Challenges in the Valorization of Green Waste in the Central European Region: Case Study of Warsaw
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Waste and Organization of Research
2.2. The Analytical Methods
- 24.42—water evaporation at 25 °C, 1% content = 24.42 (J·g−1);
- MC—moisture content (MC%);
- hydrogen content (H% DM).
2.3. Quantitative Data
2.4. Statistical Analysis
3. Results
3.1. Fertilizing Properties of GW Studied
3.2. Fuel Properties of Tested GW
3.3. Protein, Fat, and Carbohydrate Content
3.4. Amount of GW Generated in Warsaw
4. Discussion
4.1. Fertilizing Properties of GW and Their Variability
4.2. GW Fuel Properties and Their Variability
4.3. Directions for Using GW
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bille, R.A.; Jensen, K.E.; Buitenwerf, R. Global patterns in urban green space are strongly linked to human development and population density. Urban For. Urban Green. 2023, 86, 127980. [Google Scholar] [CrossRef]
- Viretto, A.; Gontard, N.; Angellier-Coussy, H. Urban parks and gardens green waste: A valuable resource for the production of fillers for biocomposites applications. Waste Manag. 2021, 120, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Li, S.; Sun, X.; Wang, L.; Cai, L.; Zhang, J.; Wei, L. Green waste compost and vermicompost as peat sub-stitutes in growing media for geranium (Pelargonium zonale L.) and calendula (Calendula officinalis L.). Sci. Hortic. 2018, 236, 186–191. [Google Scholar] [CrossRef]
- Liu, X.; Xie, Y.; Sheng, H. Green waste characteristics and sustainable recycling options. Resour. Environ. Sustain. 2023, 11, 100098. [Google Scholar] [CrossRef]
- Reyes-Torres, M.; Oviedo-Ocaña, E.R.; Dominguez, I.; Komilis, D.; Sánchez, A. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Manag. 2018, 77, 486–499. [Google Scholar] [CrossRef]
- Eades, P.; Kusch-Brandt, S.; Heaven, S.; Banks, C.J. Estimating the generation of garden waste in England and the differences between rural and urban areas. Resources 2020, 9, 8. [Google Scholar] [CrossRef]
- Directive (EU) 2008/98 of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text with EEA Relevance, Consolidated Version 18 February 2024). Available online: http://data.europa.eu/eli/dir/2008/98/oj (accessed on 27 July 2024).
- Hanc, A.; Novak, P.; Dvorak, M.; Habart, J.; Svehla, P. Composition and parameters of household bio-waste in four seasons. Waste Manag. 2011, 31, 1450–1460. [Google Scholar] [CrossRef]
- Manu, M.K.; Kumar, R.; Garg, A. Physical and chemical characterization of yard waste. Int. J. Appl. Eng. Res. 2013, 8, 1891–1895. [Google Scholar]
- Zhang, L.; Sun, X. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Manag. 2016, 48, 115–126. [Google Scholar] [CrossRef]
- Bengoechea, C.; Batista, A.P.; Álvarez-Castillo, E.; Guerrero, A.; Gontard, N.; Angellier-Coussy, H. Biocomposites from porcine plasma protein and urban parks and gardens green waste. Ind. Crops Prod. 2023, 198, 116714. [Google Scholar] [CrossRef]
- Boldrin, A.; Christensen, T.H. Seasonal generation and composition of garden waste in Aarhus (Denmark). Waste Manag. 2010, 30, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Municipal Waste by Waste Management Operations 2022. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_wasmun__custom_9634214/default/table?lang=en (accessed on 27 September 2024).
- Brusselaers, J.; Van Der Linden, A. Bio-Waste in Europe—Urning Challenges into Opportunities; EEA Report No 04/2020; European Environment Agency: Copenhagen, Denmark, 2020; ISSN 1977-8449. [Google Scholar] [CrossRef]
- Resolution No. 96 of the Council of Ministers of 12 June 2023 on the National Waste Management Plan 2028 (M.P. 2023 poz. 702). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WMP20230000702 (accessed on 15 June 2024). (In Polish)
- Oviedo-Ocaña, E.R.; Abendroth, C.; Domínguez, I.C.; Sánchez, A.; Dornack, C. Life cycle assessment of biowaste and green waste composting systems: A review of applications and implementation challenges. Waste Manag. 2023, 171, 350–364. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Yadav, K.D. Disposal of garden waste using food waste inoculant in rotary drums and their ranking using analytical hierarchy process. Bioresour. Technol. Rep. 2021, 15, 100710. [Google Scholar] [CrossRef]
- Parab, C.; Yadav, K.D.; Prajapati, V. Genomics and microbial dynamics in green waste composting: A mini review. Ecol. Genet. Genom. 2023, 29, 100206. [Google Scholar] [CrossRef]
- Langsdorf, A.; Volkmar, M.; Holtmann, D.; Ulber, R. Material utilization of green waste: A review on potential valorization methods. Bioresour. Bioprocess. 2021, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Hanifzadeh, M.; Garcia, E.C.; Viamajala, S. Production of lipid and carbohydrate from microalgae without compromising biomass productivities: Role of Ca and Mg. Renew. Energy 2018, 127, 989–997. [Google Scholar] [CrossRef]
- Sofokleous, M.; Christofi, A.; Malamis, D.; Mai, S.; Barampouti, E.M. Bioethanol and biogas production: An alternative valorisation pathway for green waste. Chemosphere 2022, 296, 133970. [Google Scholar] [CrossRef]
- Medick, J.; Teichmann, I.; Kemfert, C. Hydrothermal Carbonization (HTC) of Green Waste: An Environmental and Economic Assessment of HTC Coal in the Metropolitan Region of Berlin. Germany. 2017. Available online: http://www.diw.de/discussionpapers (accessed on 12 June 2024).
