Simulation of Battery Thermal Management System for Large Maritime Electric Ship’s Battery Pack
Abstract
:1. Introduction
2. Battery Pack Simulation Model
2.1. Battery Pack Model
2.2. Computational Domain
2.3. Simulation Model and Sampling Point
3. Simulation Results
3.1. Analysis of Surface Center Temperature of Batteries
3.2. Effect on the Cell Temperature of Cooling Conditions
3.3. Analysis of Discharge Rate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kolodziejski, M.; Michalska-Pozoga, I. Battery energy storage systems in ships’ hybrid/electric propulsion systems. Energies 2023, 16, 1122. [Google Scholar] [CrossRef]
- Jeong, B.; Jeon, H.; Kim, S.; Kim, J.; Zhou, P. Evaluation of the Lifecycle Environmental Benefits of Full Battery Powered Ships: Comparative Analysis of Marine Diesel and Electricity. J. Mar. Sci. Eng. 2020, 8, 580. [Google Scholar] [CrossRef]
- Yara Birkeland, World’s 1st Fully-Electric Boxship, Prepares for Commercial Ops. Available online: https://www.offshore-energy.biz/yara-birkeland-worlds-1st-fully-electric-boxship-prepares-for-commercial-ops/ (accessed on 8 May 2024).
- Fan, Y.; Wang, Z.; Xiong, X.; Panchal, S.; Fraser, R.; Fowler, M. Multi-objective optimization design and experimental investigation for a prismatic lithium-ion battery integrated with a multi-stage Tesla valve-based cold plate. Processes 2023, 11, 1618. [Google Scholar] [CrossRef]
- Ramesh Babu, A.; Andric, J.; Minovski, B.; Sebben, S. System-level Modeling and Thermal Simulations of Large Battery Packs for Electric Trucks. Energies 2021, 14, 4796. [Google Scholar] [CrossRef]
- Gabbar, H.A.; Othman, A.M.; Abdussami, M.R. Review of battery management systems (BMS) development and industrial standards. Technologies 2021, 9, 28. [Google Scholar] [CrossRef]
- Pang, S.C.; Kalam, M.A.; Masjuki, H.H.; Hazrat, M.A. A Review on Air Flow and Coolant Flow Circuit in Vehicles Cooling System. Int. J. Heat Mass Transf. 2012, 55, 6295–6306. [Google Scholar] [CrossRef]
- Chanfreau, M.; Joseph, A.; Butler, D.; Swiatek, R. Advanced Engine Cooling Thermal Management System on a Dual Voltage 42V-14V Minivan; SAE International: Warrendale, PA, USA, 2001; Volume 111, pp. 107–114. [Google Scholar] [CrossRef]
- Hameed, M.M.; Mansor, M.B.; Azau, M.A.M.; Alshara, A.K. Computational design and analysis of LiFePO4 battery thermal management system (BTMS) using thermoelectric cooling/thermoelectric generator (TEC–TEG) in electric vehicles (EVs). J. Energy Storage 2023, 72, 108394. [Google Scholar] [CrossRef]
- Williford, R.E.; Viswanathan, V.V.; Zhang, J.G. Effects of Entropy Changes in Anodes and Cathodes on the Thermal Behavior of Lithium-ion Batteries. J. Power Sources 2009, 189, 101–107. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, J.; Kim, G.-H.; Yang, C.; Pesaran, A. Comparison of Different Cooling Methods for Lithium Ion Battery Cells. Appl. Therm. Eng. 2016, 94, 846–854. [Google Scholar] [CrossRef]
- Yeh, T.J.; Chen, Y.J.; Hwang, W.Y.; Lin, J.L. Incorporating Fan Control into Air-conditioning Systems to Improve Energy Efficiency and Transient Response. Appl. Therm. Eng. 2009, 29, 1955–1964. [Google Scholar] [CrossRef]
- Kumar, V.; Kapoor, S.; Arora, G.; Saha, S.K.; Dutta, P.A. Combined CFD and Flow Network Modeling Approach for Vehicle Underhood Air Flow and Thermal Analysis; SAE International: Warrendale, PA, USA, 2009. [Google Scholar] [CrossRef]
- Kumar, V.; Shendge, S.A.; Baskar, S. Underhood Thermal Simulation of a Small Passenger Vehicle with Rear Engine Compartment to Evaluate and Enhance Radiator Performance; SAE International: Warrendale, PA, USA, 2010. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Jang, J.Y. 3-D Thermal-hydraulic Analysis for Louver Fin Heat Exchangers with Variable Louver Angle. Appl. Therm. Eng. 2006, 26, 1629–1639. [Google Scholar] [CrossRef]
- Malapure, V.P.; Mitra, S.K.; Bhattacharya, A. Numerical Investigation of Fluid Flow and Heat Transfer over Louvered Fins in Compact Heat Exchanger. Int. J. Therm. Sci. 2007, 46, 199–211. [Google Scholar] [CrossRef]
- Rao, Z.H.; Zhang, G.Q. Thermal Properties of Paraffin Wax-based Composites Containing Graphite. Energy Sources Part A-Recovery Util. Environ. Eff. 2011, 33, 587–593. [Google Scholar] [CrossRef]
