Cross-Borehole ERT Monitoring System for CO2 Geological Storage: Laboratory Development and Validation
Abstract
:1. Introduction
2. Overall Design and Optimization of Electrode Array of CHERT
2.1. Overall Design of CHERT System
2.2. Numerical Modelling for Electrode Optimization
2.3. Optimization of Electrode Arrays
2.4. Optimization of Working Scheme of Electrodes
3. Development and Calibration of CHERT System
3.1. Development of Hardware Part
3.2. Development of Software Part
3.3. System Calibration
4. Experimental Validation and Discussion
4.1. Tests on Insulating Objects in Brine
- (1)
- Sample preparation and tests
- (2)
- Data inversion and image analysis
4.2. Tests on CO2-Bearing Objects in Sand
- (1)
- Sample preparation and tests
- (2)
- Data inversion and image analysis
4.3. Discussion
- (1)
- Data inversion method
- (2)
- Effects of borehole
5. Conclusions
- (1)
- It is an essential step to optimize the structure of electrode arrays and corresponding working schemes of CHERT according to the real application background. The optimization method based on finite-element modelling provides an effective means for designing a field-scale CHERT system.
- (2)
- The quality of the images inverted from the CHERT data is highly dependent on the working schemes and specific modes, which is closely related to the size of the data sets used for the inversion. The AM-BN scheme is recommended due to the better uniformity of the resultant sensitivity field and applicability to larger borehole spacing.
- (3)
- Based on the calibration the measurement range of the developed CHERT system can be determined as 100 Ω to 4.5 kΩ with an error limit of 1.5%. The maximum relative errors of the impedance magnitude and phase angle are 5.0% and 7.0%, respectively. Based on the test results the location of the CO2-bearing objects can be identified accurately. The shapes of the tested objects exhibit distortion to some extent, but this can be alleviated by selecting a working mode with a larger size of data sets.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, Y.; Wu, W. Can fossil energy make a soft landing?—The carbon-neutral pathway in China accompanying CCS. Energy Policy 2023, 174, 113440. [Google Scholar] [CrossRef]
- Aghaie, M.; Rezaei, N.; Zendehboudi, S. A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renew. Sustain. Energy Rev. 2018, 96, 502–525. [Google Scholar] [CrossRef]
- Van Riet, E.; Van Wittenberghe, J.; Van Hoecke, D.; Roijmans, R.; Vanderschueren, M.; Thibaux, P. On the suitability of premium OCTG tubing connections for CCS CO2 injection wells—A full scale physical evaluation. Int. J. Greenh. Gas Control 2023, 123, 103834. [Google Scholar] [CrossRef]
- García, J.H.; Torvanger, A. Carbon leakage from geological storage sites: Implications for carbon trading. Energy Policy 2019, 127, 320–329. [Google Scholar] [CrossRef]
- Sato, K.; Mito, S.; Horie, T.; Ohkuma, H.; Saito, H.; Watanabe, J.; Yoshimura, T. Monitoring and simulation studies for assessing macro- and meso-scale migration of CO2 sequestered in an onshore aquifer: Experiences from the Nagaoka pilot site, Japan. Int. J. Greenh. Gas Control 2011, 5, 125–137. [Google Scholar] [CrossRef]
- Arts, R.; Chadwick, A.; Eiken, O.; Thibeau, S.; Nooner, S. Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break. 2008, 26, 65–72. [Google Scholar] [CrossRef]
