Methanol, a Plugin Marine Fuel for Green House Gas Reduction—A Review
Abstract
:1. Introduction
2. Methanol as a Marine Fuel
2.1. Use of Methanol in Diesel Engines
2.2. Blending Diesel and Methanol Directly
2.3. Methanol Injection through the Port, Coupled with Direct Injection of Diesel
2.4. Injecting Methanol and Diesel Directly
3. E-Methanol’s Production and Infrastructure
3.1. Methanol’s Infrastructure
3.1.1. Substantial Ships Engaged in Global Commerce
3.1.2. Ships Involved in Short-Distance, Coastal, and Domestic Trade
3.1.3. The Availability of Fuel and the Competition from Other Consumers
3.2. Comparison of Bunkering Cost between Methanol, E-Methanol, and Conventional Fuels
3.3. The EU ETS and Fuel EU Regulations
3.3.1. EU ETS Regulation
3.3.2. Fuel EU Regulation (EU 2023/1805)
3.4. Methanol and E-Methanol Affection by the International Regulations
4. Challenges of Using Methanol as a Marine Fuel
4.1. Advantages of Using Methanol
4.2. Disadvantages of Using Methanol
4.3. Potential Hazards and Factors to Take into Account When Bunkering Methanol
Danger of Fire Onboard End ICE’s Corrosion Using Methanol as Bunker
4.4. Environmental Impact of Using Methanol
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elgohary, M.M.; Seddiek, I.S.; Salem, A.M. Overview of Alternative Fuels with Emphasis on the Potential of Liquefied Natural Gas as Future Marine Fuel. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2015, 229, 365–375. [Google Scholar] [CrossRef]
- Bortnowska, M. Projected Reductions in CO2 Emissions by Using Alternative Methanol Fuel to Power a Service Operation Vessel. Energies 2023, 16, 7419. [Google Scholar] [CrossRef]
- Walker, T.R.; Adebambo, O.; Del Aguila Feijoo, M.C.; Elhaimer, E.; Hossain, T.; Edwards, S.J.; Morrison, C.E.; Romo, J.; Sharma, N.; Taylor, S.; et al. Environmental Effects of Marine Transportation. In World Seas: An Environmental Evaluation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 505–530. [Google Scholar]
- WTO. International Trade Statistics. Available online: https://data.wto.org/en (accessed on 9 November 2023).
- IEA. Transportation Sector Energy Consumption; IEA: Paris, France, 2016. [Google Scholar]
- Ren, J.; Lützen, M. Selection of Sustainable Alternative Energy Source for Shipping: Multi-Criteria Decision Making under Incomplete Information. Renew. Sustain. Energy Rev. 2017, 74, 1003–1019. [Google Scholar] [CrossRef]
- ABS. Setting the Course to Low Carbon Shipping; ABS: Spring, TX, USA, 2019. [Google Scholar]
- Urban, F.; Nurdiawati, A.; Harahap, F. Sector Coupling for Decarbonization and Sustainable Energy Transitions in Maritime Shipping in Sweden. Energy Res. Soc. Sci. 2024, 107, 103366. [Google Scholar] [CrossRef]
- Endresen, Ø.; Sørgård, E.; Sundet, J.K.; Dalsøren, S.B.; Isaksen, I.S.A.; Berglen, T.F.; Gravir, G. Emission from International Sea Transportation and Environmental Impact. J. Geophys. Res. Atmos. 2003, 108, 4560. [Google Scholar] [CrossRef]
- Eyring, V.; Köhler, H.W.; Lauer, A.; Lemper, B. Emissions from International Shipping: 2. Impact of Future Technologies on Scenarios until 2050. J. Geophys. Res. Atmos. 2005, 110, D17306. [Google Scholar] [CrossRef]
- Bengtsson, S.; Andersson, K.; Fridell, E. A Comparative Life Cycle Assessment of Marine Fuels. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2011, 225, 97–110. [Google Scholar] [CrossRef]
- Bengtsson, S.; Fridell, E.; Andersson, K. Environmental Assessment of Two Pathways towards the Use of Biofuels in Shipping. Energy Policy 2012, 44, 451–463. [Google Scholar] [CrossRef]
- Lindstad, H.E.; Rehn, C.F.; Eskeland, G.S. Sulphur Abatement Globally in Maritime Shipping. Transp. Res. D Transp. Environ. 2017, 57, 303–313. [Google Scholar] [CrossRef]
- Lindstad, E.; Eskeland, G.S.; Rialland, A.; Valland, A. Decarbonizing Maritime Transport: The Importance of Engine Technology and Regulations for LNG to Serve as a Transition Fuel. Sustainability 2020, 12, 8793. [Google Scholar] [CrossRef]
- Bengtsson, S.K.; Fridell, E.; Andersson, K.E. Fuels for Short Sea Shipping: A Comparative Assessment with Focus on Environmental Impact. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2014, 228, 44–54. [Google Scholar] [CrossRef]
- Brynolf, S. Environmental Assessment of Present and Future Marine Fuels; Chalmers Tekniska Hogskola: Gothenburg, Sweden, 2014. [Google Scholar]
- Brynolf, S.; Magnusson, M.; Fridell, E.; Andersson, K. Compliance Possibilities for the Future ECA Regulations through the Use of Abatement Technologies or Change of Fuels. Transp. Res. D Transp. Environ. 2014, 28, 6–18. [Google Scholar] [CrossRef]
- Ampah, J.D.; Yusuf, A.A.; Afrane, S.; Jin, C.; Liu, H. Reviewing Two Decades of Cleaner Alternative Marine Fuels: Towards IMO’s Decarbonization of the Maritime Transport Sector. J. Clean. Prod. 2021, 320, 128871. [Google Scholar] [CrossRef]
- Krantz, G.; Brandao, M.; Hedenqvist, M.; Nilsson, F. Indirect CO2 Emissions Caused by the Fuel Demand Switch in International Shipping. Transp. Res. D Transp. Environ. 2022, 102, 103164. [Google Scholar] [CrossRef]
- IMO. Third IMO GHG Study 2014; IMO: London, UK, 2014. [Google Scholar]
- Zou, Z.; Zhao, J.; Zhang, C.; Zhang, Y.; Yang, X.; Chen, J.; Xu, J.; Xue, R.; Zhou, B. Effects of Cleaner Ship Fuels on Air Quality and Implications for Future Policy: A Case Study of Chongming Ecological Island in China. J. Clean. Prod. 2020, 267, 122088. [Google Scholar] [CrossRef]
- Zincir, B.; Deniz, C.; Tunér, M. Investigation of Environmental, Operational and Economic Performance of Methanol Partially Premixed Combustion at Slow Speed Operation of a Marine Engine. J. Clean. Prod. 2019, 235, 1006–1019. [Google Scholar] [CrossRef]
- IMO. Nitrogen Oxides (NOx)—Regulation 13; IMO: London, UK, 2023. [Google Scholar]
- DNV. EEXI—Energy Efficiency Existing Ship Index. 2022. Available online: https://www.dnv.com/maritime/insights/topics/eexi/index.html (accessed on 24 November 2023).
