Conceptual Design Study of a Coffee Stem Gasification Scheme in the Context of a Biorefinery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Framework
2.2. Study Parameters
2.2.1. Equivalence Ratio (ER)
2.2.2. Moisture Content
2.2.3. Gasification Temperature
2.3. Simulation
2.3.1. Assumptions
- The operating pressure of the system is 1 bar.
- Pyrolysis or devolatilization stage occurs instantaneously in its elemental compounds (carbon, hydrogen, nitrogen, oxygen, and sulfur) according to their elemental analysis. Furthermore, pyrolysis and cracking reactions of its products are not considered due to the large number of possible products and intermediate products that may intervene in the system [32,33].
- The formed residues consist of ashes and unreacted gasification carbon [30]; they may also include sulfur if present in the elemental analyses of the raw material.
- Biomass particles are considered to have a constant size throughout the gasification process after passing through a grinding unit.
- Biomass and ashes are considered as inert components that do not participate in chemical reactions [31].
- The residence time in the gasification reactor is sufficiently prolonged to reach chemical equilibrium.
2.3.2. Properties Method
2.4. Development of the Simulation Model
2.4.1. Drying Section
2.4.2. Pyrolysis or Devolatilization Section
2.4.3. Gasification Section
2.4.4. Purification Section
2.4.5. Energy Production Section
3. Results
3.1. Energy Criteria
3.1.1. Lower Heating Value
3.1.2. Cold Gas Efficiency
3.2. Model Validation with Experimental Data
3.3. Sensitivity Analysis
3.3.1. Gasifying Air Temperature
3.3.2. Ratio Air/Biomass
3.3.3. Influence of Moisture Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Instituto para la Diversificación y Ahorro de la Energía y Besel. Biomasa; IDEA: Madrid, Spain, 2007. [Google Scholar]
- Higman, C. Chapter 11—Gasification. In Combustion Engineering Issues for Solid Fuel Systems; Miller, B.G., Tillman, D.A., Eds.; Academic Press: Burlington, MA, USA, 2008; pp. 423–468. [Google Scholar] [CrossRef]
- Basu, P. Chapter 5—Gasification Theory and Modeling of Gasifiers. In Biomass Gasification and Pyrolysis; Basu, P., Ed.; Academic Press: Boston, MA, USA, 2010; pp. 117–165. [Google Scholar] [CrossRef]
- Kukharets, S.; Jasinskas, A.; Golub, G.; Sukmaniuk, O.; Hutsol, T.; Mudryk, K.; Čėsna, J.; Glowacki, S.; Horetska, I. The Experimental Study of the Efficiency of the Gasification Process of the Fast-Growing Willow Biomass in a Downdraft Gasifier. Energies 2023, 16, 578. [Google Scholar] [CrossRef]
- Gomes, H.G.M.F.; Matos, M.A.A.; Tarelho, L.A.C. Influence of Oxygen/Steam Addition on the Quality of Producer Gas during Direct (Air) Gasification of Residual Forest Biomass. Energies 2023, 16, 2427. [Google Scholar] [CrossRef]
- Schulzke, T. Biomass gasification: Conversion of forest residues into heat, electricity and base chemicals. Chem. Pap. 2019, 73, 1833–1852. [Google Scholar] [CrossRef]
- Kukharets, S.; Golub, G.; Wrobel, M.; Sukmaniuk, O.; Mudryk, K.; Hutsol, T.; Jasinskas, A.; Jewiarz, M.; Cesna, J.; Horetska, I. A Theoretical Model of the Gasification Rate of Biomass and Its Experimental Confirmation. Energies 2022, 15, 7721. [Google Scholar] [CrossRef]
- Abdalla, M.E.; Abdalla, S.A.; Taqvi, S.A.A.; Naqvi, S.R.; Chen, W.-H. Investigation of Biomass Integrated Air Gasification Regenerative Gas Turbine Power Plants. Energies 2022, 15, 741. [Google Scholar] [CrossRef]
- Aristizábal-Marulanda, V.; Chacón-Perez, Y.; Alzate, C.A.C. Chapter 3—The biorefinery concept for the industrial valorization of coffee processing by-products. In Handbook of Coffee Processing By-Products; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 63–92. [Google Scholar] [CrossRef]
- Rodriguez, N.; Zambrano, D.A. Los Subproductos del Café: Fuente de Energía Renovable; Cenicafé: Chinchiná, Caldas, 2010. [Google Scholar]
- Producción de Café de Colombia Cerró el 2019 en 14,8 Millones de Sacos, Federación Nacional de Cafeteros. [En Línea]. Available online: https://federaciondecafeteros.org/wp/listado-noticias/produccion-de-cafe-de-colombia-cerro-el-2019-en-148-millones-de-sacos/ (accessed on 16 November 2021).
