Applying Circular Thermoeconomics for Sustainable Metal Recovery in PCB Recycling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermoeconomic Analysis of PCB Recycling
- Productive structure: The productive structure defines the function of each flow and process in the system. Flows can be resources (i.e., inputs of the model), intermediates (i.e., they connect two processes), outputs (i.e., the products of the system, in this case, the meals), or waste (i.e., the unuseful flows that leave the boundaries of the system). On the other hand, the processes are (1) productive, if their outputs are products or intermediate flows, or (2) dissipative, if their outputs are wastes. Thus, each flow is defined as a product or fuel depending on its function in the productive process. See Figure 2 and Table 2.
- Thermodynamic model: The thermodynamic model shows the set of equations (mass, energy, entropy balances…) that allow us to determine the exergy of the flows. They define the thermodynamic state of the plant.
- Resources model: It represents the external cost of the resources consumed by the plant.
2.1.1. Physical Structure
2.1.2. Productive Structure
- Resources (Green): these are the input flows, which also have an associated exergy cost defined in the Resources Model. See Section 2.1.4
- Intermediate (Black): these flows connect two processes. In Figure 1, they are always identified with two letters. The first letter refers to its origin and the second letter to its destination.
- Output (Blue): these are the products, i.e., the recovered metals: copper (produced in electrorefining), plus silver, gold, and palladium, produced in precious metal recovery, besides the steam generated in the heat exchanger.
- Residues (Red): These are the wastes: slag from reduction, off-gases from reduction and oxidation, off-gases from fire refining, slimes from electrorefining, and slimes from the precious metal recycling process.
- One or several inflows that provide exergy to the process.
- Flows that enter into the process and leave it after some exergy transfer to the process.
- One or several outflows produced by the process.
- Flows that enter into the process and leave it, increasing its exergy.
- Productive: The products of these processes are internal flows (Internal) or final products (Output).
- Dissipative: The processes responsible for eliminating waste.
2.1.3. Thermodynamic Model
2.1.4. Resources Model
- PCB (A1): It represents the PCB waste to be recycled. Although the PCBs have already been amortized, the costs related to the collection, transport, and storage of PCBs should still be considered. However, since these costs are minimal compared to other resources, they have been assumed to be zero.
- Electricity (A2, F1, H2, J2, K1, L1, M1, N1): There are two electricity scenarios: 2020 and 2050. We obtained the data from [19].
- Fuel/Reducing Agent (C1, D1): These are coke, natural gas or hydrogen, depending on the scenario. The exergy cost of coke and natural gas are based on their Energy Return on Investment (EROI), and the exergy cost of hydrogen is calculated as described in [35].
- Flux (B2, C2, D2): Represents the exergy cost of producing fluxes composed of FeO, SiO2, or CaO in varying compositions, depending on whether they are used in reduction, oxidation, or refining. The exergy cost was calculated following the methodology described in [36]
- Chemicals (F2, K2, L2, M2, N2): Mainly sulfuric acid H2SO4 for electrolysis, nitric acid HNO3 used in Ag recovery, oxalic acid C2H2O4 in Au recovery and ammonium chloride NH4Cl in PGM recovery. Their exergy cost was calculated following the methodology of [36].
2.2. Thermoeconomic Analysis of the Primary Production of Metals
2.3. Exergy Cost Allocation Methods
- Exergy (B): This method allocates costs as a function of the exergy of the flows. In our case, the chemical exergy of the metals produced, obtained from [37]).
- Exergy Life Cycle Exergy Cost (ELC): This method uses the and , calculated through Equation (1). The difference between and is the increase in the exergy cost due to the decrease in ore grade, and EROI expected between 2020 and 2050 (see Figure 2). Thus, the ELC represents the exergy cost from the mineral extraction in the mine to its refining as a metal for a given ore grade and fossil fuel EROI. Consequently, it varies over time as both ore grade and EROI show a declining trend over time.
- Exergy Replacement Cost (ERC): This method uses ERC as a measure for allocation. The ERC represents the exergy required to extract and refine a mineral from a completely dispersed state in the Earth’s crust, denoted as Thanatia [44], to its current average concentration in mines. It can thus be viewed as the bonus nature provides for having minerals concentrated in deposits rather than dispersed throughout the crust. The ERC is a constant value and gives greater weight to minerals that are scarce in the crust and energy-intensive to extract and refine. The ERC values were calculated by [34] and are the ones used in this paper.
