Assessment of the Potential of the Innovative Solution
3.3. Regenerative Brake Potential
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EU Deal to End Sale of New CO2 Emitting Cars by 2035. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_22_6462 (accessed on 9 November 2023).
- European Commission. Communication from the Commissions to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions—The European Green Deal, Europe; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Falchetta, G.; Noussan, M. Electric vehicle charging network in Europe: An accessibility and deployment trends analysis. Transp. Res. D Transp. Environ. 2021, 94, 102813. [Google Scholar] [CrossRef]
- European Parliament. Regulation (EU) 2023/851 of the European Parliament and of the Council of 19 April 2023 Amending Regulation (EU) 2019/631 as Regards Strengthening the CO2 Emission Performance Standards for New Passenger Cars and New Light Commercial Vehicles in Line with the Union’s Increased Climate Ambition; European Parliament: Brussels, Belgium, 2023. [Google Scholar]
- European Parliament. Regulation (EU) 2018/1999 of the European Parliament and of the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action; European Parliament: Brussels, Belgium, 2018. [Google Scholar]
- Marotta, A.; Julea, A.; Acosta Iborra, B.; Lodi, C.; Klassek Bajorek, D.; Gomez Vilchez, J. Assessment of the Member States’ Implementation Reports of the National Policy Frameworks under the Directive 2014/94/EU on the Deployment of Alternative Fuels Infrastructure; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- DECRETO 7 Agosto 2012, n. 134, Conversione in Legge, Con Modificazioni, del Decreto-Legge 22 Giugno 2012, n. 83, Recante Misure Urgenti per la Crescita del Paese; Gazzetta Ufficiale: Roma, Italy, 2012.
- Mulholland, E. Zero-Emission Bus and Truck Market in Europe: A 2021 Update. 2022. Available online: https://theicct.org/publication/zero-emission-bus-and-truck-market-in-europe-factsheet-aug23/ (accessed on 9 January 2024).
- European Environmental Agency. New Registrations of Electric Cars, EU-27—European Environment Agency. 2023. Available online: https://www.eea.europa.eu/data-and-maps/daviz/new-electric-vehicles-in-eu-3#tab-chart_3 (accessed on 12 February 2024).
- Talluri, G.; Grasso, F.; Chiaramonti, D. Is deployment of charging station the barrier to electric vehicle fleet development in EU urban areas? An analytical assessment model for large-scale municipality-level EV charging infrastructures. Appl. Sci. 2019, 9, 4704. [Google Scholar] [CrossRef]
- Paffumi, E.; De Gennaro, M.; Martini, G.; Scholz, H. Assessment of the potential of electric vehicles and charging strategies to meet urban mobility requirements. Transp. A Transp. Sci. 2015, 11, 22–60. [Google Scholar] [CrossRef]
- Gemassmer, J.; Daam, C.; Reibsch, R. Challenges in Grid Integration of Electric Vehicles in Urban and Rural Areas. World Electr. Veh. J. 2021, 12, 206. [Google Scholar] [CrossRef]
- Stańczyk, T.L.; Hyb, L. Technological and Organisational Challenges for e-Mobility. Arch. Automot. Eng. 2019, 84, 57–70. [Google Scholar] [CrossRef]
- Rafi, M.A.H.; Bauman, J. A Comprehensive Review of DC Fast-Charging Stations with Energy Storage: Architectures, Power Converters, and Analysis. IEEE Trans. Transp. Electrif. 2021, 7, 345–368. [Google Scholar] [CrossRef]
- Ahmad, A.; Khalid, M.; Ullah, Z.; Ahmad, N.; Aljaidi, M.; Malik, F.A.; Manzoor, U. Electric Vehicle Charging Modes, Technologies and Applications of Smart Charging. Energies 2022, 15, 9471. [Google Scholar] [CrossRef]
- Aggeler, D.; Canales, F.; Zelaya -De, H.; Parra, L.; Coccia, A.; Butcher, N.; Apeldoorn, O. Ultra-Fast DC-Charge Infrastructures for EV-Mobility and Future Smart Grids. In Proceedings of the 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Gothenburg, Sweden, 11–13 October 2010; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- Subashini, M.; Vijayan, S. Smart Charging for Zero Emission Vehicles—A Comprehensive Review. Renew. Energy Focus 2023, 46, 57–67. [Google Scholar] [CrossRef]