- Rao, Z.; Wang, S.; Wu, M.; Lin, Z.; Li, F. Experimental Investigation on Thermal Management of Electric Vehicle Battery with Heat Pipe. Energy Convers. Manag. 2013, 65, 92–97. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Negnevitsky, M.; Zhang, H. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles. J. Power Sources 2021, 501, 230001. [Google Scholar] [CrossRef]
- Bernagozzi, M.; Georgoulas, A.; Miche, N.; Marengo, M. Heat pipes in battery thermal management systems for electric vehicles: A critical review. Appl. Therm. Eng. 2023, 219, 119495. [Google Scholar] [CrossRef]
- Li, H.; Yang, H.; Yan, J.; Cen, K.; Ostrikov, K.K.; Bo, Z. Energy and entropy generation analysis in a supercapacitor for different operating conditions. Energy 2022, 260, 124932. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Yang, B.; Cai, S. A review of battery thermal management systems using liquid cooling and PCM. J. Energy Storage 2024, 76, 109836. [Google Scholar] [CrossRef]
- Fang, M.; Qiao, L.; Wu, M.; Ye, Y.; Yang, M.; Liu, S.; Ma, X. Hydrogen-bond-rich Composite Membrane with Improved Conductivity and Selectivity for Flow Battery. J. Power Sources 2023, 563, 232815. [Google Scholar] [CrossRef]
- Lei, J.; Yao, Y.; Huang, Y.; Lu, Y.C. A Highly Reversible Low-Cost Aqueous Sulfur–Manganese Redox Flow Battery. ACS Energy Lett. 2023, 8, 429–435. [Google Scholar] [CrossRef]
- Rehman, W.; Kimball, J.W.; Bo, R. Multi-layered Energy Management Framework for Extreme Fast Charging Stations Considering Demand Charges, Battery Degradation, and Forecast Uncertainties. IEEE Trans. Transp. Electrif. 2023, 10, 760–776. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, C.; Li, X. Opportunities and Challenges of Organic Flow Battery for Electrochemical Energy Storage Technology. J. Energy Chem. 2022, 67, 621–639. [Google Scholar] [CrossRef]
- Zhou, F.; Tang, Z.; Tian, Z. Research on comprehensive utilization technology of regenerative braking energy for heavy haul railway. In Proceedings of the 2023 5th Asia Energy and Electrical Engineering Symposium, (AEEES), Chengdu, China, 23–26 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1574–1581. [Google Scholar] [CrossRef]
- Chen, J.; Hu, H.; Wang, M.; Ge, Y.; Wang, K.; Huang, Y.; Yang, K.; He, Z.; Xu, Z.; Li, Y.R. Power flow control-based regenerative braking energy utilization in ac electrified railways: Review and future trends. IEEE Trans. Intell. Transp. Syst. 2024, 25, 6345–6365. [Google Scholar] [CrossRef]
- Perin, I.; Walker, G.R.; Ledwich, G. Load sharing and wayside battery storage for improving ac railway network performance with generic model for capacity estimation—Part 2. IEEE Trans. Ind. Electron. 2018, 65, 9459–9467. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, B.; Zhang, X.; Ying, S. Research progress in battery thermal management system under vessel working conditions. J. Energy Storage 2024, 96, 112761. [Google Scholar] [CrossRef]
- COMSOL. COMSOL Multiphysics 6.2 User’s Guide. 2023. Available online: www.comsol.com (accessed on 10 March 2024).
Parameter | Value |
---|---|
Density | 2055.2 kg/m3 |
Specific heat | 1399 J/(kg·K) |
Thermal conductivity coefficients | 18.3 W/(m·K) |
Thermal conductivity coefficients (thickness direction) | 1.1 W/(m·K) |
Cell Discharge Rate | Volumetric Heat Rejection |
---|---|
1C | 8916.7 W/m3 |
2C | 24,966.9 W/m3 |
3C | 52,291.6 W/m3 |
4C | 104,237.0 W/m3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, F.; Lee, G. Simulation of Battery Thermal Management System for Large Maritime Electric Ship’s Battery Pack. Energies 2024, 17, 4587. https://doi.org/10.3390/en17184587
Jia F, Lee G. Simulation of Battery Thermal Management System for Large Maritime Electric Ship’s Battery Pack. Energies. 2024; 17(18):4587. https://doi.org/10.3390/en17184587
Chicago/Turabian StyleJia, Fu, and Geesoo Lee. 2024. "Simulation of Battery Thermal Management System for Large Maritime Electric Ship’s Battery Pack" Energies 17, no. 18: 4587. https://doi.org/10.3390/en17184587
APA StyleJia, F., & Lee, G. (2024). Simulation of Battery Thermal Management System for Large Maritime Electric Ship’s Battery Pack. Energies, 17(18), 4587. https://doi.org/10.3390/en17184587