Continuous Solar Thermal Energy Production Based on Critical Irradiance Levels for Industrial Applications
Abstract
:1. Introduction
2. Design of the Coupled System Heat-Pump–Solar Thermal Installation for The Continuous Supply of Solar Thermal Energy
2.1. Statistical Analysis of Environmental Conditions
- Available period = 11 h;
- Global radiation = 443 W/m2;
- Ambient temperature = 17.3 °C;
- Wind velocity = 2.87 m/s;
- Daily solar irradiation = 4.87 kWh/m2.
2.2. Design of Collector Networks and Storage System Coupled to A Heat Pump
2.2.1. Solar Thermal Installation Design
2.2.2. Heat Pump
2.2.3. Organic Rankine Cycle (ORC)
2.3. Estimation of GHG Emissions
2.4. Economic Evaluation
3. Case Study: Cotton-Dyeing Process
4. Results and Discussion
4.1. Heat Production
- Scenario 1. For the critical weather conditions of the winter period, the proposed solar thermal system is considered to store energy at 40 °C. The solar thermal system heats all the water to 40 °C to operate both the heat pump and supply the process. A total of 83% of the 18.5 m3 of hot water in the process was passed to the heat pump to reach 90 °C. In these extreme weather conditions, the solar thermal system cannot reach 60 °C;
- Scenario 2. Under average weather conditions of the winter period, it is considered that the proposed solar thermal system generates all the hot water at 40 °C. Of the 18.5 m3 of hot water for the process, 17% of the hot water was required at 40 °C, and the remaining 83% was passed to the heat pump to reach 90 °C;
- Scenario 3. Under average weather conditions of the winter period, it is considered that the solar thermal system generates and stores all the hot water at 60 °C. Of the 18.5 m3 of hot water, 6.6 m3 was required at a temperature less than or equal to 60 °C, and 11.9 m3 was passed to the heat pump to reach 90 °C;
- Scenario 4. The solar thermal installation is designed without the integration of the heat pump; it is considered that the solar system has the capacity to capture and store the amount of hot water for 3 consecutive days. When weather conditions are critical, hot water will be taken from the thermal storage system.
4.2. Electric Power Production
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Rodríguez, G.; Fuentes-Silva, A.L.; Velázquez-Torres, D.; Picón-Núñez, M. Comprehensive solar thermal integration for industrial processes. Energy 2022, 239 Pt D, 122332. [Google Scholar] [CrossRef]
- Fink, C.; Preis, D. Roadmap “Solarwärme 2025”. Eine Technologie- und Marktanalyse mit Handlungsempfehlungen. Berichte aus Energie- und Umweltforschung 42/2014; BMVIT: Wien, Austria, 2014; pp. 42–46. [Google Scholar]
- Weiss, W.; Spörk-Dür, M. Solar Heat Worldwide. Global Market Development and Trends in 2018. Detailed Market Figures 2017. 2019 Edition; AEE—Institute for Sustainable Technologies: Gleisdorf, Austria, 2019. [Google Scholar]
- Karki, S.; Haapala, K.R.; Fronk, B.M. Technical and economic feasibility of solar flat-plate collector thermal energy systems for small and medium manufacturers. Appl. Energy 2019, 254, 113649. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Khalid, M.; Vaka, M.; Walvekar, R.; Numan, A.; Rasheed, A.K.; Mubarak, N.M. Recent progress in solar water heaters and solar collectors: A comprehensive review. Therm. Sci. Eng. Prog. 2021, 25, 100981. [Google Scholar] [CrossRef]
- Tschopp, D.; Tian, Z.; Berberich, M.; Fan, J.; Perers, B.; Furbo, S. Large-scale solar thermal systems in leading countries: A review and comparative study of Denmark, China, Germany and Austria. Appl. Energy 2020, 270, 114997. [Google Scholar] [CrossRef]
- Olczak, P.; Matuszewska, D.; Zabagło, J. The Comparison of Solar Energy Gaining Effectiveness between Flat Plate Collectors and Evacuated Tube Collectors with Heat Pipe: Case Study. Energies 2020, 13, 1829. [Google Scholar] [CrossRef]
- Sokhansefat, T.; Kasaeian, A.; Rahmani, K.; Heidari, A.H.; Aghakhani, F.; Mahian, O. Thermoeconomic and environmental analysis of solar flat plate and evacuated tube collectors in cold climatic conditions. Renew. Energy 2018, 115, 501–508. [Google Scholar] [CrossRef]