- de Priall, O.; Gogulancea, V.; Brandoni, C.; Hewitt, N.; Johnston, C.; Onofrei, G.; Huang, Y. Modelling and experimental investigation of small-scale gasification CHP units for enhancing the use of local biowaste. Waste Manag. 2021, 136, 174–183. [Google Scholar] [CrossRef]
- Durán-Sarmiento, M.A.; Del Portillo-Valdés, L.A.; Rueda-Ordonez, Y.J.; Florez-Rivera, J.S.; Rincón-Quintero, A.D. Study on the gasification process of the biomass obtained from agricultural waste with the purpose of estimating the energy potential in the Santander region and its surroundings. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1253, 012001. [Google Scholar] [CrossRef]
- García, C.A.; Peña, Á.; Betancourt, R.; Cardona, C.A. Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: Coffee Cut-Stems case. J. Environ. Manag. 2018, 216, 160–168. [Google Scholar] [CrossRef]
- Ortega, N.R.; Toro, A.F.; Pardo, L.M.; Velasco, A.C. Evaluación de las propiedades fisicoquímicas y térmicas de tallos de café y su análisis económico para la producción de pellets como biocombustible sólido. Ing. De Recur. Nat. Y Del Ambiente 2011, 10, 79–91. [Google Scholar]
- Quintero, J.A.; Moncada, J.; Cardona, C.A. Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: A process simulation approach. Bioresour. Technol. 2013, 139, 300–307. [Google Scholar] [CrossRef]
- Susastriawan, A.A.P.; Saptoadi, H. Comparison of the gasification performance in the downdraft fixed-bed gasifier fed by different feedstocks: Rice husk, sawdust, and their mixture. Sustain. Energy Technol. Assess. 2019, 34, 27–34. [Google Scholar] [CrossRef]
- Giltrap, D.; McKibbin, R.; Barnes, G. A steady state model of gas-char reactions in a downdraft biomass gasifier. Sol. Energy 2003, 74, 85–91. [Google Scholar] [CrossRef]
- Basu, P. Combustion and Gasification in Fluidized Beds; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Sheth, P.N.; Babu, B. Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Bioresour. Technol. 2009, 100, 3127–3133. [Google Scholar] [CrossRef] [PubMed]
- Sansaniwal, S.; Pal, K.; Rosen, M.; Tyagi, S. Recent advances in the development of biomass gasification technology: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 72, 363–384. [Google Scholar] [CrossRef]
- Zainal, Z.; Rifau, A.; Quadir, G.; Seetharamu, K. Experimental investigation of a downdraft biomass gasifier. Biomass Bioenergy 2002, 23, 283–289. [Google Scholar] [CrossRef]
- Gao, N.; Li, A. Modeling and simulation of combined pyrolysis and reduction zone for a downdraft biomass gasifier. Energy Convers. Manag. 2008, 49, 3483–3490. [Google Scholar] [CrossRef]
- Beohar, H.; Gupta, B.; Sethi, D.V.; Pandey, D.M.; Parmar, H. Effect of Air Velocity, Fuel Rate and Moisture Content on the Performance of Updraft Biomass Gasifier Using Fluent Tool. [En Línea]. Available online: https://www.semanticscholar.org/paper/Effect-of-Air-Velocity-%2C-Fuel-Rate-and-Moisture-on-Beohar-Gupta/db1ea8f9428730e0c6c193a27ac21f07c6c19909 (accessed on 9 November 2023).
- Doherty, W.; Reynolds, A.; Kennedy, D. Aspen Plus Simulation of Biomass Gasification in a Steam Blown Dual Fluidised Bed. En. Materials and Processes for Energy: Communicating Current Research and Technological Developments, Formatex Research Centre, 2013. [En línea]. Available online: https://arrow.tudublin.ie/engmecbk/2 (accessed on 12 January 2024).