- Komilis, D.P.; Ham, R.K. The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Manag. 2003, 23, 419–423. [Google Scholar] [CrossRef]
- Bieniek, J.; Gaze, B.; Knutel, B.; Rać, K.; Góraj, S. Analysis of the Effectiveness of Green Waste Composting under Hyperbaric Conditions. Sustainability 2022, 14, 5108. [Google Scholar] [CrossRef]
- Li, Y.; Xue, Z.; Li, S.; Sun, X.; Hao, D. Prediction of composting maturity and identification of critical parameters for green waste compost using machine learning. Bioresour. Technol. 2023, 385, 129444. [Google Scholar] [CrossRef]
- Saer, A.; Lansing, S.; Davitt, N.H.; Graves, R.E. Life cycle assessment of a food waste composting system: Environmental impact hotspots. J. Clean. Prod. 2013, 52, 234–244. [Google Scholar] [CrossRef]
- Soto-Paz, J.; Oviedo-Ocaña, E.R.; Angarita-Rangel, M.A.; Rodríguez-Flórez, L.V.; Castellanos-Suarez, L.J.; Nabarlatz, D.; Sanchez-Torres, V. Optimization of lignocellulolytic bacterial inoculum and substrate mix for lignocellulose degradation and product quality on co-composting of green waste with food waste. Bioresour. Technol. 2022, 359, 127452. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Rasul, M.G.; Jahirul, M.I.; Mofijur, M. Fuelling the future: Unleashing energy and exergy efficiency from municipal green waste pyrolysis. Fuel 2024, 357, 129815. [Google Scholar] [CrossRef]
- Ipiales, R.P.; Mohedano, A.F.; Diaz, E.; De la Rubia, M.A. Energy recovery from garden and park waste by hydrothermal carbonisation and anaerobic digestion. Waste Manag. 2022, 140, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Trombley, J.B.; Wang, C.; Thennadil, S.N. Model-free measurements of calorific content and ash content of mixed garden wastes using a bomb calorimeter. Fuel 2023, 352, 129105. [Google Scholar] [CrossRef]
- Hla, S.; Roberts, D. Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia. Waste Manag. 2015, 41, 12–19. [Google Scholar] [CrossRef]
- Ramprakash, B.; Incharoensakdi, A. Dark fermentative hydrogen production from pretreated garden wastes by Escherichia coli. Fuel 2022, 310, 122217. [Google Scholar] [CrossRef]
- Noblet, C.; Besombes, J.L.; Lemire, M.; Pin, M.; Jaffrezo, J.L.; Favez, O.; Albinet, A. Emission factors and chemical characterization of particulate emissions from garden green waste burning. Sci. Total Env. 2021, 798, 149367. [Google Scholar] [CrossRef]
- Pradhan, P.; Arora, A.; Mahajani, S.M. Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy Sustain. Dev. 2018, 43, 1–14. [Google Scholar] [CrossRef]
- Guo, Y.; Rene, E.R.; Wang, J.; Ma, W. Biodegradation of polyaromatic hydrocarbons and the influence of environmental factors during the co-composting of sewage sludge and green forest waste. Bioresour. Technol. 2020, 297, 122434. [Google Scholar] [CrossRef]
- Mohapatra, S.; Mishra, C.; Behera, S.S.; Thatoi, H. Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass—A review. Renew. Sustain. Energy Rev. 2017, 78, 1007–1032. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, C.; Liu, Y.; Li, A.; Hu, X.; Chen, J.; Cui, X. Green waste and sewage sludge feeding ratio alters co-composting performance: Emphasis on the role of bacterial community during humification. Bioresour. Technol. 2023, 380, 129014. [Google Scholar] [CrossRef] [PubMed]
- Maina, S.; Kachrimanidou, V.; Koutinas, A. A roadmap towards a circular and sustainable bioeconomy through waste valorization. Curr. Opin. Green Sustain. Chem. 2017, 8, 18–23. [Google Scholar] [CrossRef]
- Hernández-Gómez, A.; Calderón, A.; Medina, C.; Sanchez-Torres, V.; Oviedo-Ocaña, E.R. Implementation of strategies to optimize the co-composting of green waste and food waste in developing countries. A case study. Environ. Sci. Pollut. Res. 2021, 28, 24321–24327. [Google Scholar] [CrossRef]