- Weiss, W. Spörk-D Global market development and trends in 2019. Sci. Technol. Built Environ. 2019, 24, 819. [Google Scholar]
- AbdEl-Rady, M.; Elhenawy, Y.; Bassyouni, M.; Majozi, T.; Toderas, M.; Al-Qabandi, O.A.; Kishk, S.S. Performance enhancement of flat-plate and parabolic trough solar collector using nanofluid for water heating application. Results Eng. 2024, 21, 101673. [Google Scholar] [CrossRef]
- Ajeena, A.M.; Farkas, I.; Víg, P. Energy and exergy assessment of a flat plate solar thermal collector by examine silicon carbide nanofluid: An experimental study for sustainable energy. Appl. Therm. Eng. 2024, 236, 121844. [Google Scholar] [CrossRef]
- Zheng, J.; Febrer, R.; Castro, J.; Kizildag, D.; Rigola, J. A new high-performance flat plate solar collector. Numerical modelling and experimental validation. Appl. Energy 2024, 355, 122221. [Google Scholar] [CrossRef]
- Wang, D.; Mo, Z.; Liu, Y.; Ren, Y.; Fan, J. Thermal performance analysis of large-scale flat plate solar collectors and regional applicability in China. Energy 2022, 238, 121931. [Google Scholar] [CrossRef]
- Vahidinia, F.; Khorasanizadeh, H. Development of new algebraic derivations to analyze minichannel solar flat plate collectors with small and large size minichannels and performance evaluation study. Energy 2021, 228, 120640. [Google Scholar] [CrossRef]
- Bahrami, A.; Okoye, C.O.; Pourasl, H.H.; Khojastehnezhad, V.M. Techno-economic comparison of fixed and tracking flat plate solar collectors in the northern hemisphere. J. Clean. Prod. 2022, 378, 134523. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C. A detailed investigation of an evacuated flat plate solar collector. Appl. Therm. Eng. 2023, 234, 121334. [Google Scholar] [CrossRef]
- Weiss, W.; Spörk-Dür, M. Solar Heat Worldwide. Global Market Development and Trends 2021. Detailed Market Figures 2020. 2022 Edition; AEE—Institute for Sustainable Technologies: Gleisdorf, Austria, 2022. [Google Scholar]
- Quiñones, G.; Felbol, C.; Valenzuela, C.; Cardemil, J.M.; Escobar, R.A. Analyzing the potential for solar thermal energy utilization in the Chilean copper mining industry. Sol. Energy 2020, 197, 292–310. [Google Scholar] [CrossRef]
- Polikarpova, I.; Kakis, R.; Pakere, I.; Blumberga, D. Optimizing Large-Scale Solar Field Efficiency: Latvia Case Study. Energies 2021, 14, 4171. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, G.; Baltazar, J.-C.; Fuentes-Silva, A.L. Heat and electric power production using heat pumps assisted with solar thermal energy for industrial applications. Energy 2023, 282, 128379. [Google Scholar] [CrossRef]
- Perers, B.; Zinko, H.; Holst, P. Analytical Model for the Daily Energy Input Output Relationship for Solar Collector Systems; Swedish Council for Building Research: Stockholm, Sweden, 1985. [Google Scholar]
- Fawas, S.; Aziz, F.; Ali, F. Evaluation of the Best Slope Angle for a Flat-Plate Solar Collector. Kirkuk J. Sci. 2017, 12, 157–178. [Google Scholar] [CrossRef]
- Furbo, S.; Dragsted, J.; Perers, B.; Andersen, E.; Bava, F.; Nielsenb, K.P. Yearly thermal performances of solar heating plants in Denmark—Measured and calculated. Sol. Energy 2018, 159, 186–196. [Google Scholar] [CrossRef]
- Gao, D.; Gao, G.; Cao, J.; Zhong, S.; Ren, X.; Dabwan, Y.N.; Hu, M.; Jiao, D.; Kwan, T.H.; Pei, G. Experimental and numerical analysis of an efficiently optimized evacuate flat plate solar collector under medium temperature. Appl. Energy 2020, 269, 115129. [Google Scholar] [CrossRef]
- Bolognese, M.; Viesi, D.; Bartali, R.; Crema, L. Modeling study for low-carbon industrial processes integrating solar thermal technologies. A case study in the Italian Alps: The Felicetti Pasta Factory. Sol. Energy 2020, 208, 548–558. [Google Scholar] [CrossRef]
- IRENA. Renewable Energy Prospects: Mexico, REmap 2030 Analysis; IRENA: Abu Dhabi, United Arab Emirates, 2015; Available online: www.irena.org/remap (accessed on 10 January 2023).
