Exploring Biomass Linkages in the Food and Energy Market—A Systematic Review
Abstract
:1. Introduction
- Offer a comprehensive understanding of the discourse surrounding the utilization of biomass for both food and energy over the past 10 years.
- Shed light on the impact of the COVID-19 pandemic and conflicts on the advancement of research in this area.
- Spotlight nations and regions that have made significant contributions to this field, as well as those that necessitate further attention.
- Uncover the most pertinent sources of scientific publications and highlight the thematic evolution within the nexus of biomass, food, and energy.
2. Literature Review
2.1. Energy, Food Security, or Animal Feeding Debate
2.2. Effects of Pandemics
2.3. Effects of Energy Policies
3. Methodology
3.1. Data Collection
3.2. Data Analysis
4. Result and Discussion
4.1. Descriptive Characteristics
4.1.1. Summary of Metadata
4.1.2. Relevant Scientific Publications
4.1.3. Trend Topics and Thematic Progression
4.2. Market Factors
4.2.1. Most Important Cost Elements
4.2.2. Demand Tendency
4.2.3. Supply Tendency
4.2.4. Food–Energy Competition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Food Security and Nutrition in the World 2023: Urbanization, Agrifood Systems Transformation and Healthy Diets across the Rural–Urban Continuum; The State of Food Security and Nutrition in the World (SOFI); Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development, United Nations Children’s Fund, World Food Programme, World Health Organization: Rome, Italy, 2023; ISBN 978-92-5-137226-5. [Google Scholar]
- UNFCCC, the United Nations Framework Convention on Climate Change: WMO—Clean Energy Must Double By 2030. Available online: https://unfccc.int/news/wmo-clean-energy-must-double-by-2030 (accessed on 13 October 2023).
- Muscat, A.; de Olde, E.M.; de Boer, I.J.M.; Ripoll-Bosch, R. The Battle for Biomass: A Systematic Review of Food-Feed-Fuel Competition. Glob. Food Secur. 2020, 25, 100330. [Google Scholar] [CrossRef]
- Kopetz, H. Build a Biomass Energy Market. Nature 2013, 494, 29–31. [Google Scholar] [CrossRef]
- Popp, J.; Harangi-Rákos, M.; Pető, K.; Nagy, A. Bioenergy: Risks to Food-, Energy- and Environmental Security | Applied Studies in Agribusiness and Commerce. Appl. Stud. Agribus. Commer. 2013, 7, 121–130. [Google Scholar] [CrossRef]
- Ladanai, S.; Vinterbäck, J. Global Potential of Sustainable Biomass for Energy; Report 013; SLU, Swedish University of Agricultural Sciences Department of Energy and Technology: Uppsala, Sweden, 2009; ISSN 1654-9406. [Google Scholar]
- Vida, V.; Szűcs, I. Pork Production and Consumption Issues from the Perspective of the Religion and the World’s Growing Population. Apstract Appl. Stud. Agribus. Commer. 2020, 14, 119–126. [Google Scholar] [CrossRef]
- Tumiwa, J.R.; Tuegeh, O.; Bittner, B.; Nagy, A. The Challenges to Developing Smart Agricultural Village in the Industrial Revolution 4.0.: The Case of Indonesia. Tor. Int. Stud. 2022, 1, 25–45. [Google Scholar] [CrossRef]
- Peng, G.; Meng, F.; Ahmed, Z.; Oláh, J.; Harsányi, E. A Path Towards Green Revolution: How Do Environmental Technologies, Political Risk, and Environmental Taxes Influence Green Energy Consumption? Front. Environ. Sci. 2022, 10, 751. [Google Scholar] [CrossRef]
- Szőllősi, L.; Béres, E.; Szűcs, I. Effects of Modern Technology on Broiler Chicken Performance and Economic Indicators—A Hungarian Case Study. Ital. J. Anim. Sci. 2021, 20, 188–194. [Google Scholar] [CrossRef]