- Zincir, B.A.; Arslanoglu, Y. Comparative Life Cycle Assessment of Alternative Marine Fuels. Fuel 2024, 358, 129995. [Google Scholar] [CrossRef]
- Schnurr, R.E.; Walker, T.R. Marine Transportation and Energy Use. Ref. Module Earth Syst. Environ. Sci. 2019, 1–9. [Google Scholar] [CrossRef]
- Rutherford, D.; Comer, B. The International Maritime Organization’s Initial Greenhouse Gas Strategy. 2018. Available online: https://trid.trb.org/view/1509482 (accessed on 9 November 2023).
- Hsieh, C.; Felby, C. Biofuels for the Marine Shipping Sector. IEA Bioenergy 2017, 39, 9–83. [Google Scholar]
- Parris, D.; Spinthiropoulos, K.; Ragazou, K.; Kanavas, V.; Tsanaktsidis, C. Measuring Eco-Efficiency of the Global Shipping Sector Based on an Energy and Environmental Approach: A Dynamic Slack-Based Measure Non-Oriented Model. Energies 2023, 16, 6997. [Google Scholar] [CrossRef]
- Serra, P.; Fancello, G. Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping. Sustainability 2020, 12, 3220. [Google Scholar] [CrossRef]
- Wang, H.; Lutsey, N. Long-Term Potential for Increased Shipping Efficiency through the Adoption of Industry-Leading Practices. Int. Counc. Clean Transp. 2013, 65, 1–27. [Google Scholar]
- Tadros, M.; Ventura, M.; Soares, C.G. Review of Current Regulations, Available Technologies, and Future Trends in the Green Shipping Industry. Ocean Eng. 2023, 280, 114670. [Google Scholar] [CrossRef]
- Karagöz, M.; Polat, F.; Sarıdemir, S.; Yeşilyurt, M.K.; Ağbulut, Ü. An Experimental Assessment on Dual Fuel Engine Behavior Powered by Waste Tire-Derived Pyrolysis Oil—Biogas Blends. Fuel Process. Technol. 2022, 229, 107177. [Google Scholar] [CrossRef]
- Bansal, P.; Meena, R. Methanol as an Alternative Fuel in Internal Combustion Engine: Scope, Production, and Limitations. In Methanol: A Sustainable Transport Fuel for SI Engines; Springer: Singapore, 2021; pp. 11–36. [Google Scholar]
- Yaman, H.; Yesilyurt, M.K.; Raja Ahsan Shah, R.M.; Soyhan, H.S. Effects of Compression Ratio on Thermodynamic and Sustainability Parameters of a Diesel Engine Fueled with Methanol/Diesel Fuel Blends Containing 1-Pentanol as a Co-Solvent. Fuel 2024, 357, 129929. [Google Scholar] [CrossRef]
- Uyumaz, A. An Experimental Investigation into Combustion and Performance Characteristics of an HCCI Gasoline Engine Fueled with N-Heptane, Isopropanol and n-Butanol Fuel Blends at Different Inlet Air Temperatures. Energy Convers. Manag. 2015, 98, 199–207. [Google Scholar] [CrossRef]
- Uyumaz, A.; Aydoğan, B.; Calam, A.; Aksoy, F.; Yılmaz, E. The Effects of Diisopropyl Ether on Combustion, Performance, Emissions and Operating Range in a HCCI Engine. Fuel 2020, 265, 116919. [Google Scholar] [CrossRef]
- Polat, S.; Uyumaz, A.; İpci, D.; Yücesu, H.S.; Solmaz, H.; Yılmaz, E. Doğalgaz Yakıtlı HCCI Bir Motorda Hidrojen Ilavesinin Yanma Karakteristikleri Üzerindeki Etkilerinin Nümerik Olarak Incelenmesi. Makine Teknol. Elektron. Derg. 2015, 12, 15–26. [Google Scholar]
- Calam, A.; İçingür, Y. Hava Fazlalık Katsayısı ve Oktan Sayısı Değişiminin HCCI Yanma Karakteristiklerine ve Motor Performansına Etkileri. J. Polytech. 2019, 22, 607–619. [Google Scholar] [CrossRef]
- Safieddin Ardebili, S.M.; Solmaz, H.; İpci, D.; Calam, A.; Mostafaei, M. A Review on Higher Alcohol of Fusel Oil as a Renewable Fuel for Internal Combustion Engines: Applications, Challenges, and Global Potential. Fuel 2020, 279, 118516. [Google Scholar] [CrossRef]
- Schorn, F.; Breuer, J.L.; Samsun, R.C.; Schnorbus, T.; Heuser, B.; Peters, R.; Stolten, D. Methanol as a Renewable Energy Carrier: An Assessment of Production and Transportation Costs for Selected Global Locations. Adv. Appl. Energy 2021, 3, 100050. [Google Scholar] [CrossRef]
- Wang, F.; Swinbourn, R.; Li, C. Shipping Australian Sunshine: Liquid Renewable Green Fuel Export. Int. J. Hydrog. Energy 2023, 48, 14763–14784. [Google Scholar] [CrossRef]
- Ammar, N.R. An Environmental and Economic Analysis of Methanol Fuel for a Cellular Container Ship. Transp. Res. D Transp. Environ. 2019, 69, 66–76. [Google Scholar] [CrossRef]
- Ni, P.; Wang, X.; Li, H. A Review on Regulations, Current Status, Effects and Reduction Strategies of Emissions for Marine Diesel Engines. Fuel 2020, 279, 118477. [Google Scholar] [CrossRef]
- Huang, J.; Fan, H.; Xu, X.; Liu, Z. Life Cycle Greenhouse Gas Emission Assessment for Using Alternative Marine Fuels: A Very Large Crude Carrier (VLCC) Case Study. J. Mar. Sci. Eng. 2022, 10, 1969. [Google Scholar] [CrossRef]
- Sollai, S.; Porcu, A.; Tola, V.; Ferrara, F.; Pettinau, A. Renewable Methanol Production from Green Hydrogen and Captured CO2: A Techno-Economic Assessment. J. CO2 Util. 2023, 68, 102345. [Google Scholar] [CrossRef]
- Nicita, A.; Maggio, G.; Andaloro, A.P.F.; Squadrito, G. Green Hydrogen as Feedstock: Financial Analysis of a Photovoltaic-Powered Electrolysis Plant. Int. J. Hydrog. Energy 2020, 45, 11395–11408. [Google Scholar] [CrossRef]
- Moirangthem, K.; Baxter, D. Alternative Fuels for Marine and Inland Waterways; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Kavanaugh, M.C.; Stocking, A. Fate and Transport of Ethanol in the Environment; Environmental Protection Agency Blue Ribbon Panel: Washington, DC, USA, 1999.