- Grgas, D.; Štefanac, T.; Barešić, M.; Toromanović, M.; Ibrahimpašić, J.; Pavičić, T.V.; Habuda-Stanić, M.; Herceg, Z.; Dragičević, T.L. Co-composting of Sewage Sludge, Green Waste, and Food Waste. J. Sustain. Dev. Energy Water Environ. Syst. 2023, 11, 1100415. [Google Scholar] [CrossRef]
- Ellersdorfer, M. Hydrothermal co-liquefaction of chlorella vulgaris with food processing residues, green waste and sewage sludge. Biomass Bioenergy 2020, 142, 105796. [Google Scholar] [CrossRef]
- Szyga-Pluta, K.; Tomczyk, A.M.; Piniewski, M.; Eini, M.R. Past and future changes in the start, end, and duration of the growing season in Poland. Acta Geophys. 2023, 71, 3041–3055. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Szyga-Pluta, K. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966–2015. Theor. Appl. Climatol. 2019, 135, 1517–1530. [Google Scholar] [CrossRef]
- Resolution No. XCI/3002/2023 of the Capital City Council of Warsaw of 7 December 2023 on the Regulations for Maintaining Cleanliness and Order within the Capital City of Warsaw, Item 14577, Warsaw. 15 December 2023. Available online: https://edziennik.mazowieckie.pl/WDU_W/2023/14577/akt.pdf (accessed on 9 June 2024). (In Polish).
- Manczarski, P.; Rolewicz-Kalińska, A.; Lelicińska-Serafin, K. Quantitative Analysis of Household Food Waste Collection in Warsaw: Assessing Efficiency and Waste Minimization. Sustainability 2023, 15, 16827. [Google Scholar] [CrossRef]
- Lelicińska-Serafin, K.; Manczarski, P.; Rolewicz-Kalińska, A. An Insight into Post-Consumer Food Waste Characteristics as the Key to an Organic Recycling Method Selection in a Circular Economy. Energies 2023, 16, 1735. [Google Scholar] [CrossRef]
- EN 15002; Characterization of Waste—Preparation of Test Portions from the Laboratory Sample. CEN: Brussels, Belgium, 2015.
- VDI 4630; Fermentation of Organic Materials—Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests. Verlag des Vereins Deutscher Ingenieure: Düsseldorf, Germany, 2016.
- EN 14346; Characterization of Waste—Calculation of dry matter by determination of dry residue or water content. CEN: Brussels, Belgium, 2006.
- EN 13137; Characterization of Waste—Determination of Total Organic Carbon (TOC) in Waste, Sludges and Sediments. CEN: Brussels, Belgium, 2001.
- EN 15169; Characterization of Waste—Determination of Loss on Ignition in Waste, Sludge, and Sediments. CEN: Brussels, Belgium, 2007.
- PN-Z-15011-3:2001—Polish Version; Compost from Municipal Waste—Determination: pH, Organic Matter Content, Organic Carbon, Nitrogen, Phosphorus and Potassium. The Polish Committee for Standardization: Warsaw, Poland, 2001.
- Alibardi, L.; Cossu, R. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manag. 2016, 47, 69–77. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of the Association of Official’s Analytical Chemists, 17th ed.; Association of Official Analytical Chemists (AOAC): Arlington, VA, USA, 2003. [Google Scholar]
- Jabłońska, B.; Kiełbasa, P.; Korenko, M.; Dróżdż, T. Physical and Chemical Properties of Waste from PET Bottles Washing as A Component of Solid Fuels. Energies 2019, 12, 2197. [Google Scholar] [CrossRef]
- Kalivodová, M.; Baláš, M.; Milčák, P.; Lisá, H.; Lisý, M.; Lachman, J.; Vejražka, K. The determination of higher heating value by calculation based on elemental analysis. Paliva 2022, 14, 8–20. [Google Scholar] [CrossRef]
- Skalmowski, K.; Wolska, K.; Pieniak, U.; Roszczyńska, I. Badania Właściwości Technologicznych Odpadów Komunalnych:Ćwiczenia Laboratoryjne; Oficyna Wydawnicza—Politech: Warsaw, Poland, 2004; pp. 94–97. (In Polish) [Google Scholar]
- UNE-EN ISO 9831:2004; Animal Feeding Stuffs, Animal Products, and Faeces or Urine—Determination of Gross Calorific Value—Bomb Calorimeter Method (ISO 9831:1998). AENOR: Madrid, Spain, 2004.