- Nábrádi, A.; Petô, K.; Balogh, V.; Szabó, E.; Bartha, A.; Kovács, K. Efficiency Indicators in Different Dimension. APSTRACT Appl. Stud. Agribus. Commer. 2009, 3, 7–23. [Google Scholar] [CrossRef]
- Sertolli, A.; Gabnai, Z.; Lengyel, P.; Bai, A. Biomass Potential and Utilization in Worldwide Research Trends—A Bibliometric Analysis. Sustainability 2022, 14, 5515. [Google Scholar] [CrossRef]
- Lele, U.; Agarwal, M.; Goswami, S. 2007–2012 Food Price Spikes and Crisis—A Decade and a Half Later. In Food for All; Oxford University Press: Oxford, UK, 2021; pp. 139–195. ISBN 978-0-19-875517-3. [Google Scholar]
- Mizik, T. Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review. Energies 2021, 14, 6137. [Google Scholar] [CrossRef]
- Mizik, T.; Gyarmati, G. Economic and Sustainability of Biodiesel Production—A Systematic Literature Review. Clean Technol. 2021, 3, 19–36. [Google Scholar] [CrossRef]
- Ahmed, S.; Warne, T.; Smith, E.; Goemann, H.; Linse, G.; Greenwood, M.; Kedziora, J.; Sapp, M.; Kraner, D.; Roemer, K.; et al. Systematic Review on Effects of Bioenergy from Edible versus Inedible Feedstocks on Food Security. NPJ Sci. Food 2021, 5, 9. [Google Scholar] [CrossRef]
- Benites-Lazaro, L.L.; Giatti, L.L.; Sousa Junior, W.C.; Giarolla, A. Land-Water-Food Nexus of Biofuels: Discourse and Policy Debates in Brazil. Environ. Dev. 2020, 33, 100491. [Google Scholar] [CrossRef]
- Di Paola, A.; Rulli, M.C.; Santini, M. Human Food vs. Animal Feed Debate. A Thorough Analysis of Environmental Footprints. Land Use Policy 2017, 67, 652–659. [Google Scholar] [CrossRef]
- Brown, B.; Schoney, R.; Nolan, J. Assessing the Food vs. Fuel Issue: An Agent-Based Simulation. Energy Policy 2021, 159, 112553. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Bonifacio, S.; Clowes, J.; Foulds, A.; Holland, R.; Matthews, J.C.; Percival, C.J.; Shallcross, D.E. Investigation of Biofuel as a Potential Renewable Energy Source. Atmosphere 2021, 12, 1289. [Google Scholar] [CrossRef]
- Martínez-Jaramillo, J.E.; Arango-Aramburo, S.; Giraldo-Ramírez, D.P. The Effects of Biofuels on Food Security: A System Dynamics Approach for the Colombian Case. Sustain. Energy Technol. Assess. 2019, 34, 97–109. [Google Scholar] [CrossRef]
- Meijaard, E.; Sheil, D. The Moral Minefield of Ethical Oil Palm and Sustainable Development. Front. For. Glob. Chang. 2019, 2, 22. [Google Scholar] [CrossRef]
- Kazemi Shariat Panahi, H.; Dehhaghi, M.; Aghbashlo, M.; Karimi, K.; Tabatabaei, M. Conversion of Residues from Agro-Food Industry into Bioethanol in Iran: An under-Valued Biofuel Additive to Phase out MTBE in Gasoline. Renew. Energy 2020, 145, 699–710. [Google Scholar] [CrossRef]
- Swaraz, A.M.; Satter, M.A.; Rahman, M.M.; Asad, M.A.; Khan, I.; Amin, M.Z. Bioethanol Production Potential in Bangladesh from Wild Date Palm (Phoenix sylvestris Roxb.): An Experimental Proof. Ind. Crops Prod. 2019, 139, 111507. [Google Scholar] [CrossRef]
- Timilsina, G.R. Biofuels: The Food versus Fuel Debate. CABI Rev. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Viccaro, M.; Caniani, D.; Masi, S.; Romano, S.; Cozzi, M. Biofuels or Not Biofuels? The “Nexus Thinking” in Land Suitability Analysis for Energy Crops. Renew. Energy 2022, 187, 1050–1064. [Google Scholar] [CrossRef]