- Castillejo-Cuberos, A.; Escobar, R. Understanding solar resource variability: An in-depth analysis, using Chile as a case of study. Renew. Sustain. Energy Rev. 2020, 120, 109664. [Google Scholar] [CrossRef]
- Vignola, F.E.; McMahan, A.C.; Grover, C.N. Bankable Solar-Radiation Datasets. In Solar Energy Forecasting and Resource Assessment; Academic Press: Cambridge, MA, USA, 2013; pp. 97–131. [Google Scholar] [CrossRef]
- Sengupta, M.; Habte, A.; Wilbert, S.; Gueymard, C.A.; Remund, J. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications, 3rd ed.; National Renewable Energy Laboratory: Golden, CO, USA, 2021. [Google Scholar] [CrossRef]
- Yakoubi, H.; EL Mghouchi, Y.; Abdou, N.; Hajou, A.; Khellouki, A. Correlating clearness index with cloud cover and other meteorological parameters for forecasting the global solar radiation over Morocco. Optik 2021, 242, 167145. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory [NREL]. NSRDB: National Solar Radiation Data Base. January 2023. Available online: https://nsrdb.nrel.gov/data-viewer (accessed on 10 December 2023).
- Martínez-Rodríguez, G.; Fuentes-Silva, A.L.; Lizárraga-Morazán, J.R.; Picón-Núñez, M. Incorporating the Concept of Flexible Operation in the Design of Solar Collector Fields for Industrial Applications. Energies 2019, 12, 570. [Google Scholar] [CrossRef]
- Díaz-de-León, C.; Baltazar, J.-C.; Martínez-Rodríguez, G. Assessment of a Heat Pump Assisted with Solar Thermal Energy for an lndustrial Batch Process. Chem. Eng. Trans. 2022, 94, 319–324. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, G.; Díaz-de-León, C.; Fuentes-Silva, A.L.; Baltazar, J.-C.; García-Gutiérrez, R. Detailed Thermo-Economic Assessment of a Heat Pump for Industrial Applications. Energies 2023, 16, 2784. [Google Scholar] [CrossRef]
- US EPA. GHG Emission Factors Hub. 3 April 2023. Available online: https://www.epa.gov/system/files/documents/2023-03/ghg_emission_factors_hub.pdf (accessed on 12 April 2023).
- Martínez-Rodríguez, G.; Baltazar, J.-C.; Fuentes-Silva, A.L.; García-Gutiérrez, R. Economic and Environmental Assessment Using Two Renewable Sources of Energy to Produce Heat and Power for Industrial Applications. Energies 2022, 15, 2338. [Google Scholar] [CrossRef]
- Espejo-Mamani, C.E.; Gomez-Ramos, C.J. Improvement of the Dyeing Process through the Reuse of Water Baths in the Dyeing Area of the Textile Company “La Merced S.A.” within the Framework of Cleaner Production. Bachelor Thesis, Universidad Privada del Norte, Trujillo, Peru, 2017. (In Spanish). [Google Scholar]
- Texas AM& University. Utilities & Energy Services. Available online: https://utilities.tamu.edu/rates/ (accessed on 17 January 2024).