- Hameed, S.; Ramzan, N.; Rahman, Z.-U.; Zafar, M.; Riaz, S. Kinetic modeling of reduction zone in biomass gasification. Energy Convers. Manag. 2014, 78, 367–373. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 3): Gasification technologies. Bioresour. Technol. 2002, 83, 55–63. [Google Scholar] [CrossRef]
- Haryanto, A.; Fernando, S.D.; Pordesimo, L.O.; Adhikari, S. Upgrading of syngas derived from biomass gasification: A thermodynamic analysis. Biomass Bioenergy 2009, 33, 882–889. [Google Scholar] [CrossRef]
- Oliveros, C.E.; Sanz, J.R.; Rodriguez, N. Evaluación de un Gasificador de Flujo Descendente Utilizando Astillas de Madera de café. Evaluation of a Downstream Gasifier Using Coffee Wood Chips, 2017. [En Línea]. Available online: https://biblioteca.cenicafe.org/handle/10778/1084 (accessed on 4 November 2023).
- Nikoo, M.B.; Mahinpey, N. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass Bioenergy 2008, 32, 1245–1254. [Google Scholar] [CrossRef]
- Garcia-Freites, S.; Welfle, A.; Lea-Langton, A.; Gilbert, P.; Thornley, P. The potential of coffee stems gasification to provide bioenergy for coffee farms: A case study in the Colombian coffee sector. Biomass Convers. Biorefinery 2020, 10, 1137–1152. [Google Scholar] [CrossRef]
- Rubiano, J.E.; Oliveros, C.; Posso, F.R.; Acevedo, J.C. Simulation of tar reduction alternatives in the coffee stems gasification process. J. Phys. Conf. Ser. 2018, 1126, 012011. [Google Scholar] [CrossRef]
- Puig-Arnavat, M.; Bruno, J.C.; Coronas, A. Coronas, Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 2010, 14, 2841–2851. [Google Scholar] [CrossRef]
- Aspen Technology, Inc. Aspen Plus. User Guide, 2nd ed.; Aspen Technology, Inc.: Cambrigdge, MA, USA, 2010; Volume 10. [Google Scholar]
- Ramzan, N.; Ashraf, A.; Naveed, S.; Malik, A. Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste. Biomass Bioenergy 2011, 35, 3962–3969. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Y.; Dor, L.; Yang, W.; Blasiak, W. A thermodynamic analysis of solid waste gasification in the Plasma Gasification Melting process. Appl. Energy 2013, 112, 405–413. [Google Scholar] [CrossRef]
- Poder Calorífico. [En Línea]. Available online: https://ingemecanica.com/tutoriales/poder_calorifico.html (accessed on 16 November 2021).
- Evaluación de la Incidencia de Pellets y Astillas de Madera en el Desempeño de un Gasificador Tipo “Downdraft”|Revista Forestal Mesoamericana Kurú. Sep. 2018, [En Línea]. Available online: https://revistas.tec.ac.cr/index.php/kuru/article/view/3847 (accessed on 9 November 2023).
- Prins, M.J. Thermodynamic Analysis of Biomass Gasification and Torrefaction. Ph.D. Thesis 1 (Research TU/e/Graduation TU/e), Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Sittisun, P.; Tippayawong, N.; Pang, S. Biomass gasification in a fixed bed downdraft reactor with oxygen enriched air: A modified equilibrium modeling study. Energy Procedia 2019, 160, 317–323. [Google Scholar] [CrossRef]
- Ambientum, Composición de la Atmósfera—Enciclopedia Medioambiental. Ambientum Portal del Medioambiente. [En Línea]. Available online: https://www.ambientum.com/ (accessed on 16 November 2023).