- Kovács, T.Z.; Nábrádi, A.; Tóth, S.; Huzsvai, L.; Nagy, A.; Bittner, B. Sustainable Public Transportation in a Volatile, Uncertain, Complex, and Ambiguous (VUCA) Age. Sustainability 2023, 15, 15310. [Google Scholar] [CrossRef]
- Vida, V.; Popovics, P. The impact of the COVID-19 epidemic in Hungary on different aspects of life (work, private life, health and mental health). Régiókutatás Szle. 2021, 6, 25–36. (In Hungarian) [Google Scholar] [CrossRef]
- Rowan, N.J.; Galanakis, C.M. Unlocking Challenges and Opportunities Presented by COVID-19 Pandemic for Cross-Cutting Disruption in Agri-Food and Green Deal Innovations: Quo Vadis? Sci. Total Environ. 2020, 748, 141362. [Google Scholar] [CrossRef]
- Zahraee, S.M.; Shiwakoti, N.; Stasinopoulos, P. Agricultural Biomass Supply Chain Resilience: COVID-19 Outbreak vs. Sustainability Compliance, Technological Change, Uncertainties, and Policies. Clean. Logist. Supply Chain 2022, 4, 100049. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Brunori, G.; Chiaramonti, D.; Matthews, R.; Panoutsou, C.; Fritsche, U.R. Bioeconomy and Green Recovery in a Post-COVID-19 Era. Sci. Total Environ. 2022, 808, 152180. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y.; Greig, J.A.; Shen, Z.; Shi, Y. The Impacts of COVID-19 on Clean Energy Labor Markets: Evidence from Multifaceted Analysis of Public Health Interventions and COVID-Health Factors. Energy Policy 2022, 164, 112880. [Google Scholar] [CrossRef]
- Kinda, S.R. Does the Green Economy Really Foster Food Security in Sub-Saharan Africa? Cogent Econ. Financ. 2021, 9, 1921911. [Google Scholar] [CrossRef]
- Zaky, A.S. Introducing a Marine Biorefinery System for the Integrated Production of Biofuels, High-Value-Chemicals, and Co-Products: A Path Forward to a Sustainable Future. Processes 2021, 9, 1841. [Google Scholar] [CrossRef]
- Younas, A.; Shahzad, S.; Inayat, S. Data Analysis and Presentation in Integrative Reviews: A Narrative Review. West. J. Nurs. Res. 2022, 44, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Briner, R.B.; Denyer, D. Systematic Review and Evidence Synthesis as a Practice and Scholarship Tool. In The Oxford Handbook of Evidence-Based Management; Rousseau, D.M., Ed.; Oxford University Press: Oxford, UK, 2012; ISBN 978-0-19-976398-6. [Google Scholar]
- Ukpabi, D.C.; Karjaluoto, H. Consumers’ Acceptance of Information and Communications Technology in Tourism: A Review. Telemat. Inform. 2017, 34, 618–644. [Google Scholar] [CrossRef]
- Abas, N.; Kalair, A.; Khan, N. Review of Fossil Fuels and Future Energy Technologies. Futures 2015, 69, 31–49. [Google Scholar] [CrossRef]
- Steffen, B.; Egli, F.; Pahle, M.; Schmidt, T.S. Navigating the Clean Energy Transition in the COVID-19 Crisis. Joule 2020, 4, 1137–1141. [Google Scholar] [CrossRef] [PubMed]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B.; Blunt, H.; Brigham, T.; Chang, S.; et al. PRISMA-S: An Extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Evers, J.C. From the Past into the Future. How Technological Developments Change Our Ways of Data Collection, Transcription and Analysis. Forum Qual. Sozialforschung Forum Qual. Soc. Res. 2011, 12. [Google Scholar] [CrossRef]
- Goble, E.; Austin, W.; Larsen, D.; Kreitzer, L.; Brintnell, E.S. Habits of Mind and the Split-Mind Effect: When Computer-Assisted Qualitative Data Analysis Software Is Used in Phenomenological Research. Forum Qual. Sozialforschung Forum Qual. Soc. Res. 2012, 13, 2. [Google Scholar] [CrossRef]
