Efficient Prototyping of a Field-Programmable Gate Array-Based Real-Time Model of a Modular Multilevel Converter
Abstract
:1. Introduction
2. FPGA Solver Design
2.1. ODE Solver Design
2.2. Switch Status Update and DCM Modeling
- Condition I: ;
- Condition II: .
2.3. FPGA Implementation Structure
3. System Model and Experimental Results
3.1. Real-Time Simulation with ISF Model
3.2. Real-Time Simulation with the Ron/Roff Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bai, H.; Liu, C.; Breaz, E.; Al-Haddad, K.; Gao, F. A review on the device-level real-time simulation of power electronic converters: Motivations for improving performance. IEEE Ind. Electron. Mag. 2020, 15, 12–27. [Google Scholar] [CrossRef]
- Bélanger, J.; Venne, P.; Paquin, J.-N. The what, where and why of real-time simulation. Planet Rt 2010, 1, 25–29. [Google Scholar]
- Dufour, C.; Ould Bachir, T.; Grégoire, L.A.; Bélanger, J. Real-time simulation of power electronic systems and devices. In Dynamics and Control of Switched Electronic Systems: Advanced Perspectives for Modeling, Simulation and Control of Power Converters; Springer: London, UK, 2012; pp. 451–487. [Google Scholar]
- Kumar, P.; Kashyap, Y.; Castelino, R.V.; Karthikeyan, A.; Sharma, K.M.; Karmakar, D.; Kosmopoulos, P. Laboratory-Scale Airborne Wind Energy Conversion Emulator Using OPAL-RT Real-Time Simulator. Energies 2023, 16, 6804. [Google Scholar] [CrossRef]
- Castellini, L.; Gallorini, F.; Alessandri, G.; Alves, E.F.; Montoya, D.; Mudigonda, B.; Tedeschi, E. Comparison of Offline, Real-Time Models and Hardware-in-the-Loop Test Results of a Power Take-Off for Wave Energy Applications. J. Mar. Sci. Eng. 2022, 10, 1744. [Google Scholar] [CrossRef]
- Maguire, T.; Warkentin, B.; Chen, Y.; Hasler, J. Efficient techniques for real time simulation of MMC systems. In Proceedings of the International Conference on Power Systems Transients (IPST), Vancouver, BC, Canada, 18–20 July 2013; pp. 1–7. [Google Scholar]
- Ashourloo, M.; Mirzahosseini, R.; Iravani, R. Enhanced model and real-time simulation architecture for modular multilevel converter. IEEE Trans. Power Deliv. 2017, 33, 466–476. [Google Scholar] [CrossRef]
- Mirzahosseini, R.; Iravani, R. Small time-step FPGA-based real-time simulation of power systems including multiple converters. IEEE Trans. Power Deliv. 2019, 34, 2089–2099. [Google Scholar] [CrossRef]
- Estrada, L.; Vázquez, N.; Vaquero, J.; de Castro, Á.; Arau, J. Real-Time Hardware in the Loop Simulation Methodology for Power Converters Using LabVIEW FPGA. Energies 2020, 13, 373. [Google Scholar] [CrossRef]
- Koutroulis, E.; Kalaitzakis, K.; Tzitzilonis, V. Development of an FPGA-based system for real-time simulation of photovoltaic modules. Microelectron. J. 2009, 40, 1094–1102. [Google Scholar] [CrossRef]
- Benigni, A.; Monti, A. A parallel approach to real-time simulation of power electronics systems. IEEE Trans. Power Electron. 2014, 30, 5192–5206. [Google Scholar] [CrossRef]
- Liu, C.; Ma, R.; Bai, H.; Gechter, F.; Gao, F. A new approach for FPGA-based real-time simulation of power electronic system with no simulation latency in subsystem partitioning. Int. J. Electr. Power Energy Syst. 2018, 99, 650–658. [Google Scholar] [CrossRef]
- Milton, M.; Benigni, A. Latency insertion method based real-time simulation of power electronic systems. IEEE Trans. Power Electron. 2017, 33, 7166–7177. [Google Scholar] [CrossRef]
- Yang, G.; Li, Y.; Hao, Z.; Chen, Z.; He, P.; Zhang, J. Multi-Rate Parallel Real-Time Simulation Method for Doubly Fed Wind Power Systems Based on FPGA–CPU. Machines 2022, 10, 1073. [Google Scholar] [CrossRef]
- Ali, S.; Badar, J.; Akhter, F.; Bukhari, S.S.H.; Ro, J.-S. Real-Time Controller Design Test Bench for High-Voltage Direct Current Modular Multilevel Converters. Appl. Sci. 2020, 10, 6004. [Google Scholar] [CrossRef]
- Sang, Z.; Li, S.; Huang, Y.; Gao, X.; Qiao, R. Indirect Matrix Converter Hardware-in-the-Loop Semi-Physical Simulation Based on Latency-Free Decoupling. Electronics 2023, 12, 4802. [Google Scholar] [CrossRef]