3. Results and Discussion
3.1. Recycling and Primary Exergy Cost of Metals
3.2. Non-Renewable and Renewable Exergy Cost of Metals
3.3. Circular Thermoeconomics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Cu | Ag | Au | Pd | |
---|---|---|---|---|
Exergy Minerals | 20.7 | 1510 | 0.0 | 193.0 |
NG_MC | 0.0 | 36.6 | 48,600 | 0.0 |
OIL_MC | 0.0034 | 278.0 | 77,200 | 7410 |
Coal_MC | 0.0 | 113.0 | 5870 | 0.0 |
Elec_MC | 3.94 | 1670 | 102,000 | 23,900 |
NG_MC_CP | 0.104 | 24.4 | 8050 | 313.0 |
Oil_MC_CP | 0.0114 | 5.37 | 882.0 | 130.0 |
Coal_MC_CP | 0.0227 | 7.78 | 2690 | 18.8 |
Elec_MC_CP | 0.0066 | 2.55 | 5490 | 45.2 |
NG_SR | 0.53 | 173.0 | 0.0 | 59,500 |
Oil_SR | 1.69 | 655.0 | 0.0 | 0.0 |
Coal_SR | 3.52 | 2950 | 0.0 | 0.0 |
Elec_SR | 9.71 | 3390 | 0.0 | 34,200 |
NG_SR_CP | 0.0193 | 173.0 | 0.0 | 0.0 |
Oil_SR_CP | 0.141 | 43.7 | 0.0 | 0.0 |
Coal_SR_CP | 0.0049 | 21.60 | 0.0 | 0.0 |
Elec_SR_CP | 3.45 | 1950 | 0.0 | 0.0 |
Exergy Cost | 43.90 | 13,004 | 250,524 | 125,709 |
Cu | Ag | Au | Pd | |
---|---|---|---|---|
Ore grade () | ||||
Ore grade (2020) | ||||
Ore grade (2050) |
Type | Product | Scenario 2020 | Scenario 2050 |
---|---|---|---|
Input | PCB | 20,000 | 20,000 |
Output | Steam | 19,127 | 21,260 |
Output | Copper | 4178 | 4141 |
Output | Silver | 19.80 | 19.80 |
Output | Gold | 7.92 | 7.92 |
Output | Palladium | 3.96 | 3.96 |
[37] | ERC [34] | |||
---|---|---|---|---|
Cu | 2.09 | 45 | 47 | 292 |
Ag | 0.92 | 13,339 | 19,939 | 7371 |
Au | 0.26 | 336,190 | 512,201 | 553,250 |
Pd | 1.30 | 130,717 | 138,950 | 8,983,377 |
Key | Mineral | NG | OIL | Coal | Elec-NR | H2-NR | Elec-RE | H2-RE | NR | RE | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
A2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.7907 | 0.0000 | 0.2856 | 0.0000 | 1.7907 | 0.2856 | 2.0763 |
B2 | 0.1316 | 0.5764 | 0.7117 | 2.7807 | 1.7348 | 0.0000 | 0.2767 | 0.0000 | 5.9353 | 0.2767 | 6.2120 |
C1 | 0.0000 | 0.0000 | 0.0000 | 1.0600 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0600 | 0.0000 | 1.0600 |
C2 | 0.1459 | 0.6492 | 0.5768 | 3.5887 | 2.0496 | 0.0000 | 0.3269 | 0.0000 | 7.0102 | 0.3269 | 7.3371 |
D1 | 0.0000 | 1.0400 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0400 | 0.0000 | 1.0400 |
D2 | 0.1459 | 0.6492 | 0.5768 | 3.5887 | 2.0496 | 0.0000 | 0.3269 | 0.0000 | 7.0102 | 0.3269 | 7.3371 |
D3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
E1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.7907 | 0.0000 | 0.2856 | 0.0000 | 1.7907 | 0.2856 | 2.0763 |
F2 | 0.0000 | 0.0008 | 0.2457 | 0.0000 | 0.0598 | 0.0000 | 0.0095 | 0.0000 | 0.3063 | 0.0095 | 0.3158 |
G1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
H1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
H2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.7907 | 0.0000 | 0.2856 | 0.0000 | 1.7907 | 0.2856 | 2.0763 |
J1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
J2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.7907 | 0.0000 | 0.2856 | 0.0000 | 1.7907 | 0.2856 | 2.0763 |
K1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.7907 | 0.0000 | 0.2856 | 0.0000 | 1.7907 | 0.2856 | 2.0763 |
K2 | 0.0000 | 0.0005 | 0.1581 | 0.0000 | 0.1384 | 0.0000 | 0.0221 | 0.0000 | 0.2970 | 0.0221 | 0.3190 |
L1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.7907 | 0.0000 | 0.2856 | 0.0000 | 1.7907 | 0.2856 | 2.0763 |
L2 | 0.0000 | 0.8176 | 0.1042 | 3.6408 | 5.2194 | 0.0000 | 0.8326 | 0.0000 | 9.7819 | 0.8326 | 10.6145 |
M1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.7907 | 0.0000 | 0.2856 | 0.0000 | 1.7907 | 0.2856 | 2.0763 |
M2 | 0.0000 | 4.7442 | 0.1177 | 0.1241 | 25.6890 | 0.0000 | 4.0977 | 0.0000 | 30.6751 | 4.0977 | 34.7728 |
N1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.7907 | 0.0000 | 0.2856 | 0.0000 | 1.7907 | 0.2856 | 2.0763 |
N2 | 0.0000 | 3.2800 | 0.0235 | 1.8735 | 16.1314 | 0.0000 | 2.5732 | 0.0000 | 21.3084 | 2.5732 | 23.8816 |
NW1 | 0.0000 | 3.8847 | 0.0110 | 0.4451 | 8.9707 | 0.0000 | 1.4309 | 0.0000 | 13.3114 | 1.4309 | 14.7424 |
Key | Mineral | NG | OIL | Coal | El-NR | H2-NR | El-RE | H2-RE | NR | RE | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