- Ejaz, H.; Zeeshan, H.M.; Ahmad, F.; Bukhari, S.N.A.; Anwar, N.; Alanazi, A.; Sadiq, A.; Junaid, K.; Atif, M.; Abosalif, K.O.A.; et al. Bibliometric Analysis of Publications on the Omicron Variant from 2020 to 2022 in the Scopus Database Using R and VOSviewer. Int. J. Environ. Res. Public Health 2022, 19, 12407. [Google Scholar] [CrossRef] [PubMed]
- Olaleye, S.A.; Mogaji, E.; Agbo, F.J.; Ukpabi, D.; Gyamerah, A.A. The Composition of Data Economy: A Bibliometric Approach and TCCM Framework of Conceptual, Intellectual and Social Structure. Inf. Discov. Deliv. 2022, 51, 223–240. [Google Scholar] [CrossRef]
- Bartel, C.; Garud, R. 16: Narrative Knowledge in Action: Adaptive Abduction as a Mechanism for Knowledge Creation and Exchange in Organizations. In The Blackwell Handbook of Organizational Learning and Knowledge Management; Wiley-Blackwell: Malden, MA, USA, 2003; pp. 324–342. [Google Scholar]
- Watts, L.L.; Todd, E.M.; Mulhearn, T.J.; Medeiros, K.E.; Mumford, M.D.; Connelly, S. Qualitative Evaluation Methods in Ethics Education: A Systematic Review and Analysis of Best Practices. Account. Res. 2017, 24, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Alkhammash, R. Bibliometric, Network, and Thematic Mapping Analyses of Metaphor and Discourse in COVID-19 Publications from 2020 to 2022. Front. Psychol. 2023, 13, 1062943. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, P.W. The Regional Effects of a Biomass Fuel Industry on US Agriculture. Energy Policy 2014, 69, 598–609. [Google Scholar] [CrossRef]
- Goh, C.S.; Junginger, M.; Faaij, A. Monitoring Sustainable Biomass Flows: General Methodology Development. Biofuels Bioprod. Biorefining 2014, 8, 83–102. [Google Scholar] [CrossRef]
- Lin, J.; Gaustad, G.; Trabold, T.A. Profit and Policy Implications of Producing Biodiesel–Ethanol–Diesel Fuel Blends to Specification. Appl. Energy 2013, 104, 936–944. [Google Scholar] [CrossRef]
- Maroun, M.R.; La Rovere, E.L. Ethanol and Food Production by Family Smallholdings in Rural Brazil: Economic and Socio-Environmental Analysis of Micro Distilleries in the State of Rio Grande Do Sul. Biomass Bioenergy 2014, 63, 140–155. [Google Scholar] [CrossRef]
- Kurowska, K.; Marks-Bielska, R.; Bielski, S.; Kryszk, H.; Jasinskas, A. Food Security in the Context of Liquid Biofuels Production. Energies 2020, 13, 6247. [Google Scholar] [CrossRef]
- Vadrot, A.B.M.; Pohoryles, R.J. Multi-Level Governance, Technological Intervention, and Globalization: The Example of Biogenetic Fuels. Innov. Eur. J. Soc. Sci. Res. 2010, 23, 361–387. [Google Scholar] [CrossRef]
- Ward, D.J.; Inderwildi, O.R. Global and Local Impacts of UK Renewable Energy Policy. Energy Environ. Sci. 2013, 6, 18–24. [Google Scholar] [CrossRef]
- Whittaker, C.; Borrion, A.L.; Newnes, L.; McManus, M. The Renewable Energy Directive and Cereal Residues. Appl. Energy 2014, 122, 207–215. [Google Scholar] [CrossRef]
- Burrell, A. Bioenergy? Yes, We Can! But at What Cost? And What Else? Bioénergies ? Oui, Nous Avons La Capacité! Mais à Quel Coût? Et Après? Bioenergie? Na Klar! Aber Zu Welchem Preis? Und Was Kommt Als Nächstes? EuroChoices 2011, 10, 38–41. [Google Scholar] [CrossRef]
- Daudin, A.; Quignard, A. Second and Third Generation Biofuels: Towards Sustainability and Competitiveness. PART 2. Oil Gas Sci. Technol. 2013, 68, 160. [Google Scholar]
- Davis, R.; Aden, A.; Pienkos, P.T. Techno-Economic Analysis of Autotrophic Microalgae for Fuel Production. Appl. Energy 2011, 88, 3524–3531. [Google Scholar] [CrossRef]