- Alsarayreh, S.; Sütő, Z. Optimal Selection of Switch Model Parameters for ADC-Based Power Converters. Energies 2024, 17, 56. [Google Scholar] [CrossRef]
- Bai, H.; Luo, H.; Liu, C.; Paire, D.; Gao, F. A Device-Level Transient Modeling Approach for the FPGA-Based Real-Time Simulation of Power Converters. IEEE Trans. Power Electron. 2020, 35, 1282–1292. [Google Scholar] [CrossRef]
- Matar, M.; Iravani, R. Massively parallel implementation of AC machine models for FPGA-based real-time simulation of electromagnetic transients. IEEE Trans. Power Deliv. 2010, 26, 830–840. [Google Scholar] [CrossRef]
- Saad, H.; Dufour, C.; Mahseredjian, J.; Dennetière, S.; Nguefeu, S. Real time simulation of MMCs using the state-space nodal approach. In Proceedings of the IPST, Vancouver, BC, Canada, 18–20 July 2013; pp. 18–20. [Google Scholar]
- Matar, M.; Iravani, R. FPGA implementation of the power electronic converter model for real-time simulation of electromagnetic transients. IEEE Trans. Power Deliv. 2009, 25, 852–860. [Google Scholar] [CrossRef]
- Soomro, J.B.B.; Akhtar, F.; Hussain, R.; Ansari, J.A.; Munir, H.M. A detailed review of MMC circuit topologies and modelling issues. Int. Trans. Electr. Energy Syst. 2022, 2022, 8734010. [Google Scholar]
- Dufour, C.; Jalili-Marandi, V.; Bélanger, J.; Snider, L. Power system simulation algorithms for parallel computer architectures. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–6. [Google Scholar]
- Li, Z.; Xu, J.; Wang, K.; Li, G.; Wu, P. A Discrete Small-Step Synthesis Real-Time Simulation Method for Power Converters. IEEE Trans. Ind. Electron. 2022, 69, 3667–3676. [Google Scholar] [CrossRef]
- Tormo, D.; Vidal-Albalate, R.; Idkhajine, L.; Monmasson, E.; Blasco-Gimenez, R. Embedded Real-Time Simulator for Sensorless Control of Modular Multi-Level Converters. Electronics 2022, 11, 719. [Google Scholar] [CrossRef]
- Single-Cycle Timed Loop FAQ for the LabVIEW FPGA Module. Available online: https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P8sWSAS (accessed on 6 November 2023).
- Dong, X.; Huang, J.; Luo, N.; Hu, W.; Lei, Z. Design and Implementation of Digital Twin Diesel Generator Systems. Energies 2023, 16, 6422. [Google Scholar] [CrossRef]
Subsystem Type | Gate Signal | ||
---|---|---|---|
ON | OFF | ------ | |
OFF | ON | S = 0 | |
ON | OFF | S = 1 | |
S1 ON | S2 ON | S1 = 0 S2 = 0 | |
S1 ON | S1 ON | S1 = 1 S2 = 0 | |
S2 ON | S2 ON | S1 = 0 S2 = 1 | |
------ | ------ | S1 = 1 S2 = 1 |
Symbol | Description | Value |
---|---|---|
Simulation step | 100 ns | |
Single-phase sinusoidal reference signal | 1 V, 50 Hz | |
Frequency of carrier waveforms | 3 kHz | |
Turn-on dead-time | 30 µs | |
Voltage source | 1000 V | |
Voltage source | −1000 V | |
Switch turn-on resistance | 0.001 ohm | |
Switch turn-off resistance | 1000 ohm | |
Capacitance | 30 × 10−4 F | |
, and | Capacitance | 2 × 10−4 H |
, and | Inductance | 2 × 10−4 H |
Resistance | 10 ohm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, W.; Liu, C.; Wang, M.; Zhao, X. Efficient Prototyping of a Field-Programmable Gate Array-Based Real-Time Model of a Modular Multilevel Converter. Energies 2024, 17, 591. https://doi.org/10.3390/en17030591
Gong W, Liu C, Wang M, Zhao X. Efficient Prototyping of a Field-Programmable Gate Array-Based Real-Time Model of a Modular Multilevel Converter. Energies. 2024; 17(3):591. https://doi.org/10.3390/en17030591
Chicago/Turabian StyleGong, Wenming, Chaofan Liu, Mingdong Wang, and Xiaobing Zhao. 2024. "Efficient Prototyping of a Field-Programmable Gate Array-Based Real-Time Model of a Modular Multilevel Converter" Energies 17, no. 3: 591. https://doi.org/10.3390/en17030591
APA StyleGong, W., Liu, C., Wang, M., & Zhao, X. (2024). Efficient Prototyping of a Field-Programmable Gate Array-Based Real-Time Model of a Modular Multilevel Converter. Energies, 17(3), 591. https://doi.org/10.3390/en17030591