A2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1337 | 0.0000 | 0.9268 | 0.0000 | 0.1337 | 0.9268 | 1.0605 |
B2 | 0.1316 | 0.5764 | 0.7117 | 2.7807 | 0.1296 | 0.0000 | 0.8978 | 0.0000 | 4.3300 | 0.8978 | 5.2278 |
C11 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3232 | 0.0000 | 1.4638 | 0.3232 | 1.4638 | 1.7870 |
C12 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3232 | 0.0000 | 1.4638 | 0.3232 | 1.4638 | 1.7870 |
C2 | 0.1459 | 0.6492 | 0.5768 | 3.5887 | 0.1531 | 0.0000 | 1.0608 | 0.0000 | 5.1136 | 1.0608 | 6.1744 |
D1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3232 | 0.0000 | 1.4638 | 0.3232 | 1.4638 | 1.7870 |
D2 | 0.1459 | 0.6492 | 0.5768 | 3.5887 | 0.1531 | 0.0000 | 1.0608 | 0.0000 | 5.1136 | 1.0608 | 6.1744 |
D3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
E1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1337 | 0.0000 | 0.9268 | 0.0000 | 0.1337 | 0.9268 | 1.0605 |
F2 | 0.0000 | 0.0008 | 0.2457 | 0.0000 | 0.0045 | 0.0000 | 0.0309 | 0.0000 | 0.2510 | 0.0309 | 0.2819 |
G1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
H1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
H2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1337 | 0.0000 | 0.9268 | 0.0000 | 0.1337 | 0.9268 | 1.0605 |
J1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
J2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1337 | 0.0000 | 0.9268 | 0.0000 | 0.1337 | 0.9268 | 1.0605 |
K1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1337 | 0.0000 | 0.9268 | 0.0000 | 0.1337 | 0.9268 | 1.0605 |
K2 | 0.0000 | 0.0005 | 0.1581 | 0.0000 | 0.0103 | 0.0716 | 0.0000 | 0.0000 | 0.2405 | 0.0000 | 0.2405 |
L1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1337 | 0.0000 | 0.9268 | 0.0000 | 0.1337 | 0.9268 | 1.0605 |
L2 | 0.0000 | 0.8176 | 0.1042 | 3.6408 | 0.3898 | 0.0000 | 2.7012 | 0.0000 | 4.9523 | 2.7012 | 7.6535 |
M1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1337 | 0.0000 | 0.9268 | 0.0000 | 0.1337 | 0.9268 | 1.0605 |
M2 | 0.0000 | 4.7442 | 0.1177 | 0.1241 | 1.9184 | 0.0000 | 13.2951 | 0.0000 | 6.9045 | 13.2951 | 20.1995 |
N1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1337 | 0.0000 | 0.9268 | 0.0000 | 0.1337 | 0.9268 | 1.0605 |
N2 | 0.0000 | 3.2800 | 0.0235 | 1.8735 | 1.2047 | 0.0000 | 8.3486 | 0.0000 | 6.3817 | 8.3486 | 14.7303 |
NW1 | 0.0000 | 3.8847 | 0.0110 | 0.4451 | 0.6699 | 0.0000 | 4.6427 | 0.0000 | 5.0107 | 4.6427 | 9.6533 |
Key | Scenario 2020 | Scenario 2050 | ||||
---|---|---|---|---|---|---|
B | ELC | ERC | B | ELC | ERC | |
A1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
A2 | 1571.16 | 1571.16 | 1571.16 | 117.33 | 117.33 | 117.33 |
B2 | 9209.18 | 9209.18 | 9209.18 | 13,318.47 | 13,318.47 | 13,318.47 |
C1 | 2095.38 | 2095.38 | 2095.38 | 1156.90 | 1156.90 | 1156.90 |
C2 | 10,639.59 | 10,639.59 | 10,639.59 | 6679.64 | 6679.64 | 6679.64 |
D1 | 4633.36 | 4633.36 | 4633.36 | 1051.73 | 1051.73 | 1051.73 |
D2 | 2853.94 | 2853.94 | 2853.94 | 2592.33 | 2592.33 | 2592.33 |
D3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
E1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
F1 | 2553.73 | 2553.73 | 2553.73 | 189.00 | 189.00 | 189.00 |
F2 | 49.01 | 49.01 | 49.01 | 39.97 | 39.97 | 39.97 |
G1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
H1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
H2 | 185.00 | 185.00 | 185.00 | 15.36 | 15.36 | 15.36 |
J1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
J2 | 6215.47 | 6215.47 | 6215.47 | 0.00 | 0.00 | 0.00 |
K1 | 41.15 | 41.15 | 41.15 | 3.07 | 3.07 | 3.07 |
K2 | 3.10 | 3.10 | 3.10 | 2.51 | 2.51 | 2.51 |
L1 | 40.38 | 40.38 | 40.38 | 3.02 | 3.02 | 3.02 |
L2 | 56.60 | 56.60 | 56.60 | 28.66 | 28.66 | 28.66 |
M1 | 81.38 | 81.38 | 81.38 | 6.08 | 6.08 | 6.08 |
M2 | 633.16 | 633.16 | 633.16 | 142.51 | 142.51 | 142.51 |
N1 | 43.80 | 43.80 | 43.80 | 3.27 | 3.27 | 3.27 |
N2 | 279.73 | 279.73 | 279.73 | 83.78 | 83.78 | 83.78 |
NW1 | 684.52 | 684.52 | 684.52 | 257.67 | 257.67 | 257.67 |
AB1 | 16,297.48 | 210.67 | 18.34 | 15,240.92 | 38.83 | 3.95 |
AB2 | 3446.58 | 3296.54 | 3221.52 | 3223.14 | 865.65 | 694.41 |
BC | 46,226.91 | 17,319.95 | 16,943.31 | 33,734.90 | 14,357.88 | 14,172.20 |
BG | 5882.10 | 1601.05 | 1549.87 | 4332.54 | 11.04 | 1.12 |