- De la Torre, M.J.; Moral, A.; Hernández, M.D.; Cabeza, E.; Tijero, A. Organosolv Lignin for Biofuel. Ind. Crops Prod. 2013, 45, 58–63. [Google Scholar] [CrossRef]
- Maltsoglou, I.; Kojakovic, A.; Rincón, L.E.; Felix, E.; Branca, G.; Valle, S.; Gianvenuti, A.; Rossi, A.; Thulstrup, A.; Thofern, H. Combining Bioenergy and Food Security: An Approach and Rapid Appraisal to Guide Bioenergy Policy Formulation. Biomass Bioenergy 2015, 79, 80–95. [Google Scholar] [CrossRef]
- Manatt, R.K.; Hallam, A.; Schulte, L.A.; Heaton, E.A.; Gunther, T.; Hall, R.B.; Moore, K.J. Farm-Scale Costs and Returns for Second Generation Bioenergy Cropping Systems in the US Corn Belt. Environ. Res. Lett. 2013, 8, 035037. [Google Scholar] [CrossRef]
- Poganietz, W.-R. Ligno-Ethanol in Competition with Food-Based Ethanol in Germany. Biomass Bioenergy 2012, 38, 49–57. [Google Scholar] [CrossRef]
- Egbendewe-Mondzozo, A.; Swinton, S.M.; Kang, S.; Post, W.M.; Binfield, J.C.; Thompson, W. Bioenergy Supply and Environmental Impacts on Cropland: Insights from Multi-Market Forecasts in a Great Lakes Subregional Bioeconomic Model. Appl. Econ. Perspect. Policy 2015, 37, 602–618. [Google Scholar] [CrossRef]
- Miranda, S.; Swinbank, A.; Yano, Y. Biofuel Policies in the EU, US and Brazil Les Politiques En Matière de Biocarburants Dans l’Union Européenne, Aux États-Unis et Au Brésil Politikmaßnahmen Zu Biokraftstoffen in Der EU, Den USA Und Brasilien. EuroChoices 2011, 10, 11–17. [Google Scholar] [CrossRef]
- Kullander, S. Food Security: Crops for People Not for Cars. AMBIO 2010, 39, 249–256. [Google Scholar] [CrossRef]
- Park, S.C.; Ansley, R.J.; Mirik, M.; Maindrault, M.A. Delivered Biomass Costs of Honey Mesquite (Prosopis Glandulosa) for Bioenergy Uses in the South Central USA. Bioenerg. Res. 2012, 5, 989–1001. [Google Scholar] [CrossRef]
Journal | Publisher | Country | H-Index | SJR | No. of Articles |
---|---|---|---|---|---|
Biomass and Bioenergy | Elsevier | United Kingdom | 199 | Q2 | 10 |
Applied Energy | Elsevier | United Kingdom | 264 | Q1 | 8 |
Biofuels, Bioproducts and Biorefining | Wiley | United Kingdom | 95 | Q2 | 4 |
Energy Policy | Elsevier | United Kingdom | 254 | Q1 | 4 |
Bioenergy Research | Springer | United States | 69 | Q3 | 3 |
Bioresource Technology | Elsevier | United Kingdom | 341 | Q1 | 3 |
Energy, Sustainability and Society | Springer | United States | 36 | Q2 | 3 |
AMBIO | Allen Press | Netherlands | 141 | Q1 | 2 |
Energies | MDPI | Switzerland | 132 | Q2 | 2 |
Energy for Sustainable Development | Elsevier | Netherlands | 76 | Q2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igbeghe, C.B.; Nagy, A.; Gabnai, Z.; Bai, A. Exploring Biomass Linkages in the Food and Energy Market—A Systematic Review. Energies 2024, 17, 563. https://doi.org/10.3390/en17030563
Igbeghe CB, Nagy A, Gabnai Z, Bai A. Exploring Biomass Linkages in the Food and Energy Market—A Systematic Review. Energies. 2024; 17(3):563. https://doi.org/10.3390/en17030563
Chicago/Turabian StyleIgbeghe, Christian Barika, Adrián Nagy, Zoltán Gabnai, and Attila Bai. 2024. "Exploring Biomass Linkages in the Food and Energy Market—A Systematic Review" Energies 17, no. 3: 563. https://doi.org/10.3390/en17030563
APA StyleIgbeghe, C. B., Nagy, A., Gabnai, Z., & Bai, A. (2024). Exploring Biomass Linkages in the Food and Energy Market—A Systematic Review. Energies, 17(3), 563. https://doi.org/10.3390/en17030563