- Franzese, P.; Patel, D.D.; Mohamed, A.A.S.; Iannuzzi, D.; Fahimi, B.; Risso, M.; Miller, J.M. Fast DC Charging Infrastructures for Electric Vehicles: Overview of Technologies, Standards, and Challenges. IEEE Trans. Transp. Electrif. 2023, 9, 3780–3800. [Google Scholar] [CrossRef]
- Khalid, M.R.; Alam, M.S.; Sarwar, A.; Asghar, M.J. A Comprehensive review on electric vehicles charging infrastructures and their impacts on power-quality of the utility grid. eTransportation 2019, 1, 100006. [Google Scholar] [CrossRef]
- Rahman, S.; Shrestha, G.B. An investigation into the impact of electric vehicle load on the electric utility distribution system. IEEE Trans. Power Deliv. 1993, 8, 591–597. [Google Scholar] [CrossRef]
- Unterluggauer, T.; Rich, J.; Andersen, P.B.; Hashemi, S. Electric vehicle charging infrastructure planning for integrated transportation and power distribution networks: A review. eTransportation 2022, 12, 100163. [Google Scholar] [CrossRef]
- van der Horst, K.; Diab, I.; Mouli, G.R.C.; Bauer, P. Methods for increasing the potential of integration of EV chargers into the DC catenary of electric transport grids: A trolleygrid case study. eTransportation 2023, 18, 100271. [Google Scholar] [CrossRef]
- Smith, K.; Hunter, L.; Kerry, C.; Kellett, M.; Booth, C. Integrated Charging of EVs Using Existing LVDC Light Rail Infrastructure: A Case Study. In Proceedings of the IEEE Third International Conference on DC Microgrids (ICDCM), Matsue, Japan, 20–23 May 2019. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, R.; Ballantyne, E.E.F.; Stone, D.A. Increasing urban tram system efficiency, with battery storage and electric vehicle charging. Transp. Res. D Transp. Environ. 2020, 80, 102254. [Google Scholar] [CrossRef]
- Santos, P.; Fonte, P.; Luís, R. Improvement of DC Microgrid Voltage Regulation based on Bidirectional Intelligent Charging Systems. In Proceedings of the 15th International Conference on the European Energy Market (EEM), Lodz, Poland, 27–29 June 2018. [Google Scholar] [CrossRef]
- Fernandez, L.M.; Garcia, P.; Garcia, C.A.; Jurado, F. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway. Energy Convers. Manag. 2011, 52, 2183–2192. [Google Scholar] [CrossRef]
- Pouget, J.; Guo, B.; Bossoney, L.; Coppex, J.; Roggo, D.; Ellert, C. Energetic simulation of DC railway micro-grid interconnecting with PV solar panels, EV charger infrastructures and electrical railway network. In Proceedings of the 2020 IEEE Vehicle Power and Propulsion Conference, Gijon, Spain, 18 November–16 December 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Shekhar, A.; Mouli, G.C.R.; Bandyopadhyay, S.; Bauer, P. Electric Vehicle Charging with Multi-Port Converter based Integration in DC Trolley-Bus Network. In Proceedings of the 2021 IEEE 19th International Power Electronics and Motion Control Conference, PEMC 2021, Gliwice, Poland, 25–29 April 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 250–255. [Google Scholar] [CrossRef]
- Kumar, L.; Lathwal, R. Electric vehicle charging method and impact of charging and discharging on distribution system: A review. Int. J. Electr. Hybrid Veh. 2022, 14, 87–111. [Google Scholar] [CrossRef]
- Toret—Wikipedia. Available online: https://it.wikipedia.org/wiki/Toret (accessed on 9 November 2023).
- DECRETO-LEGGE 16 Luglio 2020, n. 76 Misure Urgenti per la Semplificazione e L’innovazione Digitale; Gazzetta Ufficiale della Repubblica Italiana: Roma, Italy, 2020.
- Automobil Club d’Italia. Autoritratto; Automobil Club d’Italia: Rome, Italy, 2022. [Google Scholar]
- EU Classification of Vehicle Types|European Alternative Fuels Observatory. Available online: https://alternative-fuels-observatory.ec.europa.eu/general-information/vehicle-types (accessed on 11 November 2023).