- Machiele, P.A. Flammability and Toxicity Tradeoffs with Methanol Fuels. SAE Trans. 1987, 96, 344–356. [Google Scholar]
- Machiele, P.A. Summary of the Fire Safety Impacts of Methanol as a Transportation Fuel; SAE International: Warrendale, PA, USA, 1990. [Google Scholar]
- Verhelst, S.; Turner, J.W.; Sileghem, L.; Vancoillie, J. Methanol as a Fuel for Internal Combustion Engines. Prog. Energy Combust. Sci. 2019, 70, 43–88. [Google Scholar] [CrossRef]
- Oloruntobi, O.; Chuah, L.F.; Mokhtar, K.; Gohari, A.; Onigbara, V.; Chung, J.X.; Mubashir, M.; Asif, S.; Show, P.L.; Han, N. Assessing Methanol Potential as a Cleaner Marine Fuel: An Analysis of Its Implications on Emissions and Regulation Compliance. Clean. Eng. Technol. 2023, 14, 100639. [Google Scholar] [CrossRef]
- Xing, H.; Stuart, C.; Spence, S.; Chen, H. Alternative Fuel Options for Low Carbon Maritime Transportation: Pathways to 2050. J. Clean. Prod. 2021, 297, 126651. [Google Scholar] [CrossRef]
- Fagerlund, P.; Ramne, B. Effship Project: Summary and Conclusions. In Proceedings of the EffShip Seminar, Goteborg, Sweden, 21 March 2013; Volume 21. [Google Scholar]
- Balcombe, P.; Staffell, I.; Kerdan, I.G.; Speirs, J.F.; Brandon, N.P.; Hawkes, A.D. How Can LNG-Fuelled Ships Meet Decarbonisation Targets? An Environmental and Economic Analysis. Energy 2021, 227, 120462. [Google Scholar] [CrossRef]
- Gilbert, P.; Walsh, C.; Traut, M.; Kesieme, U.; Pazouki, K.; Murphy, A. Assessment of Full Life-Cycle Air Emissions of Alternative Shipping Fuels. J. Clean. Prod. 2018, 172, 855–866. [Google Scholar] [CrossRef]
- Islam Rony, Z.; Mofijur, M.; Hasan, M.M.; Rasul, M.G.; Jahirul, M.I.; Forruque Ahmed, S.; Kalam, M.A.; Anjum Badruddin, I.; Yunus Khan, T.M.; Show, P.-L. Alternative Fuels to Reduce Greenhouse Gas Emissions from Marine Transport and Promote UN Sustainable Development Goals. Fuel 2023, 338, 127220. [Google Scholar] [CrossRef]
- Miller, H.; Barceloux, D.G.; Krenzelok, E.P.; Olson, K.; Watson, W. American Academy of Clinical Toxicology Practice Guidelines on the Treatment of Ethylene Glycol Poisoning. J. Toxicol. Clin. Toxicol. 1999, 37, 537–560. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Wang, Y.; Zhen, X.; Liu, Z. The Effect of Methanol Production and Application in Internal Combustion Engines on Emissions in the Context of Carbon Neutrality: A Review. Fuel 2022, 320, 123902. [Google Scholar] [CrossRef]
- GBZ 2.1-2007; Occupational Exposure Limits for Hazardous Agents in the Workplace—Part 1: Chemical Hazardous Agents. Standards Press of China: Beijing, China, 2007.
- Eells, J.T.; Henry, M.M.; Lewandowski, M.F.; Seme, M.T.; Murray, T.G. Development and Characterization of a Rodent Model of Methanol-Induced Retinal and Optic Nerve Toxicity. Neurotoxicology 2000, 21, 321–330. [Google Scholar]
- Arnaiz del Pozo, C.; Cloete, S.; Jiménez Álvaro, Á. Techno-Economic Assessment of Long-Term Methanol Production from Natural Gas and Renewables. Energy Convers. Manag. 2022, 266, 115785. [Google Scholar] [CrossRef]
- Kotowicz, J.; Brzęczek, M.; Walewska, A.; Szykowska, K. Methanol Production in the Brayton Cycle. Energies 2022, 15, 1480. [Google Scholar] [CrossRef]
- Innovation Outlook. Renewable Methanol; International Renewable Energy Agency: Masdar City, United Arab Emirates, 2021. [Google Scholar]
- Wang, D.; Meng, W.; Zhou, H.; Yang, Y.; Xie, J.; Yang, S.; Li, G. Novel Coal-to-Methanol Process with near-Zero Carbon Emission: Pulverized Coal Gasification-Integrated Green Hydrogen Process. J. Clean. Prod. 2022, 339, 130500. [Google Scholar] [CrossRef]
- Gautam, P.; Neha; Upadhyay, S.N.; Dubey, S.K. Bio-Methanol as a Renewable Fuel from Waste Biomass: Current Trends and Future Perspective. Fuel 2020, 273, 117783. [Google Scholar] [CrossRef]
- Brynolf, S.; Fridell, E.; Andersson, K. Environmental Assessment of Marine Fuels: Liquefied Natural Gas, Liquefied Biogas, Methanol and Bio-Methanol. J. Clean. Prod. 2014, 74, 86–95. [Google Scholar] [CrossRef]
- Ellis, J.; Tanneberger, K. Study on the Use of Ethyl and Methyl Alcohol as Alternative Fuels in Shipping. Eur. Marit. Saf. Agency 2015, 46, 1–38. [Google Scholar]
- Glaude, P.-A.; Fournet, R.; Bounaceur, R.; Molière, M. Adiabatic Flame Temperature from Biofuels and Fossil Fuels and Derived Effect on NOx Emissions. Fuel Process. Technol. 2010, 91, 229–235. [Google Scholar] [CrossRef]
- Aabo, K. Ammonia-Fuelled MAN B&W 2-Stroke Dual-Fuel Engines. Mar. Eng. 2020, 55, 737–744. [Google Scholar] [CrossRef]
- Korberg, A.D.; Brynolf, S.; Grahn, M.; Skov, I.R. Techno-Economic Assessment of Advanced Fuels and Propulsion Systems in Future Fossil-Free Ships. Renew. Sustain. Energy Rev. 2021, 142, 110861. [Google Scholar] [CrossRef]
- Radonja, R.; Bebić, D.; Glujić, D. Methanol and Ethanol as Alternative Fuels for Shipping. Promet Traffic Transp. 2019, 31, 321–327. [Google Scholar] [CrossRef]
- Zhou, Y.; Pavlenko, N.; Rutherford, D.; Osipova, L.; Comer, B. The Potential of Liquid Biofuels in Reducing Ship Emissions. Int. Counc. Clean Transp. 2020, 1, 31. [Google Scholar]
- Methanol Institute. Renewable Methanol. Available online: https://www.methanol.org/renewable/ (accessed on 10 November 2023).