- Yang, X.; Lassen, R.N.; Jensen, K.H.; Looms, M.C. Monitoring CO2 migration in a shallow sand aquifer using 3D cross-hole electrical resistivity tomography. Int. J. Greenh. Gas Control 2015, 42, 534–544. [Google Scholar] [CrossRef]
- Dickin, F.; Wang, M. Electrical resistance tomography for process applications. Meas. Sci. Technol. 1996, 7, 247–260. [Google Scholar] [CrossRef]
- Miller, C.R.; Routh, P.S.; Brosten, T.R.; McNamara, J.P. Application of time-lapse ERT imaging to watershed characterization. Geophysics 2008, 73, G7–G17. [Google Scholar] [CrossRef]
- Song, S.Y.; Kim, B.; Cho, A.; Jeong, J.; Lee, D.; Nam, M.J. Electrical resistivity survey and interpretation considering excavation effects for the detection of loose ground in urban area. Geomech. Eng. 2023, 35, 109–119. [Google Scholar]
- Shima, H.; Sakayama, T. Resistivity tomography: An approach to 2-Dresistivity inverse problems. Soc. Explor. Geophys. 1987, 18, 59–61. [Google Scholar]
- Sasaki, Y. Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data. Geophysics 1989, 54, 254–262. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 1995, 60, 1682–1690. [Google Scholar] [CrossRef]
- Chambers, J.E.; Kuras, O.; Meldrum, P.I.; Ogilvy, R.D.; Hollands, J. Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics 2006, 71, B231–B239. [Google Scholar] [CrossRef]
- Maillol, J.; Seguin, M.; Gupta, O.; Akhauri, H.; Sen, N. Electrical resistivity tomography survey for delineating uncharted mine galleries in West Bengal, India. Geophys. Prospect. 1999, 47, 103–116. [Google Scholar] [CrossRef]
- Fikos, I.; Vargemezis, G.; Zlotnicki, J.; Puertollano, J.R.; Alanis, P.B.; Pigtain, R.C.; Villacorte, E.U.; Malipot, G.A.; Sasai, Y. Electrical resistivity tomography study of Taal volcano hydrothermal system, Philippines. Bull. Volcanol. 2012, 74, 1821–1831. [Google Scholar] [CrossRef]
- Nakatsuka, Y.; Xue, Z.; Garcia, H.; Matsuoka, T. Experimental study on CO2 monitoring and quantification of stored CO2 in saline formations using resistivity measurements. Int. J. Greenh. Gas Control 2010, 4, 209–216. [Google Scholar] [CrossRef]
- Breen, S.J.; Carrigan, C.R.; LaBrecque, D.J.; Detwiler, R.L. Bench-scale experiments to evaluate electrical resistivity tomography as a monitoring tool for geologic CO2 sequestration. Int. J. Greenh. Gas Control 2012, 9, 484–494. [Google Scholar] [CrossRef]
- Carrigan, C.R.; Yang, X.; LaBrecque, D.J.; Larsen, D.; Freeman, D.; Ramirez, A.L.; Daily, W.; Aines, R.; Newmark, R.; Friedmann, J.; et al. Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs. Int. J. Greenh. Gas Control 2013, 18, 401–408. [Google Scholar] [CrossRef]
- Schmidt-Hattenberger, C.; Bergmann, P.; Kießling, D.; Krüger, K.; Rücker, C.; Schütt, H.; Ketzin Group. Application of a Vertical Electrical Resistivity Array (VERA) for monitoring CO2 migration at the Ketzin site: First performance evaluation. Energy Procedia 2011, 4, 3363–3370. [Google Scholar] [CrossRef]
- Bergmann, P.; Schmidt-Hattenberger, C.; Labitzke, T.; Wagner, F.M.; Just, A.; Flechsig, C.; Rippe, D. Fluid injection monitoring using electrical resistivity tomography—Five years of CO2 injection at Ketzin, Germany: Fluid injection monitoring. Geophys. Prospect. 2017, 65, 859–875. [Google Scholar] [CrossRef]
- Kiessling, D.; Schmidt-Hattenberger, C.; Schuett, H.; Schilling, F.; Krueger, K.; Schoebel, B.; Danckwardt, E.; Kummerow, J. Geoelectrical methods for monitoring geological CO2 storage: First results from cross-hole and surface–downhole measurements from the CO2SINK test site at Ketzin (Germany). Int. J. Greenh. Gas Control 2010, 4, 816–826. [Google Scholar] [CrossRef]