Percentile | Daily Solar Irradiation (kWh/m2) | Period of Sunlight (h) | Average Global Solar Radiation (W/m2) | Average Ambient Temperature (°C) | Average Wind Velocity (m/s) |
---|---|---|---|---|---|
3.76 | 11.37 | 264 | 17.0 | 3.40 | |
4.36 | 11.53 | 357 | 18.7 | 2.92 | |
4.77 | 11.49 | 401 | 19.1 | 2.84 | |
5.04 | 11.34 | 436 | 19.3 | 2.77 | |
5.25 | 11.27 | 460 | 19.2 | 2.78 | |
5.42 | 11.21 | 479 | 19.0 | 2.72 | |
5.59 | 11.15 | 496 | 18.9 | 3.02 | |
5.77 | 11.43 | 500 | 19.7 | 2.87 | |
5.97 | 11.52 | 514 | 20.2 | 2.88 | |
6.20 | 11.78 | 519 | 20.6 | 3.02 | |
6.44 | 12.01 | 528 | 21.0 | 3.10 | |
6.66 | 12.06 | 545 | 21.7 | 2.87 | |
6.86 | 12.09 | 561 | 22.0 | 3.09 | |
7.08 | 12.22 | 572 | 22.7 | 3.04 | |
7.32 | 12.26 | 589 | 22.7 | 3.18 | |
7.57 | 12.38 | 603 | 23.3 | 3.23 | |
7.83 | 12.45 | 621 | 23.7 | 3.30 | |
8.07 | 12.54 | 635 | 24.3 | 3.40 | |
8.35 | 12.63 | 652 | 24.7 | 3.48 | |
8.65 | 12.93 | 659 | 25.2 | 3.84 |
Percentile | 20 | 15 | 10 | 5 |
---|---|---|---|---|
Solar Irradiation (kWh/m2/d) | 5.04 | 4.77 | 4.36 | 3.76 |
Year/Consecutive Days (Period) | 7 | 6 | 5 | 4 | 3 | 2 |
---|---|---|---|---|---|---|
1998 | 0 | 0 | 0 | 0 | 0 | 2 |
1999 | 0 | 0 | 0 | 1 | 1 | 2 |
2000 | 0 | 0 | 0 | 1 | 1 | 1 |
2001 | 0 | 0 | 0 | 0 | 0 | 0 |
2002 | 0 | 0 | 0 | 0 | 0 | 5 |
2003 | 0 | 0 | 0 | 0 | 0 | 5 |
2004 | 0 | 0 | 0 | 0 | 2 | 7 |
2005 | 0 | 0 | 0 | 0 | 0 | 2 |
2006 | 0 | 0 | 0 | 1 | 1 | 2 |
2007 | 0 | 0 | 0 | 1 | 3 | 4 |
2008 | 0 | 0 | 0 | 0 | 2 | 3 |
2009 | 0 | 0 | 0 | 0 | 0 | 4 |
2010 | 0 | 0 | 0 | 2 | 2 | 6 |
2011 | 0 | 0 | 0 | 0 | 1 | 3 |
2012 | 1 | 0 | 0 | 1 | 1 | 7 |
2013 | 1 | 0 | 0 | 1 | 3 | 4 |
2014 | 0 | 0 | 0 | 0 | 0 | 4 |
2015 | 0 | 0 | 0 | 0 | 0 | 5 |
2016 | 0 | 0 | 0 | 1 | 1 | 1 |
2017 | 0 | 0 | 0 | 0 | 0 | 0 |
2018 | 0 | 0 | 0 | 0 | 3 | 9 |
2019 | 0 | 0 | 0 | 0 | 0 | 4 |
Total (period) | 2 | 0 | 0 | 7 | 12 | 59 |
Total (years) | 2 | 0 | 0 | 8 | 12 | 20 |
Annual Season | Hours (h) | Global Radiation (W/m2) | Ambient Temperature (°C) | Wind Velocity (m/s) | Solar Irradiation (kWh/m2/d) |
---|---|---|---|---|---|
Spring/Summer | 12.90 | 267 | 19.4 | 3.37 | 3.44 |
Autumn/Winter | 10.67 | 250 | 14.6 | 3.15 | 2.65 |
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | |
---|---|---|---|---|
Weather conditions of the winter period | Critical | Average | Average | Average |
| ||||
Storage temperature, °C | 40 | 40 | 60 | 90 |
Heat load, kWh | 1444 | 1301 | 1428 | 4742 |
Operation time, h | 10.5 | 10.5 | 10.5 | 8.0 |
Working fluid | Water | Water | Water | Water |
Daily irradiation, kWh/m2/d | 2.65 | 4.87 | 4.87 | 4.87 |
Inlet temperature of water, °C | 14.6 | 17.3 | 17.3 | 17.3 |