B3 | 21,189.91 | 136.64 | 22.12 | 22,543.71 | 138.71 | 31.72 |
CB | 33,411.57 | 531.60 | 260.37 | 23,802.04 | 282.00 | 187.80 |
CD | 32,885.68 | 29,298.35 | 29,121.56 | 24,254.47 | 21,618.67 | 21,507.40 |
CH | 845.42 | 845.42 | 845.42 | 353.37 | 353.37 | 353.37 |
DC | 7044.87 | 137.70 | 67.87 | 6093.21 | 49.64 | 30.13 |
DE | 38,327.23 | 42,145.11 | 42,022.11 | 25,076.05 | 28,997.24 | 28,891.22 |
EF | 38,327.23 | 42,145.11 | 42,022.11 | 25,076.05 | 28,997.24 | 28,891.22 |
FD | 4999.12 | 5497.16 | 5481.12 | 3270.73 | 3784.15 | 3769.89 |
FK | 208.73 | 37,149.67 | 37,994.81 | 134.99 | 24,450.93 | 24,612.73 |
GH | 5882.10 | 1601.05 | 1549.87 | 4332.54 | 11.04 | 1.12 |
H4 | 2002.07 | 728.05 | 712.82 | 1281.68 | 99.67 | 96.96 |
JB | 5805.55 | 5805.55 | 5805.55 | 0.00 | 0.00 | 0.00 |
JC | 409.92 | 409.92 | 409.92 | 0.00 | 0.00 | 0.00 |
KF | 101.39 | 4.26 | 2.33 | 56.34 | 2.02 | 1.51 |
KL | 151.60 | 37,189.66 | 38,036.73 | 84.24 | 24,454.49 | 24,616.81 |
LM | 83.91 | 34,577.53 | 38,002.19 | 39.13 | 22,654.82 | 24,563.47 |
MN | 615.50 | 6137.51 | 34,509.91 | 144.71 | 2993.54 | 22,026.94 |
N4 | 150.96 | 463.76 | 320.85 | 35.49 | 303.76 | 204.79 |
STM | 4910.45 | 1903.41 | 1867.46 | 3419.59 | 280.09 | 272.89 |
Cu | 35,823.50 | 2105.27 | 1151.24 | 21,955.64 | 993.15 | 739.07 |
Ag | 164.67 | 2709.11 | 131.52 | 76.78 | 1831.34 | 85.01 |
Au | 182.94 | 29,154.55 | 4206.82 | 43.01 | 19,809.87 | 2685.12 |
Pd | 788.07 | 5997.28 | 34,512.58 | 196.26 | 2776.83 | 21,909.19 |
PYW | 21,189.91 | 136.64 | 22.12 | 22,543.71 | 138.71 | 31.72 |
HGW | 2002.07 | 728.05 | 712.82 | 1281.68 | 99.67 | 96.96 |
SLW | 835.49 | 1148.28 | 1005.38 | 293.16 | 561.42 | 462.46 |
References
- Xu, M.; David, J.M.; Kim, S.H. The fourth industrial revolution: Opportunities and challenges. Int. J. Financ. Res. 2018, 9, 90–95. [Google Scholar] [CrossRef]
- International Energy Agency. Net Zero by 2050-A Roadmap for the Global Energy Sector. 2021. Available online: https://www.iea.org/events/net-zero-by-2050-a-roadmap-for-the-global-energy-system (accessed on 29 September 2024).
- International Energy Agency. The Role of Critical Minerals in Clean Energy Transitions. 2021. Available online: https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions (accessed on 29 September 2024).
- Lallana, M.; Torrubia, J.; Valero-Delgado, A. Metals for energy & digital transition in Spain: Demand, recycling and sufficiency alternatives. Resour. Conserv. Recycl. 2024, 205, 107597. [Google Scholar] [CrossRef]
- Forti, V.; Baldé, C.P.; Kuehr, R.; Bell, G. The Global E-waste Monitor 2020: Quantities, Flows and the Circular Economy Potential. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR)—Co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam. 2020. Available online: https://ewastemonitor.info/wp-content/uploads/2020/11/GEM_2020_def_july1_low.pdf (accessed on 29 September 2024).
- Carrara, S.; Dias, P.A.; Plazzotta, B.; Pavel, C. Raw Materials Demand for Wind and Solar PV Technologies in the Transition towards a Decarbonised Energy System; Publications Office of the European Union: Luxembourg, 2020; Available online: https://op.europa.eu/en/publication-detail/-/publication/19aae047-7f88-11ea-aea8-01aa75ed71a1/language-en (accessed on 29 September 2024).
- International Energy Agency. Energy Technology Perspectives 2023. Available online: https://www.iea.org/reports/energy-technology-perspectives-2023 (accessed on 29 September 2024).
- Mudd, G.M. The Sustainability of Mining in Australia: Key Production Trends and Their Environmental Implications for the Future. 2009. Available online: https://users.monash.edu.au/~gmudd/files/SustMining-Aust-Report-2009-Master.pdf (accessed on 29 September 2024).
- Dong, D.; Van Oers, L.; Tukker, A.; Van Der Voet, E. Assessing the future environmental impacts of copper production in China: Implications of the energy transition. J. Clean. Prod. 2020, 274, 122825. [Google Scholar] [CrossRef]
- Forti, V.; Balde, C.; Kuehr, R. E-Waste Statistics: Guidelines on Classification Reporting and Indicators, Second Edition. 2018. Available online: https://www.itu.int/en/ITU-D/Environment/Pages/Toolbox/Guidelines.aspx (accessed on 29 September 2024).