- Bellmunt, F.; Marcuello, A.; Ledo, J.; Queralt, P. Capability of cross-hole electrical configurations for monitoring rapid plume migration experiments. J. Appl. Geophys. 2016, 124, 73–82. [Google Scholar] [CrossRef]
- Lesparre, N.; Boyle, A.; Grychtol, B.; Cabrera, J.; Marteau, J.; Adler, A. Electrical resistivity imaging in transmission between surface and underground tunnel for fault characterization. J. Appl. Geophys. 2016, 128, 163–178. [Google Scholar] [CrossRef]
- Khambampati, A.K.; Kim, K.Y.; Lee, Y.G.; Kim, S. Boundary element method to estimate the time-varying interfacial boundary in horizontal immiscible liquids flow using electrical resistance tomography. Appl. Math. Model. 2016, 40, 1052–1068. [Google Scholar] [CrossRef]
- Geselowitz, D.B. An Application of Electrocardiographic Lead Theory to Impedance Plethysmography. IEEE Trans. Biomed. Eng. 1971, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, D. Distinguishability of Conductivities by Electric Current Computed Tomography. IEEE Trans. Med. Imaging 1986, 5, 91–95. [Google Scholar] [CrossRef]
- Leontarakis, K.; Apostolopoulos, G.V. Laboratory study of the cross-hole resistivity tomography: The Model Stacking (MOST) Technique. J. Appl. Geophys. 2012, 80, 67–82. [Google Scholar] [CrossRef]
- Zhou, B.; Greenhalgh, S.A. Cross-hole resistivity tomography using different electrode configurations. Geophys. Prospect. 2010, 48, 887–912. [Google Scholar]
- Goes, B.J.M.; Meekes, J.A.C. An effective electrode configuration for the detection of DNAPLs with electrical resistivity tomography. J. Environ. Eng. Geophys. 2012, 9, 127–141. [Google Scholar] [CrossRef]
- Daily, W.; Owen, E. Cross-borehole resistivity tomography. Geophysics 1991, 56, 1228–1235. [Google Scholar] [CrossRef]
- Binley, A.; Tso, M.; Iglesias, M.; Wilkinson, P.; Kuras, O.; Chambers, J. Efficient multi-scale imaging of subsurface resistivity with uncertainty quantification using ensemble Kalman inversion. Geophys. J. Int. 2021, 225, 887–905. [Google Scholar]
- Lee, K.S.; Cho, I.K.; Kim, Y.J. Borehole effect in 2.5D crosshole resistivity tomography. J. Appl. Geophys. 2016, 135, 212–222. [Google Scholar] [CrossRef]
- Madsen, L.M.; Kühl, A.K.; Levy, L.; Christiansen, A.V. Cross-borehole ERT: Sensitivity, model resolution, and field data quality. In Proceedings of the 27th European Meeting of Environmental and Engineering Geophysics of the Conference, Bordeaux, France, 29 August–2 September 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, N.; Wu, C.; He, C.; Lv, W.; Ji, Z.; Xing, L. Cross-Borehole ERT Monitoring System for CO2 Geological Storage: Laboratory Development and Validation. Energies 2024, 17, 710. https://doi.org/10.3390/en17030710
Jia N, Wu C, He C, Lv W, Ji Z, Xing L. Cross-Borehole ERT Monitoring System for CO2 Geological Storage: Laboratory Development and Validation. Energies. 2024; 17(3):710. https://doi.org/10.3390/en17030710
Chicago/Turabian StyleJia, Ninghong, Chenyutong Wu, Chang He, Weifeng Lv, Zemin Ji, and Lanchang Xing. 2024. "Cross-Borehole ERT Monitoring System for CO2 Geological Storage: Laboratory Development and Validation" Energies 17, no. 3: 710. https://doi.org/10.3390/en17030710
APA StyleJia, N., Wu, C., He, C., Lv, W., Ji, Z., & Xing, L. (2024). Cross-Borehole ERT Monitoring System for CO2 Geological Storage: Laboratory Development and Validation. Energies, 17(3), 710. https://doi.org/10.3390/en17030710