- Arenas, J.P.; Cardona, L.F.; Zapata-Benabithe, Z.; Velásquez, J.A. Estimating the high heating value of a high-calorie food using a rigorous thermodynamical approach. Chem. Eng. Commun. 2024, 211, 763–780. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification and Pyrolysis: Practical Design and Theory; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar] [CrossRef]
- Longjan, G.G.; Dehouche, Z. Nutrient characterisation and bioenergy potential of common Nigerian food wastes. Waste Manag. Res. 2018, 36, 426–435. [Google Scholar] [CrossRef]
- Olmedillas del Moral, M.; Fröhlich, N.; Figarella, K.; Mojtahedi, N.; Garaschuk, O. Effect of caloric restriction on the in vivo functional properties of aging microglia. Front. Immunol. 2020, 11, 750. [Google Scholar] [CrossRef]
- Janse, R.J.; Hoekstra, T.; Jager, K.J.; Zoccali, C.; Tripepi, G.; Dekker, F.W.; van Diepen, M. Conducting correlation analysis: Important limitations and pitfalls. Clin. Kidney J. 2021, 14, 2332–2337. [Google Scholar] [CrossRef]
- Szkatulnik, P. Analysis of the Municipal Waste Management in Warsaw for 2022. Official Information from the City Office. Available online: https://bip.warszawa.pl/NR/rdonlyres/5DF29B69-22BE-403B-9CC3-9D639656A538/1873267/ANALIZAza2022r2022024_sig.pdf (accessed on 10 June 2024). (In Polish).
- Rolewicz-Kalińska, A.; Lelicińska-Serafin, K.; Manczarski, P. The Circular Economy and Organic Fraction of Municipal Solid Waste Recycling Strategies. Energies 2020, 13, 4366. [Google Scholar] [CrossRef]
- Gislum, R.; Griffith, S.M. Production and Development in Perennial Ryegrass in Relation to Nitrogen Use. J. Plant Nutr. 2005, 27, 2135–2148. [Google Scholar] [CrossRef]
- Zeller, V.; Lavigne, C.; D’Ans, P.; Towa, E.; Achten, W.M.J. Assessing the environmental performance for more local and more circular biowaste management options at city-region level. Sci. Total Environ. 2020, 745, 140690. [Google Scholar] [CrossRef]
- Almendros, A.I.; Martín-Lara, M.A.; Ronda, A.; Pérez, A.; Blázquez, G.; Calero, M. Physico-chemical characterization of pinecone shell and its use as biosorbent and fuel. Bioresour. Technol. 2015, 196, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Herman, W.A.; McGill, W.B.; Dormaar, J.F. Effects of initial chemical composition on decomposition of roots of three grass species. Can. J. Soil Sci. 1977, 57, 205–215. [Google Scholar] [CrossRef]
- Chia, W.Y.; Chew, K.W.; Le, C.F.; Lam, S.S.; Chee, C.S.C.; Ooi, M.S.L.; Show, P.L. Sustainable utilization of biowaste compost for renewable energy and soil amendments. Environ. Pollut. 2020, 267, 115662. [Google Scholar] [CrossRef] [PubMed]
- Casallas-Ojeda, M.R.; Marmolejo-Rebellón, L.F.; Torres-Lozada, P. Identification of factors and variables that influence the anaerobic digestion of municipal biowaste and food waste. Waste Biomass Valori. 2021, 12, 2889–2904. [Google Scholar] [CrossRef]
- Pereira, F.; Silva, C. Energetic valorization of bio-waste from municipal solid waste in Porto Santo Island. Clean Technol. 2023, 5, 233–258. [Google Scholar] [CrossRef]
- Xu, Z.; Ma, Y.; Li, Y.; Li, G.; Nghiem, L.D.; Luo, W. Comparison between cold plasma, ultrasonication, and alkaline hydrogen peroxide pretreatments of garden waste to enhance humification in subsequent composting with kitchen waste: Performance and mechanisms. Bioresour. Technol. 2022, 354, 127228. [Google Scholar] [CrossRef] [PubMed]
- Marcello, B.; Di Gennaro, V.; Ferrini, S. Let the citizens speak: An empirical economic analysis of domestic organic waste for community composting in Tuscany. J. Clean. Prod. 2021, 306, 127263. [Google Scholar] [CrossRef]
- Sánchez, A. Decentralized composting of food waste: A perspective on scientific knowledge. Front. Chem. Eng. 2022, 4, 850308. [Google Scholar] [CrossRef]
- Perin, J.K.H.; Borth, P.L.B.; Torrecilhas, A.R.; da Cunha, L.S.; Kuroda, E.K.; Fernandes, F. Optimization of methane production parameters during anaerobic co-digestion of food waste and garden waste. J. Clean. Prod. 2020, 272, 123130. [Google Scholar] [CrossRef]
- Dolgen, D.; Sarptas, H.; Alpaslan, N.; Kucukgul, O. Energy Potential of Municipal Solid Wastes. Energy Sources 2005, 27, 1483–1492. [Google Scholar] [CrossRef]
- The World Bank. Municipal Solid Waste Incineration. World Bank Technical Guidance Report. 1999. Available online: https://web.mit.edu/urbanupgrading/urbanenvironment/resources/references/pdfs/MunicipalSWIncin.pdf (accessed on 1 June 2024).