- Chen, J.; Wang, Z.; Wu, Y.; Li, L.; Li, B.; Pan, D.; Zuo, T. Environmental benefits of secondary copper from primary copper based on life cycle assessment in China. Resour. Conserv. Recycl. 2019, 146, 35–44. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Dong, S.; Qian, P.; Ye, S.; Hu, S.; Xia, B.; Wang, C. Analyzing the environmental impact of copper-based mixed waste recycling-a LCA case study in China. J. Clean. Prod. 2021, 284, 125256. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, X.; Chen, W.; Geng, Y.; Wilson, J. Measuring environmental impacts from primary and secondary copper production under the upgraded technologies in key Chinese enterprises. Environ. Impact Assess. Rev. 2022, 96, 106855. [Google Scholar] [CrossRef]
- Dong, D.; Tukker, A.; Steubing, B.; van Oers, L.; Rechberger, H.; Aguilar-Hernandez, G.A.; Li, H.; Van Der Voet, E. Assessing China’s potential for reducing primary copper demand and associated environmental impacts in the context of energy transition and “Zero waste” policies. Waste Manag. 2022, 144, 454–467. [Google Scholar] [CrossRef]
- Amini, S.H.; Remmerswaal, J.A.; Castro, M.B.; Reuter, M.A. Quantifying the quality loss and resource efficiency of recycling by means of exergy analysis. J. Clean. Prod. 2007, 15, 907–913. [Google Scholar] [CrossRef]
- Castro, M.B.; Remmerswaal, J.A.; Brezet, J.C.; Reuter, M.A. Exergy losses during recycling and the resource efficiency of product systems. Resour. Conserv. Recycl. 2007, 52, 219–233. [Google Scholar] [CrossRef]
- Szargut, J. Exergy Method—Technical and Ecological Applications; WIT Press: Southampton, UK, 2005. [Google Scholar]
- Torres, C.; Valero, A. The exergy cost theory revisited. Energies 2021, 14, 1594. [Google Scholar] [CrossRef]
- Torrubia, J.; Valero-Delgado, A.; Valero, A. Renewable exergy return on investment (RExROI) in energy systems. The case of silicon photovoltaic panels. Energy 2024, 304, 131961. [Google Scholar] [CrossRef]
- Ignatenko, O.; van Schaik, A.; Reuter, M.A. Exergy as a tool for evaluation of the resource efficiency of recycling systems. Miner. Eng. 2007, 20, 862–874. [Google Scholar] [CrossRef]
- Ghodrat, M.; Samali, B.; Rhamdhani, M.A.; Brooks, G. Thermodynamic-based exergy analysis of precious metal recovery out of waste printed circuit board through black copper smelting process. Energies 2019, 12, 1313. [Google Scholar] [CrossRef]
- Reuter, M.A.; Degel, R.; Borowski, N.; Apushkin, D. Digital twin for KGHM-Legnica: Simulation-based footprinting & exergy allocation of impacts. In Proceedings of the EMC 2023, Zrenjanin, Serbia, 16–17 June 2023. [Google Scholar]
- Vierunketo, M.; Klemettinen, A.; Reuter, M.A.; Santasalo-Aarnio, A.; Serna-Guerrero, R. A multi-dimensional indicator for material and energy circularity: Proof-of-concept of exentropy in Li-ion battery recycling. iScience 2023, 26, 108237. [Google Scholar] [CrossRef] [PubMed]
- Meester, B.D.; Dewulf, J.; Janssens, A.; Langenhove, H.V. An improved calculation of the exergy of natural resources for Exergetic Life Cycle Assessment (ELCA). Environ. Sci. Technol. 2006, 40, 6844–6851. [Google Scholar] [CrossRef] [PubMed]
- Dewulf, J.; Bösch, M.E.; Meester, B.D.; Vorst, G.V.D.; Langenhove, H.V.; Hellweg, S.; Huijbregts, M.A. Cumulative exergy extraction from the natural environment (CEENE): A comprehensive life cycle impact assessment method for resource accounting. Environ. Sci. Technol. 2007, 41, 8477–8483. [Google Scholar] [CrossRef]
- Lai, F.; Laurent, F.; Beylot, A.; Villeneuve, J. Solving multifunctionality in the carbon footprint assessment of primary metals production: Comparison of different approaches. Miner. Eng. 2021, 170, 107053. [Google Scholar] [CrossRef]
- Farjana, S.H.; Huda, N.; Mahmud, M.A.P.; Saidur, R. A review on the impact of mining and mineral processing industries through life cycle assessment. J. Clean. Prod. 2019, 231, 1200–1217. [Google Scholar] [CrossRef]
- Santero, N.; Hendry, J. Harmonization of LCA methodologies for the metal and mining industry. Int. J. Life Cycle Assess. 2016, 21, 1543–1553. [Google Scholar] [CrossRef]
- Valero-Delgado, A.; Domínguez, A.; Valero, A. Exergy cost allocation of by-products in the mining and metallurgical industry. Resour. Conserv. Recycl. 2015, 102, 128–142. [Google Scholar] [CrossRef]
- Torres, C.; Valero, A.; Valero-Delgado, A. TaesLab: An advanced software tool for circular thermoeconomics. In Proceedings of the ECOS 2024—The 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Rhodes, Greece, 30 June–5 July 2024. [Google Scholar] [CrossRef]
- Bassorgun, A. Precious Metal Recovery from Secondary Copper Anode Slimes Through Hydrometallurgical Route: A Study with Process Simulation and lIfe-Cycle Assessment Approach. Master’s Thesis, Technische Universität Bergakademie Freiberg, Freiberg, Germany, 2023. [Google Scholar]
- He, S. Precious Metal Recovery from Secondary Copper Anode Slimes: A Sensitivity Analysis Study Using Life Cycle Assessment Approach. Master’s Thesis, Aalto University, Espoo, Finland, 2024. Available online: https://urn.fi/URN:NBN:fi:aalto-202409086257 (accessed on 29 September 2024).
- Outotec Research Center. HSC Chemistry 10, Thermochemcial and Process Simulation. Available online: https://hsc-chemistry.com/hscchemistry (accessed on 29 September 2024).