[14] | [15] | [16] | |
---|---|---|---|
Moisture content % | 8.7 | 11.44 | 4.12 |
Chemical Composition % | |||
Cellulose | 40.39 | NR | 37.35 |
Hemicellulose | 34.01 | NR | 27.79 |
Lignin | 10.13 | NR | 19.81 |
Extracts | 14.18 | NR | 8.38 |
Ash | 1.27 | NR | 2.27 |
Proximity Analysis % | |||
Volatile matter | 82.15 | 83.14 | NR |
Fixed carbon | 16.78 | 14.57 | NR |
Ash | 1.07 | 2.29 | NR |
Elemental Analysis % | |||
Coal | 48.21 | 51.2 | NR |
Hydrogen | 5.61 | 5.6 | NR |
Oxygen | 45.81 | 43.2 | NR |
HHV (MJ/kg) | 18.25 | 17.52 | NR |
Gas Species | Simulation Information from This Work (%mol) | Simulation Information from [31] (%mol) | Experimental Information from [14] (%mol) | Difference in Experimental Data between This Work and [31] |
---|---|---|---|---|
Hydrogen | 19.08 | 22.3 | 19.53 | 0.45–2.77 |
Carbon monoxide | 16.81 | 18.8 | 16.32 | 0.49–2.48 |
Carbon dioxide | 11.68 | 13.8 | 13.77 | 2.09–0.03 |
Methane | 0.91 | 1.20 | 3.42 | 2.51–2.22 |
Nitrogen | 45.41 | 43.40 | 46.49 | 1.08–3.09 |
LHV | 4.19 MJ/kg | 4.7 MJ/kg | 4 MJ/kg | 0.19–0.7 |
Gas yield | 2.43 kg gas/kg biomass | 2.52 kg gas/kg biomass | 2.84 kg gas/kg biomass | 0.41–0.32 |
Gas Species | Simulation Information from This Work (%mol) | Simulation Information from [31] (%mol) | Experimental Information from [29] (%mol) | Difference in Experimental Data between This Work and [31] |
---|---|---|---|---|
Hydrogen | 19.85 | 20.4 | 19.9 | 0.05–0.5 |
Carbon monoxide | 19.59 | 19.8 | 19 | 0.59–0.8 |
Carbon dioxide | 10.65 | 11.5 | 10 | 0.65–1.5 |
Methane | 0.79 | 0.65 | 3 | 2.21–2.35 |
Nitrogen | 43.7 | 41 | N/A | - |
LHV | 5.06 MJ/m3 | 4.9 MJ/m3 | 5.6 MJ/m3 | 0.54–0.7 |
Gas yield | 2.26 kg gas/kg biomass | 2.54 kg gas/kg biomass | 2.12 kg gas/kg biomass | 0.14–0.42 |
Operating Conditions | |
---|---|
Gasifying air temperature (°C) | 230–260 |
Ratio air/biomass | 1.8–2.5 |
Moisture content (%) | <10 |
Results | |
H2 (% mol) | 18.5 |
CO (% mol) | 22.9 |
CO2 (% mol) | 8.21 |
CH₄ (% mol) | 0.5 |
N2 (% mol) | 46.1 |
LHV (MJ/kg) | 5.07 |
CGE (%) | 77.45 |
Gas yield kg Gas/kg Biomass | 2.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Martin, C.A.; Prieto-Moreno, L.A.; Arturo-Calvache, J.E.; Camacho-Galindo, S.; Guerrero-Martin, L.E.; Guerrero, W.A.; Ando Junior, O.H.; Arevalo, J.C.; Lucas, E.F. Conceptual Design Study of a Coffee Stem Gasification Scheme in the Context of a Biorefinery. Energies 2024, 17, 4972. https://doi.org/10.3390/en17194972
Guerrero-Martin CA, Prieto-Moreno LA, Arturo-Calvache JE, Camacho-Galindo S, Guerrero-Martin LE, Guerrero WA, Ando Junior OH, Arevalo JC, Lucas EF. Conceptual Design Study of a Coffee Stem Gasification Scheme in the Context of a Biorefinery. Energies. 2024; 17(19):4972. https://doi.org/10.3390/en17194972
Chicago/Turabian StyleGuerrero-Martin, Camilo Andrés, Leyder Alejandro Prieto-Moreno, Jaime Eduardo Arturo-Calvache, Stefanny Camacho-Galindo, Laura Estefanía Guerrero-Martin, William Alberto Guerrero, Oswaldo Hideo Ando Junior, John Carlos Arevalo, and Elizabete Fernandes Lucas. 2024. "Conceptual Design Study of a Coffee Stem Gasification Scheme in the Context of a Biorefinery" Energies 17, no. 19: 4972. https://doi.org/10.3390/en17194972
APA StyleGuerrero-Martin, C. A., Prieto-Moreno, L. A., Arturo-Calvache, J. E., Camacho-Galindo, S., Guerrero-Martin, L. E., Guerrero, W. A., Ando Junior, O. H., Arevalo, J. C., & Lucas, E. F. (2024). Conceptual Design Study of a Coffee Stem Gasification Scheme in the Context of a Biorefinery. Energies, 17(19), 4972. https://doi.org/10.3390/en17194972