- Li, S.; Zhang, M.; Hu, H.; Guo, G.; Gong, L.; Dong, L.; Yao, H. Fate of sulfur and chlorine during co-incineration of municipal solid waste and industrial organic solid waste. Sci. Total Env. 2024, 920, 171040. [Google Scholar] [CrossRef] [PubMed]
- Abdulyekeen, K.A.; Daud, W.M.A.W.; Patah, M.F.A. Torrefaction of wood and garden wastes from municipal solid waste to enhanced solid fuel using helical screw rotation-induced fluidised bed reactor: Effect of particle size, helical screw speed and temperature. Energy 2024, 293, 130759. [Google Scholar] [CrossRef]
- Paszkowski, J.; Domański, M.; Caban, J.; Zarajczyk, J.; Pristavka, M.; Findura, P. The use of refuse derived fuel (RDF) in the power industry. Agric. Eng. 2020, 24, 83–90. [Google Scholar] [CrossRef]
- BATC. Commission Implementing Decision (EU) 2019/2010 Establishing the Best Available Techniques (BAT) Conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for Waste Incineration. 2019. Available online: https://eur-lex.europa.eu/eli/dec_impl/2019/2010/oj (accessed on 20 June 2024).
- Rahman, A.; Rasul, M.G.; Khan, M.M.K.; Sharma, S. Recent development on the uses of alternative fuels in cement manufacturing process. Fuel 2015, 145, 84–99. [Google Scholar] [CrossRef]
- Strigáč, J. Effect of selected alternative fuels and raw materials on the cement clinker quality. Sel. Sci. Pap. -J. Civ. Eng. 2015, 10, 81–92. [Google Scholar] [CrossRef]
- Tezer, O.; Karabag, N.; Ozturk, M.U.; Ongen, A.; Ayol, A. Comparison of green waste gasification performance in updraft and downdraft fixed bed gasifiers. Int. J. Hydrog. Energy 2022, 47, 31864–31876. [Google Scholar] [CrossRef]
- Liczbiński, P.; Borowski, S. Effect of hyperthermophilic pretreatment on methane and hydrogen production from garden waste under mesophilic and thermophilic conditions. Bioresour. Technol. 2021, 335, 125264. [Google Scholar] [CrossRef]
- Song, Y.; Meng, S.; Chen, G. Co-digestion of garden waste, food waste, and tofu residue: Effects of mixing ratio on methane production and microbial community structure. J. Environ. Chem. Eng. 2021, 9, 106504. [Google Scholar] [CrossRef]
- Domokos-Szabolcsy, É.; Yavuz, S.R.; Picoli, E.; Fári, M.G.; Kovács, Z.; Tóth, C.; Kaszás, L.; Alshaal, T.; Elhawat, N. Green Biomass-Based Protein for Sustainable Feed and Food Supply: An Overview of Current and Future Prospective. Life 2023, 13, 307. [Google Scholar] [CrossRef]
- Volkmar, M.; Maus, A.L.; Weisbrodt, M.; Bohlender, J.; Langsdorf, A.; Holtmann, D.; Ulber, R. Municipal green waste as substrate for the microbial production of platform chemicals. Bioresour. Bioprocess. 2023, 10, 43. [Google Scholar] [CrossRef]
- Chintakanan, P.; Vitidsant, T.; Reubroycharoen, P.; Kuchonthara, P.; Kida, T.; Hinchiranan, N. Bio-jet fuel range in biofuels derived from hydroconversion of palm olein over Ni/zeolite catalysts and freezing point of biofuels/Jet A-1 blends. Fuel 2021, 293, 120472. [Google Scholar] [CrossRef]