- Iglesias-Émbil, M.; Valero-Delgado, A.; Ortego, A.; Villacampa, M.; Vilaró, J.; Villalba, G. Raw material use in a battery electric car—A thermodynamic rarity assessment. Resour. Conserv. Recycl. 2020, 158, 104820. [Google Scholar] [CrossRef]
- International Energy Agency. The Future of Hidrogen. Seizing Today’s Opportunities. 2019. Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 29 September 2024).
- Torrubia, J.; Valero-Delgado, A.; Valero, A. Energy and carbon footprint of metals through physical allocation. Implications for energy transition. Resour. Conserv. Recycl. 2023, 199, 107281. [Google Scholar] [CrossRef]
- Valero-Delgado, A.; Valero, A.; Stanek, W. Assessing the exergy degradation of the natural capital: From Szargut’s updated reference environment to the new thermoecological-cost methodology. Energy 2018, 163, 1140–1149. [Google Scholar] [CrossRef]
- Hall, C.A.; Lambert, J.G.; Balogh, S.B. EROI of different fuels and the implications for society. Energy Policy 2014, 64, 141–152. [Google Scholar] [CrossRef]
- Valero-Delgado, A.; Valero, A. What are the clean reserves of fossil fuels? Resour. Conserv. Recycl. 2012, 68, 126–131. [Google Scholar] [CrossRef]
- Calvo, G.; Mudd, G.; Valero-Delgado, A.; Valero, A. Decreasing ore grades in global metallic mining: A theoretical issue or a global reality? Resources 2016, 5, 36. [Google Scholar] [CrossRef]
- Der Voet, E.V.; Oers, L.V.; Verboon, M.; Kuipers, K. Environmental Implications of Future Demand Scenarios for Metals: Methodology and Application to the Case of Seven Major Metals. J. Ind. Ecol. 2019, 23, 141–155. [Google Scholar] [CrossRef]
- Norgate, T.; Haque, N. Energy and greenhouse gas impacts of mining and mineral processing operations. J. Clean. Prod. 2010, 18, 266–274. [Google Scholar] [CrossRef]
- Valero, A.; Torres, C. Circular Thermoeconomics. In Advances in Thermodynamics and Circular Thermoeconomics; WILEY: Hoboken, NJ, USA, 2024. [Google Scholar]
- Valero-Delgado, A.; Valero, A.; Calvo, G. The Material Limits of Energy Transition: Thanatia; Springer Nature: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Fujita, T.; Ono, H.; Dodbiba, G.; Yamaguchi, K. Evaluation of a recycling process for printed circuit board by physical separation and heat treatment. Waste Manag. 2014, 34, 1264–1273. [Google Scholar] [CrossRef]
- Navazo, J.M.V.; Méndez, G.V.; Peiró, L.T. Material flow analysis and energy requirements of mobile phone material recovery processes. Int. J. Life Cycle Assess. 2014, 19, 567–579. [Google Scholar] [CrossRef]
- Yu, J.; Williams, E.; Ju, M. Analysis of material and energy consumption of mobile phones in China. Energy Policy 2010, 38, 4135–4141. [Google Scholar] [CrossRef]
- Baldé, C.P.; D’Angelo, E.; Luda, V.; Deubzer, O.; Kuehr, R. Global Transboundary E-waste Flows Monitor. 2022. Available online: https://ewastemonitor.info/gtf-2022/ (accessed on 29 September 2024).
- Reuter, M.A.; van Schaik, A. Chapter 5-Material and product-centric recycling: Design for recycling rules and digital methods. In Handbook of Recycling, 2nd ed.; Meskers, C., Worrell, E., Reuter, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 79–95. [Google Scholar] [CrossRef]
Resources | |
---|---|
Key | Description |
A1 | PCB Scrap |
A2 | Electricity Scarp |
B2 | Flux RED |
C1 | Coke-H2 |
C2 | Flux OXI |
D1 | NG-H2 |
D2 | Flux FR |
D3 | Air |
E1 | Cold Water |
F1 | Electricity ER |
F2 | Electrolite ER |
G1 | Air |
H1 | Electricity Pump |
H2 | Water |
J1 | Air |
J2 | Electricity ASU |
K1 | Electricity DeCu |
K2 | Chemical DeCu |
L1 | Electricity DeAg |
L2 | Chemical DeAg |
M1 | Electricity DeAu |
M2 | Chemical DeAu |
N1 | Electricity Pd |
N2 | Chemical Pd |
NW1 | Slimes treatment |
Internal Flows | |
Key | Description |