- Duraisamy, G.; Rangasamy, M.; Govindan, N. A Comparative Study on Methanol/Diesel and Methanol/PODE Dual Fuel RCCI Combustion in an Automotive Diesel Engine. Renew. Energy 2020, 145, 542–556. [Google Scholar] [CrossRef]
- Chen, G.; Yu, W.; Jiang, X.; Huang, Z.; Wang, Z.; Cheng, Z. Experimental and Modeling Study on the Influences of Methanol on Premixed Fuel-Rich n-Heptane Flames. Fuel 2013, 103, 467–472. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, Z.; Miao, H.; Di, Y.; Jiang, D.; Zeng, K.; Liu, B.; Wang, X. Combustion and Emissions of a DI Diesel Engine Fuelled with Diesel-Oxygenate Blends. Fuel 2008, 87, 2691–2697. [Google Scholar] [CrossRef]
- Wei, J.; Fan, C.; Qiu, L.; Qian, Y.; Wang, C.; Teng, Q.; Pan, M. Impact of Methanol Alternative Fuel on Oxidation Reactivity of Soot Emissions from a Modern CI Engine. Fuel 2020, 268, 117352. [Google Scholar] [CrossRef]
- Gong, C.; Li, Z.; Yi, L.; Liu, F. Experimental Investigation of Equivalence Ratio Effects on Combustion and Emissions Characteristics of an H2/Methanol Dual-Injection Engine under Different Spark Timings. Fuel 2020, 262, 116463. [Google Scholar] [CrossRef]
- Wang, X.; Cheung, C.S.; Di, Y.; Huang, Z. Diesel Engine Gaseous and Particle Emissions Fueled with Diesel–Oxygenate Blends. Fuel 2012, 94, 317–323. [Google Scholar] [CrossRef]
- Fan, C.; Wei, J.; Huang, H.; Pan, M.; Fu, Z. Chemical Feature of the Soot Emissions from a Diesel Engine Fueled with Methanol-Diesel Blends. Fuel 2021, 297, 120739. [Google Scholar] [CrossRef]
- Joghee, P.; Malik, J.N.; Pylypenko, S.; O’Hayre, R. A Review on Direct Methanol Fuel Cells–In the Perspective of Energy and Sustainability. MRS Energy Sustain. 2015, 2, 3. [Google Scholar] [CrossRef]
- McKinlay, C.J.; Turnock, S.R.; Hudson, D.A. Route to Zero Emission Shipping: Hydrogen, Ammonia or Methanol? Int. J. Hydrog. Energy 2021, 46, 28282–28297. [Google Scholar] [CrossRef]
- StenaLine. The World’s First Methanol Ferry. Available online: https://stenaline.com/media/stories/the-worlds-first-methanol-ferry/ (accessed on 10 November 2023).
- Andriantsiferana, K.M. Decarbonising the Global Supply Chain: Which Fuel Alternative Should Shipping Companies Turn to?: A Feasibility Study of the Implementation of Biofuels. Ph.D. Thesis, World Maritime University, Malmö, Sweden, 2019. [Google Scholar]
- Conti, D. A Techno-Economic Assessment for Optimizing Methanol Production from Woody Biomass for Maritime Transport in Sweden. Master’s Thesis, Aalto University, Helsinki, Finland, 2019. [Google Scholar]
- Ellis, J.; Bomanson, J. SUMMETH—Sustainable Marine Methanol Hazard Identification Study for the M/S Jupiter Methanol Conversion Design. 2018. Available online: https://www.methanol.org/wp-content/uploads/2020/04/SUMMETH-4-HazId-MS-Jupiter.pdf (accessed on 10 November 2023).
- Methanex. Industry Welcomes Four New Ocean-Going Vessels Capable of Running on Methanol. Available online: https://www.methanex.com/news/release/industry-welcomes-four-new-ocean-going-vessels-capable-of-running-on-methanol/ (accessed on 10 November 2023).
- Xing, H.; Stuart, C.; Spence, S.; Chen, H. Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives. Sustainability 2021, 13, 1213. [Google Scholar] [CrossRef]
- Wu, J.; Wu, J.; Liu, H. Research Status and Prospect of Methanol as Alternative Fuel for Diesel Engines. Energy Conserv. Technol. 2021, 39, 9–14. [Google Scholar]
- Guo, Z.; Li, T.; Dong, J.; Chen, R.; Xue, P.; Wei, X. Combustion and Emission Characteristics of Blends of Diesel Fuel and Methanol-to-Diesel. Fuel 2011, 90, 1305–1308. [Google Scholar] [CrossRef]
- Soni, D.K.; Gupta, R. Numerical Investigation of Emission Reduction Techniques Applied on Methanol Blended Diesel Engine. Alex. Eng. J. 2016, 55, 1867–1879. [Google Scholar] [CrossRef]
- Soni, D.K.; Gupta, R. Optimization of Methanol Powered Diesel Engine: A CFD Approach. Appl. Therm. Eng. 2016, 106, 390–398. [Google Scholar] [CrossRef]
- Jamrozik, A. The Effect of the Alcohol Content in the Fuel Mixture on the Performance and Emissions of a Direct Injection Diesel Engine Fueled with Diesel-Methanol and Diesel-Ethanol Blends. Energy Convers. Manag. 2017, 148, 461–476. [Google Scholar] [CrossRef]
- Huang, Z. Combustion Behaviors of a Compression-Ignition Engine Fuelled with Diesel/Methanol Blends under Various Fuel Delivery Advance Angles. Bioresour. Technol. 2004, 95, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Bayraktar, H. An Experimental Study on the Performance Parameters of an Experimental CI Engine Fueled with Diesel–Methanol–Dodecanol Blends. Fuel 2008, 87, 158–164. [Google Scholar] [CrossRef]
- Gao, Z.; Wu, S.; Luo, J.; Zhang, B.; Zhang, H.; Xiao, R. Optimize the Co-Solvent for Methanol in Diesel with Group of Oxygen-Containing Reagents: Molecular Structure and Intermolecular Forces Analysis. Fuel Process. Technol. 2021, 222, 106980. [Google Scholar] [CrossRef]
- Ghosh, A.; Ravikrishna, R.V. Evaporating Spray Characteristics of Methanol-in-Diesel Emulsions. Fuel 2021, 290, 119730. [Google Scholar] [CrossRef]
- Mwangi, J.K.; Lee, W.-J.; Chang, Y.-C.; Chen, C.-Y.; Wang, L.-C. An Overview: Energy Saving and Pollution Reduction by Using Green Fuel Blends in Diesel Engines. Appl. Energy 2015, 159, 214–236. [Google Scholar] [CrossRef]
- Liu, J.; Yao, A.; Yao, C. Effects of Injection Timing on Performance and Emissions of a HD Diesel Engine with DMCC. Fuel 2014, 134, 107–113. [Google Scholar] [CrossRef]