- Ghiat, I.; Pradhan, S.; Govindan, R.; Mackey, H.R.; McKay, G.; Al-Ansari, T. Biochar: A sustainable approach of green waste management in agricultural practices under controlled microclimate. Chem. Eng. Trans. 2022, 92, 331–336. [Google Scholar] [CrossRef]
Parameter | VS (%) | TOC (%) | C/N | C/P | |
---|---|---|---|---|---|
RP1 | Mean ± SD | 90.9 ± 0.5 | 41.4 ± 0.4 | 23 ± 2 | 69 ± 7 |
CV (%) | 0.5 | 0.9 | 8.1 | 10.4 | |
Range | 90.9–91.5 | 41.0–42.0 | 21–26 | 61–78 | |
RP2 | Mean ± SD | 90.6 ± 0.6 | 58.0 ± 0.3 | 24 ± 5 | 97 ± 9 |
CV (%) | 0.7 | 0.6 | 20 | 9.6 | |
Range | 90.0–91.6 | 57.5–58.4 | 18–31 | 83–109 | |
RP3 | Mean | 72.5 ± 1.7 | 39.1 ± 0.8 | 17 ± 3 | 49 ± 9 |
CV (%) | 2.4 | 2 | 20 | 17.5 | |
Range | 70.4–75.2 | 38.6–40.5 | 12–21 | 35–56 | |
RP4 | Mean | 91.5 ± 0.6 | 44.8 ± 0.7 | 27 ± 3 | 56 ± 9 |
CV (%) | 0.7 | 1.5 | 11 | 16.4 | |
Range | 90.7–92.5 | 43.8–45.7 | 25–32 | 41–64 |
Parameter | MC (%) a | CP (%) b | AC (%) b | VM in CP (%) c | HHV (MJ kg−1) b | LHVDM (MJ kg−1) b | |
---|---|---|---|---|---|---|---|
RP1 | Mean ± SD | 54.5 ± 0.7 | 90.9 ± 1.4 | 9.1 ± 1.4 | 72.2 ± 1.4 | 18.62 ± 1.66 | 17.5 ± 1.7 |
CV (%) | 1.2 | 1.5 | 15 | 2 | 8.9 | 9.4 | |
Range | 53.9–55.6 | 89.5–93.1 | 6.9–10.5 | 69.9–73.6 | 16.99–21.30 | 15.8–20.2 | |
RP2 | Mean ± SD | 62.1 ± 0.9 | 90.3 ± 0.9 | 9.7 ± 0.9 | 71.9 ± 0.9 | 16.66 ± 0.97 | 15.6 ± 0.9 |
CV (%) | 1.5 | 0.9 | 8.8 | 1.3 | 5.8 | 6 | |
Range | 60.7–63.2 | 89.4–91.7 | 8.3–10.6 | 70.9–72.9 | 15.03–17.52 | 14.0–16.3 | |
RP3 | Mean ± SD | 55.1 ± 0.8 | 71.0 ± 1.3 | 28.9 ± 1.3 | 56.7 ± 0.7 | 13.34 ± 0.71 | 12.5 ± 0.7 |
CV (%) | 1.5 | 1.8 | 4.4 | 1.3 | 5.3 | 5.5 | |
Range | 54.4–56.5 | 69.5–72.4 | 27.6–30.4 | 55.6–57.5 | 12.74–14.50 | 11.9–13.6 | |
RP4 | Mean ± SD | 24.1 ± 0.9 | 91.9 ± 0.8 | 8.1 ± 0.8 | 72.9 ± 1.2 | 17.41 ± 1.14 | 16.4 ± 1.2 |
CV (%) | 3.8 | 0.9 | 9.8 | 1.6 | 6.5 | 7.4 | |
Range | 23.2–25.5 | 91.1–93.2 | 6.8–8.9 | 71.0–74.0 | 15.90–19.08 | 14.9–18.2 |
Parameter a | C (%) | H (%) | S (%) | N (%) | Cl (%) | O (%) | |
---|---|---|---|---|---|---|---|
RP1 | Mean ± SD | 52.2 ± 2.3 | 5.5 ± 0.6 | 0.7 ± 0.1 | 1.7 ± 0.2 | 0.6 ± 0.1 | 39.3 ± 1.7 |
CV (%) | 4.4 | 10.4 | 10.1 | 9.3 | 11.8 | 4.2 | |
Range | 48.5–54.5 | 4.7–6.3 | 0.6–0.8 | 1.5–1.9 | 0.5–0.7 | 37.1–41.8 | |
RP2 | Mean ± SD | 51.2 ± 2.3 | 5.3 ± 0.5 | 0.6 ± 0.1 | 1.4 ± 0.2 | 0.7 ± 0.1 | 40.8 ± 2.3 |
CV (%) | 4.5 | 10 | 11.8 | 11.3 | 10.1 | 5.5 | |
Range | 48.6–54.9 | 4.6–6.1 | 0.5–0.7 | 1.2–1.6 | 0.6–0.8 | 38.8–44.5 | |
RP3 | Mean ± SD | 51.2 ± 2.3 | 5.3 ± 0.5 | 0.6 ± 0.1 | 1.4 ± 0.2 | 0.7 ± 0.1 | 40.8 ± 2.3 |
CV (%) | 4.5 | 10 | 11.8 | 11.3 | 10.1 | 5.5 | |
Range | 48.6–54.9 | 4.6–6.1 | 0.5–0.7 | 1.2–1.6 | 0.6–0.8 | 38.8–44.5 | |
RP4 | Mean ± SD | 53.3 ± 1.7 | 5.2 ± 0.6 | 0.5 ± 0.1 | 1.3 ± 0.1 | 0.5 ± 0.1 | 39.2 ± 1.9 |
CV (%) | 3.2 | 11.6 | 14.1 | 10.9 | 14.1 | 4.8 | |
Range | 50.7–54.3 | 4.6–6.2 | 0.4–0.6 | 1.1–1.5 | 0.4–0.6 | 37.5–42.3 |
Parameter a | Proteins (%) | Lipids (%) | Carbohydrates (%) | |
---|---|---|---|---|
RP1 | Mean ± SD | 11.4 ± 1.4 | 12.7 ± 1.8 | 28.8 ± 2.8 |
CV (%) | 12.1 | 14.1 | 9.8 | |
Range | 9.8–13.6 | 9.9–14.8 | 24.5–32.4 | |
RP2 | Mean ± SD | 15.2 ± 1.8 | 10.3 ± 1.3 | 32.7 ± 5.3 |