AB1 | PCB Shredder Plastic |
AB2 | PCB Shredder Metal |
BC | Black Copper |
BG | Heat Gases |
B3 | Slag RED |
CB | Slag OXI |
CD | Rough Copper |
CI | Gases OXI |
DC | Slag FR |
DE | Anode Copper HT |
EF | Anode Copper LT |
FD | Exhausted Anode |
FK | Slimes |
H4 | Hot Gases |
GH | Heat Gases |
JB | O2 Reduction |
JC | O2 OXI |
KF | Cu Sulphate (CuSO4) |
KL | Slimes w/o Cu |
LM | Slimes w/o Ag |
MN | Slimes w/o Au |
N4 | Slimes not recovered |
Outputs | |
Key | Description |
STM | Steam |
Cu | Copper Cathode |
Ag | Silver |
Au | Gold |
Pd | Palladium |
Waste | |
Key | Description |
PYW | Pyrometallurgical waste |
HGW | Hot Gases waste |
SLM | Slimes waste |
Key | Description | Fuel | Product | Type |
---|---|---|---|---|
SRD | Shredding (A) | A1 + A2 | AB1 + AB2 | PRODUCTIVE |
RED | Reduction (B) | (AB1 + JB − BG) + (B2 + AB2 + CB − B3) | BC | PRODUCTIVE |
OXI | Oxidation (C) | C2 + (C1 + JC − CI) + (BC + DC − CB) | CD | PRODUCTIVE |
FR | Fire Refining (D) | D1 + D2 + D3 + FD + (CD − DC) | DE | PRODUCTIVE |
AC | Anode casting (E) | E1 + DE | EF | PRODUCTIVE |
ER | Electrorefining (F) | F1 + F2 + KF + (EF − FD) | Cu + FK | PRODUCTIVE |
AB | Afterburner (G) | G1 + BG | GH | PRODUCTIVE |
HE | Heat exchanger (H) | H1 + H2 + (GH + CIeH4) | STM | PRODUCTIVE |
ASU | Air separation unit (J) | J1 + J2 | JB + JC | PRODUCTIVE |
DeCu | Decoppering (K) | K1 + K2 + FK | KL + KF | PRODUCTIVE |
AgRe | Silver recovery (L) | L1 + L2 + KL | Ag + LM | PRODUCTIVE |
AuRe | Gold recovery (M) | M1 + M2 + LM | Au + MN | PRODUCTIVE |
PdRe | Palladium recovery (N) | N1 + N2 + (MN − N4) | Pd | PRODUCTIVE |
PYRW | Pyrometallurgical waste | B3 | SLW | DISSIPATIVE |
HEW | Heat exchanger waste | H4 | HGW | DISSIPATIVE |
SLMW | Slime waste | N4 + NW1 | SLW | DISSIPATIVE |
Key | Type | Scenario 2020 | Scenario 2050 | ||||
---|---|---|---|---|---|---|---|
B | ELC | ERC | B | ELC | ERC | ||
A1 | RESOURCE | 80,174 | 1,101,744 | 11,688,623 | 80,174 | 1,541,591 | 11,688,623 |
A2 | RESOURCE | 877.4 | 877.4 | 877.4 | 877.4 | 877.4 | 877.4 |
B2 | RESOURCE | 1551.6 | 1551.6 | 1551.6 | 3075.9 | 3075.9 | 3075.9 |
C1 | RESOURCE | 1976.8 | 1976.8 | 1976.8 | 3579.0 | 3579.0 | 3579.0 |
C2 | RESOURCE | 1517.7 | 1517.7 | 1517.7 | 1306.2 | 1306.2 | 1306.2 |
D1 | RESOURCE | 4455.2 | 4455.2 | 4455.2 | 3253.6 | 3253.6 | 3253.6 |
D2 | RESOURCE | 407.1 | 407.1 | 407.1 | 506.9 | 506.9 | 506.9 |
D3 | RESOURCE | 78.0 | 78.0 | 78.0 | 50.8 | 50.8 | 50.8 |
E1 | RESOURCE | 23.0 | 23.0 | 23.0 | 22.9 | 22.9 | 22.9 |
F1 | RESOURCE | 1426.1 | 1426.1 | 1426.1 | 1413.3 | 1413.3 | 1413.3 |
F2 | RESOURCE | 160.0 | 160.0 | 160.0 | 159.3 | 159.3 | 159.3 |
G1 | RESOURCE | 18.9 | 18.9 | 18.9 | 43.5 | 43.5 | 43.5 |
H1 | RESOURCE | 276.9 | 276.9 | 276.9 | 307.8 | 307.8 | 307.8 |
H2 | RESOURCE | 103.3 | 103.3 | 103.3 | 114.8 | 114.8 | 114.8 |
J1 | RESOURCE | 1030.2 | 1030.2 | 1030.2 | 1091.9 | 1091.9 | 1091.9 |
J2 | RESOURCE | 3471.0 | 3471.0 | 3471.0 | - | - | - |
K1 | RESOURCE | 23.0 | 23.0 | 23.0 | 23.0 | 23.0 | 23.0 |
K2 | RESOURCE | 10.4 | 10.4 | 10.4 | 10.4 | 10.4 | 10.4 |
L1 | RESOURCE | 22.5 | 22.5 | 22.5 | 22.5 | 22.5 | 22.5 |
L2 | RESOURCE | 5.8 | 5.8 | 5.8 | 5.8 | 5.8 | 5.8 |
M1 | RESOURCE | 45.4 | 45.4 | 45.4 | 45.4 | 45.4 | 45.4 |
M2 | RESOURCE | 20.6 | 20.6 | 20.6 | 20.6 | 20.6 | 20.6 |
N1 | RESOURCE | 24.5 | 24.5 | 24.5 | 24.5 | 24.5 | 24.5 |
N2 | RESOURCE | 13.1 | 13.1 | 13.1 | 13.1 | 13.1 | 13.1 |
NW1 | RESOURCE | 51.4 | 51.4 | 51.4 | 51.4 | 51.4 | 51.4 |
AB1 | INTERNAL | 66,178 | 66,178 | 66,178 | 66,178 | 66,178 | 66,178 |
AB2 | INTERNAL | 13,995 | 1,035,566 | 11,622,444 | 13,995 | 1,475,413 | 11,622,444 |
BC | INTERNAL | 7366 | 1,054,384 | 11,780,363 | 6965 | 1,490,645 | 11,752,187 |
BG | INTERNAL | 17,800 | 17,800 | 17,800 | 19,009 | 19,009 | 19,009 |