- Liu, J.; Yao, A.; Yao, C. Effects of Diesel Injection Pressure on the Performance and Emissions of a HD Common-Rail Diesel Engine Fueled with Diesel/Methanol Dual Fuel. Fuel 2015, 140, 192–200. [Google Scholar] [CrossRef]
- Yao, C.; Cheung, C.S.; Cheng, C.; Wang, Y.; Chan, T.L.; Lee, S.C. Effect of Diesel/Methanol Compound Combustion on Diesel Engine Combustion and Emissions. Energy Convers. Manag. 2008, 49, 1696–1704. [Google Scholar] [CrossRef]
- Geng, P.; Yao, C.; Wei, L.; Liu, J.; Wang, Q.; Pan, W.; Wang, J. Reduction of PM Emissions from a Heavy-Duty Diesel Engine with Diesel/Methanol Dual Fuel. Fuel 2014, 123, 1–11. [Google Scholar] [CrossRef]
- Wei, L.; Yao, C.; Wang, Q.; Pan, W.; Han, G. Combustion and Emission Characteristics of a Turbocharged Diesel Engine Using High Premixed Ratio of Methanol and Diesel Fuel. Fuel 2015, 140, 156–163. [Google Scholar] [CrossRef]
- Saccullo, M.; Benham, T.; Denbratt, I. Dual Fuel Methanol and Diesel Direct Injection HD Single Cylinder Engine Tests; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Jia, Z.; Denbratt, I. Experimental Investigation into the Combustion Characteristics of a Methanol-Diesel Heavy Duty Engine Operated in RCCI Mode. Fuel 2018, 226, 745–753. [Google Scholar] [CrossRef]
- Ning, L.; Duan, Q.; Kou, H.; Zeng, K. Parametric Study on Effects of Methanol Injection Timing and Methanol Substitution Percentage on Combustion and Emissions of Methanol/Diesel Dual-Fuel Direct Injection Engine at Full Load. Fuel 2020, 279, 118424. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Yin, Z.; Gao, Z.; Wang, Y.; Zhen, X. Parametric Study of a Single-Channel Diesel/Methanol Dual-Fuel Injector on a Diesel Engine Fueled with Directly Injected Methanol and Pilot Diesel. Fuel 2021, 302, 121156. [Google Scholar] [CrossRef]
- Svanberg, M.; Ellis, J.; Lundgren, J.; Landälv, I. Renewable Methanol as a Fuel for the Shipping Industry. Renew. Sustain. Energy Rev. 2018, 94, 1217–1228. [Google Scholar] [CrossRef]
- Yao, C.; Pan, W.; Yao, A. Methanol Fumigation in Compression-Ignition Engines: A Critical Review of Recent Academic and Technological Developments. Fuel 2017, 209, 713–732. [Google Scholar] [CrossRef]
- Oberg, M.M. Life Cycle Assessment of Fuel Choices for Marine Vessels. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2013. [Google Scholar]
- Bilgili, L. A Systematic Review on the Acceptance of Alternative Marine Fuels. Renew. Sustain. Energy Rev. 2023, 182, 113367. [Google Scholar] [CrossRef]
- Nguyen, T.B.H.; Zondervan, E. Methanol Production from Captured CO2 Using Hydrogenation and Reforming Technologies_ Environmental and Economic Evaluation. J. CO2 Util. 2019, 34, 1–11. [Google Scholar] [CrossRef]
- Battaglia, P.; Buffo, G.; Ferrero, D.; Santarelli, M.; Lanzini, A. Methanol Synthesis through CO2 Capture and Hydrogenation: Thermal Integration, Energy Performance and Techno-Economic Assessment. J. CO2 Util. 2021, 44, 101407. [Google Scholar] [CrossRef]
- Cocco, D.; Pettinau, A.; Cau, G. Energy and Economic Assessment of IGCC Power Plants Integrated with DME Synthesis Processes. Proc. Inst. Mech. Eng. Part A J. Power Energy 2006, 220, 95–102. [Google Scholar] [CrossRef]
- Simon Araya, S.; Liso, V.; Cui, X.; Li, N.; Zhu, J.; Sahlin, S.L.; Jensen, S.H.; Nielsen, M.P.; Kær, S.K. A Review of The Methanol Economy: The Fuel Cell Route. Energy 2020, 13, 596. [Google Scholar] [CrossRef]
- Guil-López, R.; Mota, N.; Llorente, J.; Millán, E.; Pawelec, B.; Fierro, J.L.G.; Navarro, R.M. Methanol Synthesis from CO2: A Review of the Latest Developments in Heterogeneous Catalysis. Materials 2019, 12, 3902. [Google Scholar] [CrossRef] [PubMed]
- Biswal, T.; Shadangi, K.P.; Sarangi, P.K.; Srivastava, R.K. Conversion of Carbon Dioxide to Methanol: A Comprehensive Review. Chemosphere 2022, 298, 134299. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Sun, N.; Zhang, X.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y. A Short Review of Catalysis for CO2 Conversion. Catal. Today 2009, 148, 221–231. [Google Scholar] [CrossRef]
- Zhang, C.; Jun, K.-W.; Gao, R.; Kwak, G.; Park, H.-G. Carbon Dioxide Utilization in a Gas-to-Methanol Process Combined with CO2/Steam-Mixed Reforming: Techno-Economic Analysis. Fuel 2017, 190, 303–311. [Google Scholar] [CrossRef]
- Kovačič, Ž.; Likozar, B.; Huš, M. Photocatalytic CO2 Reduction: A Review of Ab Initio Mechanism, Kinetics, and Multiscale Modeling Simulations. ACS Catal. 2020, 10, 14984–15007. [Google Scholar] [CrossRef]
- Hammerschmidt, M.; Döpking, S.; Burger, S.; Matera, S. Field Heterogeneities and Their Impact on Photocatalysis: Combining Optical and Kinetic Monte Carlo Simulations on the Nanoscale. J. Phys. Chem. C 2020, 124, 3177–3187. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Shan, B.; Xu, Z.; Niu, Q.; Cheng, L.; Liu, X.; Xu, Z. Spatiotemporal Variation of Drought and Associated Multi-Scale Response to Climate Change over the Yarlung Zangbo River Basin of Qinghai–Tibet Plateau, China. Remote Sens. 2019, 11, 1596, Erratum in Remote Sens. 2020, 12, 19. [Google Scholar] [CrossRef]
- Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G.A.; Prakash, G.K.S. Conversion of CO2 from Air into Methanol Using a Polyamine and a Homogeneous Ruthenium Catalyst. J. Am. Chem. Soc. 2016, 138, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Riduan, S.N.; Zhang, Y.; Ying, J.Y. Conversion of Carbon Dioxide into Methanol with Silanes over N-Heterocyclic Carbene Catalysts. Angew. Chem. Int. Ed. 2009, 48, 3322–3325. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Zhang, X.; Wang, Y.; Xie, C. Electrochemical Reduction of CO2 on RuO2/TiO2 Nanotubes Composite Modified Pt Electrode. Electrochim. Acta 2005, 50, 3576–3580. [Google Scholar] [CrossRef]