CV (%) | 12.1 | 12.4 | 16.2 | |
Range | 13.7–17.9 | 9.1–12.4 | 28.1–41.4 | |
RP3 | Mean ± SD | 14.2 ± 2.0 | 7.0 ± 0.8 | 25.6 ± 3.1 |
CV (%) | 14 | 11.2 | 12.2 | |
Range | 11.5–17.1 | 6.3–8.3 | 21.1–29.9 | |
RP4 | Mean ± SD | 10.2 ± 0.7 | 13.7 ± 1.2 | 25.0 ± 3.0 |
CV (%) | 8.4 | 8.5 | 11.9 | |
Range | 9.7–11.3 | 11.9–15.1 | 20.3–28.0 |
Parameter a | Mean | SD | CV (%) |
---|---|---|---|
VS (%) | 86.4 | ±8.1 | 9.4 |
TOC (%) | 45.8 | ±7.3 | 16.0 |
C/N | 23 | ±5 | 21.8 |
C/P | 68 | ±20 | 29.9 |
Values Recommended in the Literature | The Tested GW (Mean Values) | FW from Warsaw c (Mean Values) | |||
---|---|---|---|---|---|
Parameter | Composting c | Dry Fermentation c | Wet Fermentation c | ||
MC (%) a | 45–60 | >60 (70–75%) | >85 | 49 | 78 |
VS (%) b | >20–35 | 86.4 | 84.4 | ||
TOC (%) b | >10 | 45.8 | 32.6 | ||
N (%) b | >0.3 | 2.0 | 1.9 | ||
P (%) b | >0.3 | 0.7 | 0.7 | ||
C/N | 25–35 | 10–25 | 23 | 17 | |
C/P | 100 | 70–175 | 68 | 48 |
Parameter | Mean | SD | CV (%) |
---|---|---|---|
MC (%) | 49 | ±15 | 30.0 |
CP (%DM)/%) | 86/44 | ±9/±15 | 10.2/34.2 |
AC (%DM)/(%) | 14/7 | ±9/±4 | 62.7/56.2 |
VM in CP (% CP) | 68.4 | ±6.9 | 10.0 |
HHV (MJ kg−1 DM) | 16.51 | ±2.28 | 13.8 |
LHVDM (MJ kg−1 DM) | 15.5 | ±2.2 | 14.3 |
Elemental Analysis a | Mean | SD | CV (%) |
---|---|---|---|
C (%) | 52.0 | ±2.3 | 4.4 |
H (%) | 5.4 | ±0.5 | 9.7 |
S (%) | 0.7 | ±0.1 | 20.3 |
N (%) | 1.3 | ±0.3 | 23.9 |
Cl (%) | 0.6 | ±0.1 | 16.7 |
O (%) | 40.0 | ±2.1 | 5.3 |
Parameter a | The Tested GW | [30] | [4] | [29] | [28] | [80] |
---|---|---|---|---|---|---|
C (%) | 44.7 | 35.42 | 45.55 | 46.9 | 48.75 | 47.73 |
H (%) | 4.6 | 4.19 | 6.16 | 6.1 | 7.31 | 6.92 |
S (%) | 0.5 | 0.07 | - | 0.4 | 0.81 | 0.71 |
N (%) | 1.1 | 0.87 | 0.61 | 0.9 | - | 0.93 |
Cl (%) | 0.5 | - | - | - | - | - |
O (%) | 34.6 | 25.77 | 43.20 | 40.6 | 36.85 | 39.09 |
VS (%) | TOC (%) | C/N | C/P | MC (%) | CP (%) | AC (%) | VM in CP (%) | HHV (MJkg−1) | |
---|---|---|---|---|---|---|---|---|---|
VS (%) | 1 | 0.5075 | 0.7217 | 0.5175 | −0.2805 | 0.9873 | −0.9873 | 0.9716 | 0.8133 |
TOC (%) | 0.5075 | 1 | 0.8387 | 0.3495 | 0.2775 | 0.4884 | −0.4884 | 0.4871 | 0.1924 |
C/N | 0.7217 | 0.3495 | 1 | 0.2142 | −0.433 | 0.6796 | −0.6796 | 0.5994 | 0.519 |
C/P | 0.5175 | 0.8387 | 0.2142 | 1 | 0.4889 | 0.5136 | −0.5136 | 0.4984 | 0.3204 |
MC (%) | −0.2805 | 0.2775 | −0.433 | 0.4889 | 1 | −0.2986 | 0.2986 | −0.285 | −0.2186 |
CP% | 0.9873 | 0.4884 | 0.6796 | 0.5136 | −0.2986 | 1 | 0.5136 | 0.9875 | 0.8319 |
AC (%) | −0.9873 | −0.488 | −0.6796 | −0.5136 | 0.2986 | 0.5136 | 1 | −0.9875 | −0.8319 |
VM in CP (%) | 0.9716 | 0.4871 | 0.5994 | 0.4984 | −0.285 | 0.9875 | −0.9875 | 1 | 0.8193 |
HHV (MJ kg−1) | 0.8133 | 0.1924 | 0.519 | 0.3204 | −0.2186 | 0.8319 | −0.8319 | 0.8193 | 1 |
GW Parameters | Treatment Method | References | ||||
---|---|---|---|---|---|---|
VS (%) | MC (%) | AC (%) | HHV (MJ kg−1 DM) | LHVDM (MJ kg−1 DM) | ||
86.4 | 49 | 7 | 16.51 | 15.5 | - | the tested GW |
- | - | 34.21 ± 10.30 | 13.08 ± 2.41 | - | Waste-to-energy | [30] |
72.68 ± 0.4 | 0.79 ± 0.03 | 7.91 ± 0.08 | 21.87 ± 0.07 | - | Pyrolysis | [28] |