B3 | INTERNAL | 9494 | 11,208 | 20,574 | 12,151 | 14,457 | 26,319 |
CB | INTERNAL | 5094 | 32,254 | 180,722 | 4674 | 29,242 | 155,614 |
CD | INTERNAL | 3525 | 1,027,457 | 11,627,237 | 3404 | 1,465,021 | 11,613,083 |
CH | INTERNAL | 683.9 | 683.9 | 683.9 | 1111.8 | 1111.8 | 1111.8 |
DC | INTERNAL | 755.2 | 4829.1 | 27,098.4 | 855.1 | 3364.2 | 16,270.2 |
DE | INTERNAL | 3643 | 1,176,477 | 13,340,609 | 3634 | 1,681,609 | 13,337,037 |
EF | INTERNAL | 2924 | 1,175,759 | 13,339,890 | 2920 | 1,680,895 | 13,336,323 |
FD | INTERNAL | 381.4 | 153,359 | 1,739,979 | 380.9 | 219,358 | 1,740,197 |
FK | INTERNAL | 14.1 | 966,557 | 11,252,636 | 14.8 | 1,403,515 | 11,252,637 |
GH | INTERNAL | 17,561.9 | 7561.9 | 17,561.9 | 18,696.1 | 18,696.1 | 18,696.1 |
H4 | INTERNAL | 5429.9 | 5429.9 | 5429.9 | 5417.8 | 5417.8 | 5417.8 |
JB | INTERNAL | 708.5 | 708.5 | 708.5 | 691.4 | 691.4 | 691.4 |
JC | INTERNAL | 50.0 | 50.0 | 50.0 | 61.0 | 61.0 | 61.0 |
KF | INTERNAL | 4.9 | 110.7 | 688.8 | 4.9 | 116.2 | 688.8 |
KL | INTERNAL | 7.3 | 966,445 | 11,251,946 | 7.3 | 1,403,396 | 11,251,946 |
LM | INTERNAL | 2.5 | 896,226 | 11,213,139 | 2.5 | 1,298,435 | 11,213,139 |
MN | INTERNAL | 1.9 | 155,859 | 9,994,760 | 1.9 | 170,453 | 9,994,760 |
N4 | INTERNAL | 0.5 | 11,777 | 92,926 | 0.5 | 17,296 | 92,926 |
STM | OUTPUT | 8794.9 | 8794.9 | 8794.9 | 9775.6 | 9775.6 | 9775.6 |
Cu | OUTPUT | 2421.8 | 54,775 | 340,955 | 2400.1 | 57,008 | 37,896 |
Ag | OUTPUT | 4.8 | 70,218 | 38,806 | 4.8 | 104,961 | 38,806 |
Au | OUTPUT | 0.6 | 740,366 | 1,218,379 | 0.6 | 1,127,981 | 1,218,379 |
Pd | OUTPUT | 1.4 | 144,082 | 9,901,829 | 1.4 | 153,157 | 9,901,829 |
PYW | WASTE | 9494.3 | 11,207.7 | 20,574.3 | 12,150.8 | 14,457.0 | 26,319.1 |
HGW | WASTE | 5429.9 | 5429.9 | 5429.9 | 5417.8 | 5417.8 | 5417.8 |
SLW | WASTE | 29.4 | 11,805.9 | 92,954.6 | 29.4 | 7325.0 | 92,954.6 |
Key | Scenario 2020 | Scenario 2050 | |||||||
---|---|---|---|---|---|---|---|---|---|
(B) | (ELC) | (ERC) | (NRE) | (RE) | (B) | (ELC) | (ERC) | ||
Cu | 71 | 32.9 | 1.9 | 1.1 | 79 | 46 | 31.6 | 1.4 | 1.0 |
Ag | 23,900 | 32.8 | 525.6 | 25.5 | 26,001 | 15,691 | 26.4 | 543.8 | 25.2 |
Au | 529,534 | 94.1 | 14,159 | 2043 | 859,624 | 559,376 | 56.2 | 14,799 | 2,004 |
Pd | 220,021 | 809.3 | 5842 | 33,536 | 247,851 | 209,101 | 484.6 | 4216 | 32,781 |
Cu | Ag | Au | Pd | |||||
---|---|---|---|---|---|---|---|---|
(MJ/kg) | Saving (%) | (MJ/kg) | Saving (%) | (MJ/kg) | Saving (%) | (MJ/kg) | Saving (%) | |
76.7 | - | 25,027 | - | 855,534 | - | 241,593 | 0.0 | |
25.0 | 67.4 | 3903 | 84.4 | 109,501 | 87.2 | 41,024 | 83.0 | |
1.81 | 97.6 | 492 | 98.0 | 13,252 | 98.5 | 5452 | 97.7 | |
0.86 | 98.9 | 333 | 98.7 | 9004 | 99.0 | 2524 | 98.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrubia, J.; Torres, C.; Valero, A.; Valero, A.; Mahmud Parvez, A.; Sajjad, M.; García Paz, F. Applying Circular Thermoeconomics for Sustainable Metal Recovery in PCB Recycling. Energies 2024, 17, 4973. https://doi.org/10.3390/en17194973
Torrubia J, Torres C, Valero A, Valero A, Mahmud Parvez A, Sajjad M, García Paz F. Applying Circular Thermoeconomics for Sustainable Metal Recovery in PCB Recycling. Energies. 2024; 17(19):4973. https://doi.org/10.3390/en17194973
Chicago/Turabian StyleTorrubia, Jorge, César Torres, Alicia Valero, Antonio Valero, Ashak Mahmud Parvez, Mohsin Sajjad, and Felipe García Paz. 2024. "Applying Circular Thermoeconomics for Sustainable Metal Recovery in PCB Recycling" Energies 17, no. 19: 4973. https://doi.org/10.3390/en17194973
APA StyleTorrubia, J., Torres, C., Valero, A., Valero, A., Mahmud Parvez, A., Sajjad, M., & García Paz, F. (2024). Applying Circular Thermoeconomics for Sustainable Metal Recovery in PCB Recycling. Energies, 17(19), 4973. https://doi.org/10.3390/en17194973