- Monitoring of CO2 Emissions from Passenger Cars Regulation (EU) 2019/631. 2023. Available online: https://sdi.eea.europa.eu/catalogue/srv/api/records/fa8b1229-3db6-495d-b18e-9c9b3267c02b (accessed on 9 January 2024).
- New Passenger Cars by Segment in the EU—ACEA—European Automobile Manufacturers’ Association. Available online: https://www.acea.auto/figure/new-passenger-cars-by-segment-in-eu/ (accessed on 11 November 2023).
- Report—Vehicles in Use, Europe 2023—ACEA—European Automobile Manufacturers’ Association. Available online: https://www.acea.auto/publication/report-vehicles-in-use-europe-2023/ (accessed on 11 November 2023).
- Green Finance Institute. Demystifying Utilisation; Green Finance Institute: London, UK, 2023. [Google Scholar]
- Hecht, C.; Das, S.; Bussar, C.; Sauer, D.U. Representative, empirical, real-world charging station usage characteristics and data in Germany. eTransportation 2020, 6, 100079. [Google Scholar] [CrossRef]
- Borlaug, B.; Yang, F.; Pritchard, E.; Wood, E.; Gonder, J. Public electric vehicle charging station utilization in the United States. Transp. Res. D Transp. Environ. 2023, 114, 103564. [Google Scholar] [CrossRef]
- Transport Office. Municipality of Turin; Turin, TO, Italy. Personal communication, 2023.
- VIRTA. EV Charger Utilization Rates of Five European Countries; VIRTA: San Francisco, CA, USA, 2023. [Google Scholar]
- Nicholas, M.; Wappelhorst, S. Preparing Italy’s Charging Infrastructure for Rapid Vehicle Electrification. 2022. Available online: https://www.governo.it/sites/governo.it/files/PNire.pdf (accessed on 9 January 2024).
- Nicholas, M.; Lutsey, N. Quantifying the Electric Vehicle Charging Infrastructure Gap in the United Kingdom. 2020. Available online: https://theicct.org/sites/default/files/publications/UK-charging-gap-082020.pdf (accessed on 9 January 2024).
- ev Industry Blog. Top Metrics to Measure the Performance of Your EV Charging Stations. 2023. Available online: https://evchargingsummit.com/blog/top-metrics-to-measure-the-performance-of-your-ev-charging-stations/ (accessed on 9 January 2024).
- Fröde, P.; Lee, M.; Sahdev, S. Can Public EV-Fast Charging Stations Be Profitable in the United States? McKinsey & Company: Chicago, IL, USA, 2023. [Google Scholar]
- Automobil Club d’Italia. Annuario Statistico 2023; Automobil Club d’Italia: Rome, Italy, 2023. [Google Scholar]
- Mahlberg, J.A.; Desai, J.; Bullock, D.M. Evaluation of Electric Vehicle Charging Usage and Driver Activity. World Electr. Veh. J. 2023, 14, 308. [Google Scholar] [CrossRef]
- Ulrich, L. Electric Cars and the Lack of Charging in Cities—The New York Times. Available online: https://www.nytimes.com/2020/04/16/business/electric-cars-cities-chargers.html (accessed on 9 November 2023).
- Akin, T. Tesla’s Advantage: EVs Cannot Succeed Without Developing Parallel Supercharging Networks|UC Davis. Available online: https://www.ucdavis.edu/curiosity/news/tesla%E2%80%99s-advantage-evs-cannot-succeed-without-developing-parallel-supercharging-networks (accessed on 9 November 2023).
- Tramway Routes in Europe—The Table of the Cities. Available online: https://www.lineetramtorino.com/Tabellaeng.php (accessed on 11 November 2023).
- Tram Bologna. 2023. Available online: https://www.trambologna.it (accessed on 19 November 2023).