76.5 ± 0.1 | - | 5.1 ± 0.1 | 19.7 ± 0.1 | - | Hydrothermal carbonization (HTC) with anaerobic digestion (AD) | [29] |
86.14 | - | 4 | - | 19.93 ± 0.07 | Torrefaction | [80] |
79.71 ± 0.50 | 6.80 ± 0.50 | 12.56 ± 0.50 | - | 15.95 | Gasification | [85] |
GW Parameters | Treatment Method | References | |||||
---|---|---|---|---|---|---|---|
VS (%) | TOC (%) | C/N | MC (%) | AC (%) | LHVDM (MJ kg−1 DM) | ||
86.4 | 45.8 | 23 | 49 | 7 | 15.5 | - | the tested GW |
80.55 ± 0.84 | 44.05 ± 0.83 | 26.83 ± 0.67 | 46.12 ± 1.44 | 19.21 ± 0.43 | - | Composting in rotary drums using FW inoculant | [17] |
95.6 ± 0.01 | 43.93 ± 0.22 | 106.3 ± 0.10 | 13.37 ± 3.26 | - | - | Composting with FW | [73] |
84 | - | - | 7 | - | - | Anaerobic co-digestion of GW and FW | [76] |
87 | - | 100 | 20 | 7 | 16.0 | Energetic valorization to produce biogas | [72] |
82.4 ± 0.2 | - | - | 8.2 ± 0.6 | 6.2 ± 0.1 | - | Dark fermentation | [32] |
93.97 | - | - | 1.6 | - | - | Bioethanol and biogas production | [21] |
Parameter a | The Tested GW (Mean Values) | GW [87] | FW [75] | Vegetable Waste [46] |
---|---|---|---|---|
Carbohydrates (%) | 28.0 | 64.2 | 48 | 72 |
Lipids (%) | 10.9 | 1.5 | 23 | 4 |
Proteins (%) | 12.8 | 12.7 | 23 | 11 |
Treatment Method | Products | Product Quantity |
---|---|---|
composting (including commercial composting) | compost | 65,652.2 Mg year−1 |
anaerobic digestion | biogas | 12,814,544.2 m3 year−1 |
digestate | 87,367.9 Mg year−1 | |
dark fermentation | biohydrogen | 3,166,454.2 m3 year−1 |
bioethanol | 211.1 Mg year−1 | |
ethanol fermentation | bioethanol | 4030.0 m3 year−1 |
incineration | energy | 633,674.7 MJ year−1 |
hydrothermal carbonization (HTC) | hydrochar | 30,465.1 Mg year−1 |
moderate pyrolysis | bio-oil | 25,331.6 Mg year−1 |
biochar | 10,315.0 Mg year−1 | |
syngas | 11,370.4 Mg year−1 | |
carbonization (slow pyrolysis) | biochar | 23,028.8 Mg year−1 |
gasification | syngas | 27,586.5 Mg year−1 |
FW and GW co-digestion + GW composting | biogas | 21,516,419.2 m3 year−1 |
compost | 57,857.8 Mg year−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lelicińska-Serafin, K.; Rolewicz-Kalińska, A.; Manczarski, P. Challenges in the Valorization of Green Waste in the Central European Region: Case Study of Warsaw. Energies 2024, 17, 5056. https://doi.org/10.3390/en17205056
Lelicińska-Serafin K, Rolewicz-Kalińska A, Manczarski P. Challenges in the Valorization of Green Waste in the Central European Region: Case Study of Warsaw. Energies. 2024; 17(20):5056. https://doi.org/10.3390/en17205056
Chicago/Turabian StyleLelicińska-Serafin, Krystyna, Anna Rolewicz-Kalińska, and Piotr Manczarski. 2024. "Challenges in the Valorization of Green Waste in the Central European Region: Case Study of Warsaw" Energies 17, no. 20: 5056. https://doi.org/10.3390/en17205056
APA StyleLelicińska-Serafin, K., Rolewicz-Kalińska, A., & Manczarski, P. (2024). Challenges in the Valorization of Green Waste in the Central European Region: Case Study of Warsaw. Energies, 17(20), 5056. https://doi.org/10.3390/en17205056