- Barton Cole, E.; Lakkaraju, P.S.; Rampulla, D.M.; Morris, A.J.; Abelev, E.; Bocarsly, A.B. Using a One-Electron Shuttle for the Multielectron Reduction of CO2 to Methanol: Kinetic, Mechanistic, and Structural Insights. J. Am. Chem. Soc. 2010, 132, 11539–11551. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; He, X.; Wang, L.; Guo, J. Progress of Cathode Materials for Electrochemical Reduction of Carbon Dioxide. Chem. Ind. Eng. Prog. 2013, 32, 373–380. [Google Scholar]
- Portenkirchner, E.; Enengl, C.; Enengl, S.; Hinterberger, G.; Schlager, S.; Apaydin, D.; Neugebauer, H.; Knör, G.; Sariciftci, N.S. A Comparison of Pyridazine and Pyridine as Electrocatalysts for the Reduction of Carbon Dioxide to Methanol. ChemElectroChem 2014, 1, 1543–1548. [Google Scholar] [CrossRef]
- Na, Y.; Lincoln, P.; Johansson, J.R.; Nordén, B. Towards Artificial Photosynthesis of CO2-Neutral Fuel: Homogenous Catalysis of CO2 -Selective Reduction to Methanol Initiated by Visible-Light-Driven Multi-Electron Collector. ChemCatChem 2012, 4, 1746–1750. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Luo, D.; Li, J.; Huang, Y.; Li, H.; Fang, Y.; Xu, Y.; Zhu, L. Adsorption of CO2 on Heterostructure CdS(Bi2S3)/TiO2 Nanotube Photocatalysts and Their Photocatalytic Activities in the Reduction of CO2 to Methanol under Visible Light Irradiation. Chem. Eng. J. 2012, 180, 151–158. [Google Scholar] [CrossRef]
- Zhang, W. The Demand Influence Factors of the Business Price in 2013 of China—The Cross-Sectional Analysis of the Real Estate Developer Factors Based on the Selected 35 Cities. J. Econ. Public Financ. 2015, 1, 37. [Google Scholar] [CrossRef]
- Xin, J.; Cui, J.; Niu, J.; Hua, S.; Xia, C.; Li, S.; Zhu, L. Biosynthesis of Methanol from CO2 and CH4 by Methanotrophic Bacteria. Biotechnology 2004, 3, 67–71. [Google Scholar]
- Xin, J.; Zhang, Y.; Zhang, S.; Xia, C.; Li, S. Methanol Production from CO2 by Resting Cells of the Methanotrophic BacteriumMethylosinus Trichosporium IMV 3011. J. Basic Microbiol. 2007, 47, 426–435. [Google Scholar] [CrossRef]
- Olah, G.A. Beyond Oil and Gas: The Methanol Economy. Angew. Chem. Int. Ed. 2005, 44, 2636–2639. [Google Scholar] [CrossRef]
- Olah, G.A. Towards Oil Independence Through Renewable Methanol Chemistry. Angew. Chem. Int. Ed. 2013, 52, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Meesattham, S.; Kim-Lohsoontorn, P. Low-Temperature Alcohol-Assisted Methanol Synthesis from CO2 and H2: The Effect of Alcohol Type. Int. J. Hydrog. Energy 2022, 47, 22691–22703. [Google Scholar] [CrossRef]
- Kaiser, S.; Siems, F.; Mostert, C.; Bringezu, S. Environmental and Economic Performance of CO2-Based Methanol Production Using Long-Distance Transport for H2 in Combination with CO2 Point Sources: A Case Study for Germany. Energies 2022, 15, 2507. [Google Scholar] [CrossRef]
- Sun, K.; Fan, Z.; Ye, J.; Yan, J.; Ge, Q.; Li, Y.; He, W.; Yang, W.; Liu, C. Hydrogenation of CO2 to Methanol over In2O3 Catalyst. J. CO2 Util. 2015, 12, 1–6. [Google Scholar] [CrossRef]
- Yang, C.-J.; Jackson, R.B. China’s Growing Methanol Economy and Its Implications for Energy and the Environment. Energy Policy 2012, 41, 878–884. [Google Scholar] [CrossRef]
- ICIS. Chemical Profile Special; ICIS: London, UK, 2017. [Google Scholar]
- McGill, R.; Remley, W.; Winther, K. Alternative Fuels for Marine Applications. 2013. Available online: https://www.methanol.org/wp-content/uploads/2016/07/AMF_Annex_41-Alt-Fuels-for-Marine-May-2013.pdf (accessed on 10 November 2023).
- Andersson, J.; Lundgren, J.; Marklund, M. Methanol Production via Pressurized Entrained Flow Biomass Gasification—Techno-Economic Comparison of Integrated vs. Stand-Alone Production. Biomass Bioenergy 2014, 64, 256–268. [Google Scholar] [CrossRef]
- International Maritime Organization. International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk: IGC Code; IMO Publishing: London, UK, 2016. [Google Scholar]
- Chryssakis, C.; Balland, O.; Tvete, H.; Brandsaeter, A. Alternative Fuels for Shipping; DNV GL Strategic Research and Innovation: Bærum, Norway, 2018. [Google Scholar]
- Florentinus, A.; Hamelinck, C.; van den Bos, A.; Winkel, R.; Cuijpers, M. Potential of Biofuels for Shipping; European Maritime Safety Agency: Utrecht, The Netherlands, 2012. [Google Scholar]
- Andersson, K.; Salazar, C.M. Methanol as a Marine Fuel Report; FCBI Energy: Orlando, FL, USA, 2015; pp. 1–46. [Google Scholar]
- Netzer, D.; Antverg, J.; Goldwine, G. Methanol Proves Low-Cost, Sustainable Option for Gasoline Blending. Oil Gas J. 2015, 113, 2. [Google Scholar]
- Sköld, S.; Styhre, L. Sjöfartens Energianvändning—Hinder Och Möjligheter för Omställning till Fossilfrihet; IVL Svenska Miljöinstitutet: Stockholm, Sweden, 2017. [Google Scholar]
- Stojcevski, T.; Jay, D.; Vicenzi, L. Operation Experience of World’s First Methanol Engine in a Ferry Installation. In Proceedings of the 28th CIMAC World Congress, Helsinki, Finland, 6–10 June 2016; pp. 6–9. [Google Scholar]
- Ford, M.C. A Masters Guide to: Using Fuel Oil Onboard Ships; Charles Taylor & Co. Ltd.: London, UK, 2012. [Google Scholar]
- Ellis, J.; Svanberg, M. Expected Benefits, Strategies, and Implementation of Methanol as a Marine Fuel for the Smaller Vessel Fleet. 2018. Available online: https://www.methanol.org/wp-content/uploads/2018/05/SUMMETH-6-Benefits-Strategies-Implementation.pdf (accessed on 10 November 2023).