- MOTUS-E. Le Infrastrutture di Ricarica ad uso Pubblico in Italia—Quarta Edizione; MOTUS-E: Rome, Italy, 2022. [Google Scholar]
- MOTUS-E. Le Infrastrutture di Ricarica Publica in Italia; MOTUS-E: Rome, Italy, 2019. [Google Scholar]
- MOTUS-E. Le Infrastrutture di Ricarica Pubblica in Italia—Seconda Edizione; MOTUS-E: Rome, Italy, 2020. [Google Scholar]
- MOTUS-E. Le Infrastrutture di Ricarcia Pubblica in Italia—Terza Edizione; MOTUS-E: Rome, Italy, 2021. [Google Scholar]
- Italy|European Alternative Fuels Observatory. Available online: https://alternative-fuels-observatory.ec.europa.eu/transport-mode/road/italy (accessed on 8 November 2023).
- Cui, S.; Ma, X.; Zhang, M.; Yu, B.; Yao, B. The parallel mobile charging service for free-floating shared electric vehicle clusters. Transp. Res. E Logist. Transp. Rev. 2022, 160, 102652. [Google Scholar] [CrossRef]
- Sintropher. Innovative Technologies for Light Rail and Tram: A European Reference Resource. Briefing Paper 5 Hybrid Battery/Supercapacitor-Hybrid Electric and Rapid Accumulator Systems. 2015. Available online: https://www.polisnetwork.eu/wp-content/uploads/2019/06/induction-system-2-finalpolis.pdf (accessed on 9 January 2024).
Maker | Model | Segment | Powertrain | Electric Consumption | Battery Capacity |
---|---|---|---|---|---|
[kWh/100 km] | [kWh] | ||||
Renault | ZOE | A + B | BEV | 14.7 | 47 |
Mercedes-Benz | A 250 E | C | PHEV | 21.7 | 16 |
Mini | Cooper SE | C | BEV | 16.2 | 42 |
Mercedes-Benz | GLC 300 DE 4Matic | D | PHEV | 16.0 | 14 |
Polestar | Polestar 2 | D | BEV | 16.2 | 76 |
BMW | 530E | E + F | PHEV | 19.7 | 12 |
Porsche | Taycan 4S | E + F | BEV | 19.3 | 81 |
KIA | Niro | MPV | PHEV | 14.4 | 15 |
Mazda | MX-30 | MPV | BEV | 17.5 | 35 |
Ford | Kuga | SUV | PHEV | 16.4 | 14 |
Tesla | Model Y | SUV | BEV | 16.4 | 75 |
Average Vehicle | BEV/PHEV | 17.1 | 38.8 |
150 kW | 3 kW | ||||
---|---|---|---|---|---|
Average vehicle | |||||
Electric consumption | 16.5 | kWh/100 km | |||
Battery capacity | 42.6 | kWh | |||
Recharging time (20–100%) | 13.6 (0.23) | 682 (11.4) | minutes (hours) | ||
Recharging station | |||||
Charging points | 3 | 166 | |||
Total nominal power | 450 | 498 | kW | ||
Opening hours | 24/7 | ||||
Utilization rate | 20% | ||||
Impact | |||||
Number of charged vehicles | 63 | 70 | per day | ||
Energy delivered | 2.2 | 2.4 | MWh/day | ||
Travel distance covered | 13,100 | 14,500 | km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prussi, M.; Cota, A.F.; Laveneziana, L.; Chiantera, G.; Guglielmi, P. Electric Vehicle Charging from Tramway Infrastructure: A New Concept and the Turin Case Study. Energies 2024, 17, 984. https://doi.org/10.3390/en17050984
Prussi M, Cota AF, Laveneziana L, Chiantera G, Guglielmi P. Electric Vehicle Charging from Tramway Infrastructure: A New Concept and the Turin Case Study. Energies. 2024; 17(5):984. https://doi.org/10.3390/en17050984
Chicago/Turabian StylePrussi, Matteo, Alfredo Felix Cota, Lorenzo Laveneziana, Giuseppe Chiantera, and Paolo Guglielmi. 2024. "Electric Vehicle Charging from Tramway Infrastructure: A New Concept and the Turin Case Study" Energies 17, no. 5: 984. https://doi.org/10.3390/en17050984
APA StylePrussi, M., Cota, A. F., Laveneziana, L., Chiantera, G., & Guglielmi, P. (2024). Electric Vehicle Charging from Tramway Infrastructure: A New Concept and the Turin Case Study. Energies, 17(5), 984. https://doi.org/10.3390/en17050984