Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = DC conversion substations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2400 KB  
Article
Multilevel Middle Point Clamped (MMPC) Converter for DC Wind Power Applications
by Awais Karni, Omid Beik, Mahzad Gholamian, Mahdi Homaeinezhad and Muhammad Owais Manzoor
Sustainability 2024, 16(17), 7563; https://doi.org/10.3390/su16177563 - 1 Sep 2024
Cited by 2 | Viewed by 1899
Abstract
This manuscript introduces a novel multilevel middle point clamped (MMPC) DC-DC converter and its associated switching scheme aimed at maintaining the desired medium-voltage DC (MVDC) collector grid within offshore all-DC wind farms. Building upon previous work by the authors, which proposed an all-DC [...] Read more.
This manuscript introduces a novel multilevel middle point clamped (MMPC) DC-DC converter and its associated switching scheme aimed at maintaining the desired medium-voltage DC (MVDC) collector grid within offshore all-DC wind farms. Building upon previous work by the authors, which proposed an all-DC structure serving as a benchmark system, this study explores the application of the MMPC DC-DC converter within this framework. Within the all-DC wind generation system, a 9-phase hybrid generator (HG) integrated into the wind turbine is linked to the MVDC collector grid through an AC-DC stage, which is a passive rectifier. This passive rectifier offers elevated voltage ratings and protection against back power flow. The conventional neutral point clamped (NPC) converter concept has been thoroughly investigated and expanded upon to develop the proposed MMPC DC-DC converter. The proposed MMPC DC-DC converter integrates boosting capabilities, facilitating the connection of the generator’s rectified voltage to the MVDC collector grid while regulating variable rectified voltage to a fixed MVDC collector grid voltage. The MVDC collector grid is further interconnected with high-voltage DC (HVDC) through a DC-DC converter situated in an offshore substation. This paper further provides a comprehensive overview of the proposed MMPC DC-DC converter, detailing its operational modes and corresponding switching schemes. Through an in-depth examination of operational modes, duty cycles for each switch and mode are defined, subsequently establishing the relationship between rectified input voltage and MVDC output voltage for the MMPC DC-DC converter. Utilizing the middle point clamped architecture, this innovative converter offers several advantages, including low ripple voltage, a modular structure, and reduced switching stress because of the multilevel voltage and the incorporation of a hard point, which also facilitates the capacitor voltage balancing. Finally, the effectiveness of the proposed converter is evaluated via simulation studies of a wind turbine conversion system utilizing two cascaded MMPC DC-DC converters operating under variable input voltage conditions. The simulations confirm its efficacy, supported by promising results, and validating its performance. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

15 pages, 3425 KB  
Article
Electric Vehicle Charging from Tramway Infrastructure: A New Concept and the Turin Case Study
by Matteo Prussi, Alfredo Felix Cota, Lorenzo Laveneziana, Giuseppe Chiantera and Paolo Guglielmi
Energies 2024, 17(5), 984; https://doi.org/10.3390/en17050984 - 20 Feb 2024
Cited by 1 | Viewed by 3299
Abstract
The electrification of transport is expected to progressively replace significant shares of light duty mobility, especially in large cities. The European Alternative Fuel Infrastructure Regulation (AFIR) aims to drive the adoption of electric mobility by establishing specific targets for charging point deployment. Innovative [...] Read more.
The electrification of transport is expected to progressively replace significant shares of light duty mobility, especially in large cities. The European Alternative Fuel Infrastructure Regulation (AFIR) aims to drive the adoption of electric mobility by establishing specific targets for charging point deployment. Innovative charging concepts may complement and accelerate the uptake of this fundamental part of the urban mobility transition. In this paper, one such innovative concept is described and its potential impact is assessed. The core idea involves integrating charging points into existing city tramway infrastructures. Turin’s tramway network is taken as a representative case study. The proposed technical solution encompasses a charging hub powered by four isolated DC/DC converters of 50 kW, directly connected to the DC tramway distribution line. Three of these constitute the heart of a 150 kW charger, while the fourth acts as voltage regulator. This native DC installation greatly simplifies the architecture of the DC chargers. Using a conservative approach, it was estimated that a single recharging station could charge more than 60 vehicles daily. This highly scalable and replicable solution, with the potential for over 100 conversion substations across Italy, would enable the installation of numerous high-power chargers in urban settings. Furthermore, additional benefits could be realized through enhanced recovery of kinetic energy from trams, which is currently dissipated on-board. Full article
Show Figures

Figure 1

43 pages, 2360 KB  
Review
The Electrical Behaviour of Railway Pantograph Arcs
by Andrea Mariscotti
Energies 2023, 16(3), 1465; https://doi.org/10.3390/en16031465 - 2 Feb 2023
Cited by 16 | Viewed by 7789
Abstract
Electric arcing is an unavoidable consequence of the current collection process by sliding contact in railways and metros, and in general in many electrified transportation systems (ETSs). The most relevant consequences in an electrical perspective are: the occurrence of transients triggering resonant behaviour [...] Read more.
Electric arcing is an unavoidable consequence of the current collection process by sliding contact in railways and metros, and in general in many electrified transportation systems (ETSs). The most relevant consequences in an electrical perspective are: the occurrence of transients triggering resonant behaviour and transient responses, reduction of the energy efficiency of the system, conducted and radiated disturbance, in particular for the new radio systems widely employed for signalling and communication. The involved parameters are many (type of materials, current intensity, DC and AC supply, relative speed, temperature), as well as the studied characteristics (arc instability and lifetime, dynamic behaviour, electrical system response, radiation efficiency and coupling to external radio systems). This work reports the state of the art in arc modelling, arcing experimental characterisation, interaction with the supply system, radiated emissions and disturbance to radio systems, providing a complete description of phenomena and of reference data, critically discussing similarity and differences between sources. Proposed arc models are many with different assumptions and simplifications for various applications, so that a critical review and discussion are a necessity, considering the many different approaches and not-so-obvious applicability. The comparison with experimental results highlights unavoidable discrepancies, also because of intrinsic arc variability and for the many involved parameters and operating conditions. The impact of the arc as embedded in the railway system is then considered, speaking of conducted and radiated phenomena, including interference to radio communication systems and arc detection. The most prominent effect for conducted emissions is the excitation of system resonances, including the LC filters onboard rolling stock and substations in DC railways, with consequences for disturbance and energy efficiency, and this is discussed in detail. Conversely, for high frequency emissions, the attenuation along the line circuit is significant and the effective distance of propagation is limited; nevertheless radiated electromagnetic field emissions are a relevant source of disturbance for radio systems within the ETS premises and outside (e.g., at airports). The published approaches to quantify performance reduction are discussed with emphasis on experimental methods. Full article
(This article belongs to the Special Issue Electrical Phenomena of Modern Transportation Systems)
Show Figures

Figure 1

Back to TopTop