- Smith, T.; Raucci, C.; Sabio, N.; Argyros, D. Global Marine Fuel Trends 2030; UCL Energy Institute: London, UK, 2014. [Google Scholar]
- Ryan, T.W.; Maymar, M.; Ott, D.; LaViolette, R.A.; MacDowall, R.D. Combustion and Emissions Characteristics of Minimally Processed Methanol in a Diesel Engine Without Ignition Assist. SAE Trans. 1994, 103, 398–405. [Google Scholar]
- Stenhede, T. WP2 Present and Future Maritime Fuels; Effship: Gothenburg, Sweden, 2013. [Google Scholar]
- Seddon, D. Methanol and Dimethyl Ether (DME) Production from Synthesis Gas. In Advances in Clean Hydrocarbon Fuel Processing; Elsevier: Amsterdam, The Netherlands, 2011; pp. 363–386. [Google Scholar]
- Helgason, R.; Cook, D.; Davíðsdóttir, B. An Evaluation of the Cost-Competitiveness of Maritime Fuels—A Comparison of Heavy Fuel Oil and Methanol (Renewable and Natural Gas) in Iceland. Sustain. Prod. Consum. 2020, 23, 236–248. [Google Scholar] [CrossRef]
- Edwards, R.; Hass, H.; Larive’, J.; Lonza, L.; Maas, H.; Rickeard, D. Well-to-Wheels Report Version 4.a: JEC Well-to-Wheels Analysis; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar] [CrossRef]
- Odejobi, O.J.; Jisieike, C.F.; Anozie, A.N. Simulation and Exergy Analysis of Processes for CO2 Capture and Utilisation for Methanol Production. Int. J. Exergy 2015, 17, 456. [Google Scholar] [CrossRef]
- Cuéllar-Franca, R.M.; Azapagic, A. Carbon Capture, Storage and Utilisation Technologies: A Critical Analysis and Comparison of Their Life Cycle Environmental Impacts. J. CO2 Util. 2015, 9, 82–102. [Google Scholar] [CrossRef]
- Dalena, F.; Senatore, A.; Basile, M.; Knani, S.; Basile, A.; Iulianelli, A. Advances in Methanol Production and Utilization, with Particular Emphasis toward Hydrogen Generation via Membrane Reactor Technology. Membranes 2018, 8, 98. [Google Scholar] [CrossRef] [PubMed]
- Perez-Fortes, M.; Tzimas, E. Techno-Economic and Environmental Evaluation of CO2 Utilisation for Fuel Production. In Synthesis of Methanol and Formic Acid; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Kumar, S.; Kwon, H.-T.; Choi, K.-H.; Lim, W.; Cho, J.H.; Tak, K.; Moon, I. LNG: An eco-Friendly Cryogenic Fuel for Sustainable Development. Appl. Energy 2011, 88, 4264–4273. [Google Scholar] [CrossRef]
- Staffell, I. The Energy and Fuel Data Sheet; University of Birmingham: Birmingham, UK, 2011. [Google Scholar]
- Ančić, I.; Perčić, M.; Vladimir, N. Alternative Power Options to Reduce Carbon Footprint of Ro-Ro Passenger Fleet: A Case Study of Croatia. J. Clean. Prod. 2020, 271, 122638. [Google Scholar] [CrossRef]
- Landalv, I.; Waldheim, L.; van den Heuvel, E.; Kalligeros, S. Building Up the Future. Cost of Biofuel; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speirs, J.; Hawkes, A.; Staffell, I. How to Decarbonise International Shipping: Options for Fuels, Technologies and Policies. Energy Convers. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- Leduc, S.; Lundgren, J.; Franklin, O.; Dotzauer, E. Location of a Biomass Based Methanol Production Plant: A Dynamic Problem in Northern Sweden. Appl. Energy 2010, 87, 68–75. [Google Scholar] [CrossRef]
- Leduc, S.; Schwab, D.; Dotzauer, E.; Schmid, E.; Obersteiner, M. Optimal Location of Wood Gasification Plants for Methanol Production with Heat Recovery. Int. J. Energy Res. 2008, 32, 1080–1091. [Google Scholar] [CrossRef]
- European Maritime Safety Agency. Information System to Support Regulation (EU) 2015/57—THETIS MRV. Available online: https://www.emsa.europa.eu/thetis-mrv.html (accessed on 10 November 2023).
- European Comission. EU Emissions Trading System (EU ETS). Available online: https://climate.ec.europa.eu/system/files/2016-12/factsheet_ets_en.pdf (accessed on 10 November 2023).
- Regulation (EU) 2023/1805 of the European Parliament and of the Council of 13 September 2023 on the Use of Renewable and Low-Carbon Fuels in Maritime Transport, and Amending Directive 2009/16/EC. 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023R1805 (accessed on 10 November 2023).
- Gerba, C.P. Environmental Toxicology. In Environmental and Pollution Science; Elsevier: Amsterdam, The Netherlands, 2019; pp. 511–540. [Google Scholar]
- Elsaid, K.; Abdelfatah, S.; Abdel Elabsir, A.M.; Hassiba, R.J.; Ghouri, Z.K.; Vechot, L. Direct Alcohol Fuel Cells: Assessment of the Fuel’s Safety and Health Aspects. Int. J. Hydrog. Energy 2021, 46, 30658–30668. [Google Scholar] [CrossRef]
- Vredeveldt, A.W.; van Dijk, T.; van den Brink, A.; Maritiem, C. Unconventional Bunker Fuels, a Safety Comparison. 2020. Available online: https://publications.tno.nl/publication/34637492/NOuAfe/TNO-2020-R10502.pdf (accessed on 10 November 2023).