Absorber area, m2 | 1760 | 1120 | 816 | 3640 |
Stored water volume, m3 | 46.5 | 46.5 | 28.5 | 55.8 |
| ||||
Refrigerant | R123 | R123 | R123 | - |
Mass flow, kg/s | 3.20 | 3.20 | 2.41 | - |
Heat load (evaporator), kW | 375 | 375 | 330 | - |
Superheated steam temperature, °C | 103 | 103 | 102 | - |
Energy consumed by the compressor, kW | 131 | 131 | 79 | - |
ΔTlift, °C | 70 | 70 | 55 | - |
COP | 3.98 | 3.98 | 5.18 | - |
LCOEth or LCOH, USD/kWh | 0.094 | 0.074 | 0.056 | 0.044 |
Payback, years | 14.1 | 12.2 | 9.0 | 4.2 |
GHG Emissions, ton/y | 0 | 0 | 0 | 0 |
Scenario 5 | Scenario 6 | |
---|---|---|
Weather conditions of the winter period | Critical | Average |
| ||
Storage temperature, °C | 40 | 60 |
Working fluid | Water | Water |
Daily irradiation, kWh/m2/d | 2.65 | 4.87 |
Heat load, kW | 7136 | 7968 |
Inlet temperature of water, °C | 14.6 | 17.3 |
Absorber area, m2 | 28,720 | 7252 |
Stored water volume, m3 | 229 | 165 |
| ||
Refrigerant | R123 | R123 |
Mass flow, kg/s | 19.0 | 18.2 |
Heat load (evaporator), kW | 2230 | 2490 |
Superheated steam temperature, °C | 103 | 102 |
Energy consumed by the compressor, kW | 777 | 597 |
ΔTlift, °C | 70 | 55 |
COP | 3.98 | 5.18 |
| ||
Electric power, kW | 251 | 251 |
Operation time, h | 3.2 | 3.2 |
Refrigerant | R600 | R600 |
Mass flow, kg/s | 7.4 | 7.4 |
Heat load (evaporator), kW | 3094 | 3094 |
Superheated steam temperature, °C | 90 | 90 |
Thermal efficiency ORC, % | 7.76 | 7.76 |
LCOEele, USD/kWh | 0.278 | 0.149 |
Payback, years | 24.0 | 10.2 |
GHG Emissions, ton/y | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Rodríguez, G.; Silviano-Mendoza, H.H.; Fuentes-Silva, A.L.; Baltazar, J.-C. Continuous Solar Thermal Energy Production Based on Critical Irradiance Levels for Industrial Applications. Energies 2024, 17, 1087. https://doi.org/10.3390/en17051087
Martínez-Rodríguez G, Silviano-Mendoza HH, Fuentes-Silva AL, Baltazar J-C. Continuous Solar Thermal Energy Production Based on Critical Irradiance Levels for Industrial Applications. Energies. 2024; 17(5):1087. https://doi.org/10.3390/en17051087
Chicago/Turabian StyleMartínez-Rodríguez, Guillermo, Héctor H. Silviano-Mendoza, Amanda L. Fuentes-Silva, and Juan-Carlos Baltazar. 2024. "Continuous Solar Thermal Energy Production Based on Critical Irradiance Levels for Industrial Applications" Energies 17, no. 5: 1087. https://doi.org/10.3390/en17051087
APA StyleMartínez-Rodríguez, G., Silviano-Mendoza, H. H., Fuentes-Silva, A. L., & Baltazar, J. -C. (2024). Continuous Solar Thermal Energy Production Based on Critical Irradiance Levels for Industrial Applications. Energies, 17(5), 1087. https://doi.org/10.3390/en17051087