- Van Hoecke, L.; Laffineur, L.; Campe, R.; Perreault, P.; Verbruggen, S.W.; Lenaerts, S. Challenges in the Use of Hydrogen for Maritime Applications. Energy Environ. Sci. 2021, 14, 815–843. [Google Scholar] [CrossRef]
- Le Fevre, C. A Review of Demand Prospects for LNG as a Marine Transport Fuel; University of Oxford: Oxford, UK, 2018. [Google Scholar]
- Rousseau, J.H.; Tomdio, J. Classification of Single Point Moorings as Offshore Battery Charging Stations. In Proceedings of the the SNAME 28th Offshore Symposium, Houston, TX, USA, 8 March 2023. [Google Scholar]
- Ghorbani, B.; Wang, W.; Li, J.; Khatami Jouybari, A.; Monajati Saharkhiz, M.H. Solar Energy Exploitation and Storage in a Novel Hybrid Thermo-Electrochemical Process with Net-Zero Carbon Emissions. J. Energy Storage 2022, 52, 104935. [Google Scholar] [CrossRef]
- Gray, N.; McDonagh, S.; O’Shea, R.; Smyth, B.; Murphy, J.D. Decarbonising Ships, Planes and Trucks: An Analysis of Suitable Low-Carbon Fuels for the Maritime, Aviation and Haulage Sectors. Adv. Appl. Energy 2021, 1, 100008. [Google Scholar] [CrossRef]
- Pundir, S.; Garg, P.; Dviwedi, A.; Ali, A.; Kapoor, V.K.; Kapoor, D.; Kulshrestha, S.; Lal, U.R.; Negi, P. Ethnomedicinal Uses, Phytochemistry and Dermatological Effects of Hippophae Rhamnoides L.: A Review. J. Ethnopharmacol. 2021, 266, 113434. [Google Scholar] [CrossRef] [PubMed]
- Sayin, C. Engine Performance and Exhaust Gas Emissions of Methanol and Ethanol–Diesel Blends. Fuel 2010, 89, 3410–3415. [Google Scholar] [CrossRef]
- Pan, W.; Yao, C.; Han, G.; Wei, H.; Wang, Q. The Impact of Intake Air Temperature on Performance and Exhaust Emissions of a Diesel Methanol Dual Fuel Engine. Fuel 2015, 162, 101–110. [Google Scholar] [CrossRef]
- Paulauskiene, T.; Bucas, M.; Laukinaite, A. Alternative Fuels for Marine Applications: Biomethanol-Biodiesel-Diesel Blends. Fuel 2019, 248, 161–167. [Google Scholar] [CrossRef]
- Lapuerta, M.; Rodríguez-Fernández, J.; Fernández-Rodríguez, D.; Patiño-Camino, R. Modeling Viscosity of Butanol and Ethanol Blends with Diesel and Biodiesel Fuels. Fuel 2017, 199, 332–338. [Google Scholar] [CrossRef]
- Bromberg, L. Methanol as an Alternative Transportation Fuel in the US: Options for Sustainable and/or Energy-Secure Transportation; Sloan Automotive Laboratory, Massachusetts Institute of Technology: Cambridge, MA, USA, 2010. [Google Scholar]
- Pearson, R.J.; Turner, J.W.G. Renewable Fuels. In Comprehensive Renewable Energy; Elsevier: Amsterdam, The Netherlands, 2012; pp. 305–342. [Google Scholar]
- Gable, R.S. Comparison of Acute Lethal Toxicity of Commonly Abused Psychoactive Substances. Addiction 2004, 99, 686–696. [Google Scholar] [CrossRef]
- Hughes, E. Fuel EU Maritime—Avoiding Unintended Consequences. In Guidance on Regulations for the Transport of Infectious Substances 2019–2020: Applicable from 1 January 2019 (No. WHO/WHE/CPI/2019.20); World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Shamsul, N.S.; Kamarudin, S.K.; Rahman, N.A.; Kofli, N.T. An Overview on the Production of Bio-Methanol as Potential Renewable Energy. Renew. Sustain. Energy Rev. 2014, 33, 578–588. [Google Scholar] [CrossRef]
- Grijpma, P. Sustainable Marine Biofuel for the Dutch Bunker Sector. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2018. [Google Scholar]
- Karabektas, M.; Ergen, G.; Hosoz, M. Effects of the Blends Containing Low Ratios of Alternative Fuels on the Performance and Emission Characteristics of a Diesel Engine. Fuel 2013, 112, 537–541. [Google Scholar] [CrossRef]
- Shahhosseini, H.R.; Iranshahi, D.; Saeidi, S.; Pourazadi, E.; Klemeš, J.J. Multi-Objective Optimisation of Steam Methane Reforming Considering Stoichiometric Ratio Indicator for Methanol Production. J. Clean. Prod. 2018, 180, 655–665. [Google Scholar] [CrossRef]
- Tuner, M. Combustion of Alternative Vehicle Fuels in Internal Combustion Engines. Report within Project. 2015. Available online: https://www.lth.se/fileadmin/kcfp/SICEC/f3SICEC_Delrapport2_Combustion_final.pdf (accessed on 10 November 2023).
- Tuner, M.; Aakko-Saksa, P.; Molander, P. SUMMETH—Sustainable Marine Methanol Deliverable D3. 1 Engine Technology, Research, and Development for Methanol in Internal Combustion Engines. Final Report. 2018. Available online: http://summeth.marinemethanol.com/reports/SUMMETH-WP3_fnl.pdf (accessed on 10 November 2023).
- Yao, Z.; Ng, S.H.; Lee, L.H. A Study on Bunker Fuel Management for the Shipping Liner Services. Comput. Oper. Res. 2012, 39, 1160–1172. [Google Scholar] [CrossRef]
- Cheung, C.S.; Zhang, Z.H.; Chan, T.L.; Yao, C. Investigation on the Effect of Port-Injected Methanol on the Performance and Emissions of a Diesel Engine at Different Engine Speeds. Energy Fuels 2009, 23, 5684–5694. [Google Scholar] [CrossRef]
- Fox, S.B.; Storwold, D. Project Jack Rabbit: Field Tests; Chemical Security and Analysis Center, Science and Technology Directorate, US Department of Homeland Security, CSAC: Aberdeen, MD, USA, 2011.
- Riaz, A.; Zahedi, G.; Klemeš, J.J. A Review of Cleaner Production Methods for the Manufacture of Methanol. J. Clean. Prod. 2013, 57, 19–37. [Google Scholar] [CrossRef]
- Fridell, E.; Salberg, H.; Salo, K. Measurements of Emissions to Air from a Marine Engine Fueled by Methanol. J. Mar. Sci. Appl. 2021, 20, 138–143. [Google Scholar] [CrossRef]
- Rachow, M.; Loest, S.; Bramastha, A.D. Analysis of the Requirement for the Ships Using Methanol as Fuel. Int. J. Mar. Eng. Innov. Res. 2018, 3, 58–68. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parris, D.; Spinthiropoulos, K.; Ragazou, K.; Giovou, A.; Tsanaktsidis, C. Methanol, a Plugin Marine Fuel for Green House Gas Reduction—A Review. Energies 2024, 17, 605. https://doi.org/10.3390/en17030605
Parris D, Spinthiropoulos K, Ragazou K, Giovou A, Tsanaktsidis C. Methanol, a Plugin Marine Fuel for Green House Gas Reduction—A Review. Energies. 2024; 17(3):605. https://doi.org/10.3390/en17030605
Chicago/Turabian StyleParris, Dimitrios, Konstantinos Spinthiropoulos, Konstantina Ragazou, Anna Giovou, and Constantinos Tsanaktsidis. 2024. "Methanol, a Plugin Marine Fuel for Green House Gas Reduction—A Review" Energies 17, no. 3: 605. https://doi.org/10.3390/en17030605
APA StyleParris, D., Spinthiropoulos, K., Ragazou, K., Giovou, A., & Tsanaktsidis, C. (2024). Methanol, a Plugin Marine Fuel for Green House Gas Reduction—A Review. Energies, 17(3), 605. https://doi.org/10.3390/en17030605