Techno-Economic Feasibility Analysis of an Offshore Wave Power Facility in the Aegean Sea, Greece
Abstract
:1. Introduction
2. Installation Description
2.1. Wave Dragon Converter
2.2. Installation Location
3. Methodology and Data
- Electricity Generation Calculation: Initially, the annual electricity output of the wave power facility is determined utilizing wave data from the Copernicus Marine System database [39]. These data include significant wave height , wave period , and wave direction specific to the area between eastern Crete and Kasos.
- Cost Estimation: The second phase involves a detailed review of the existing technical literature on wave generators to estimate the cost of the facility. This comprehensive assessment helps ensure that all potential expenses are considered.
- Techno-Economic Analysis: The final phase involves deriving techno-economic indicators such as LCOE and NPV through sensitivity analysis. This analysis aims to assess the economic viability of the wave power facility, providing crucial insights into its potential profitability and sustainability.
3.1. Phase 1: Annual Electricity Production
- The distance between the edges of the reflectors for the 1.5 MW wave energy converter (WEC) under examination is 152 m, as shown in Figure 7.
- : This denotes the hydrodynamic efficiency of the Wave Dragon converters, calculated as the ratio of the wave energy harvested and stored in the reservoir to the wave energy passing through the area, defined by the width between the reflector edges. This efficiency metric reflects the converter’s capability to harness available wave energy and varies from 0.25 to 0.35, as reported in sources [18,34,46,47].
- , , : These values represent the efficiencies of the Kaplan turbine, PMSGs, and power electronic converters, which are assessed at 0.91, 0.94, and 0.98, respectively [34].
- : This parameter reflects the availability of wave energy converters (WECs), accounting for the time they are out of service due to maintenance or failures. In this study, it is quantified as 0.98.
- : This factor accounts for the shading effect between wave energy converters (WECs) [48]. The Wave Dragon converters are positioned adjacent to each other and oriented toward the dominant northwest wave direction, as depicted in Figure 7. According to Figure 4, the waves exhibit exploitable northwest potential 80% of the time. While the Wave Dragon devices are constructed as floating and semi-moored, allowing for some modifiability of their reflectors to follow the wave direction [49], they still experience shading when wave directions deviate from the northwest. Reflecting the findings in the rose diagram of Figure 4, the shading factor is set at 80% to quantify the impact of this shading effect on the WECs.
3.2. Phase 2: Facility Cost
3.3. Phase 3: Levelized Cost of Energy—Net Present Value
4. Results
4.1. Levelized Cost of Energy
- ▪
- Scenario 1: Assumes a hydrodynamic efficiency () of 25% for the Wave Dragon converter, with a facility lifespan of 20 years.
- ▪
- Scenario 2: Assumes equal to 30%, with a facility lifetime of 20 years.
- ▪
- Scenario 3: The is kept at 30%, while the lifetime is increased to 25 years.
- ▪
- Scenario 4: Efficiency rises to 35%, with a lifetime of 25 years.
- ▪
- Scenario 5: Efficiency remains at 35%, with the facility lifespan extended to 30 years.
4.2. Net Present Value of the Wave Power Facility
5. Wave Potential in Other Locations across the Aegean Sea
6. Discussion
7. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Variable | Description | Unit |
lifetime | Project lifetime | years |
Wave energy period | s | |
(t) | Significant wave height | m |
Distance between the edges of the reflectors | m | |
Hydrodynamic efficiency | % | |
Turbine efficiency | % | |
Generator efficiency | % | |
Power electronic converter efficiency | % | |
Parameter for the out-of-service period | % | |
Shading efficiency | % | |
Total electric energy produced by the wave power facility | MWh | |
Total annual wave energy flux per unit width | MWh/m | |
Levelized cost of energy | EUR/MWh | |
Capital expenditure | EUR | |
Operating expenditure | % CAPEX | |
Capital recovery factor | - | |
WACC | Weighted average cost of capital | % |
Selling price of electric energy | EUR/MWh |
Appendix A
References
- Katsaprakakis, D.A.; Michopoulos, A.; Skoulou, V.; Dakanali, E.; Maragkaki, A.; Pappa, S.; Antonakakis, I.; Christakis, D.; Condaxakis, C. A Multidisciplinary Approach for an Effective and Rational Energy Transition in Crete Island, Greece. Energies 2022, 15, 3010. [Google Scholar] [CrossRef]
- Vivanco-Martín, B.; Iranzo, A. Analysis of the European Strategy for Hydrogen: A Comprehensive Review. Energies 2023, 16, 3866. [Google Scholar] [CrossRef]
- European Commission. REPowerEU: Joint European Action for More Affordable, Secure and Sustainable Energy. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_22_1511 (accessed on 2 September 2023).
- Satymov, R.; Bogdanov, D.; Dadashi, M.; Lavidas, G.; Breyer, C. Techno-economic assessment of global and regional wave energy resource potentials and profiles in hourly resolution. Appl. Energy 2024, 364, 123119. [Google Scholar] [CrossRef]
- Veerabhadrappa, K.; Suhas, B.G.; Mangrulkar, C.K.; Suresh Kumar, R.; Mudakappanavar, V.S.; Seetharamu, K.N. Power Generation Using Ocean Waves: A Review. Glob. Transit. Proc. 2022, 3, 359–370. [Google Scholar] [CrossRef]
- Pinhão, M.; Fonseca, M.; Covas, R. Electricity Spot Price Forecast by Modelling Supply and Demand Curve. Mathematics 2022, 10, 2012. [Google Scholar] [CrossRef]
- Amin, A.; Ebeed, M.; Nasrat, L.; Aly, M.; Ahmed, E.M.; Mohamed, E.A.; Alnuman, H.H.; El Hamed, A.M.A. Techno-Economic Evaluation of Optimal Integration of PV Based DG with DSTATCOM Functionality with Solar Irradiance and Loading Variations. Mathematics 2022, 10, 2543. [Google Scholar] [CrossRef]
- Friedrich, D.; Lavidas, G. Evaluation of the effect of flexible demand and wave energy converters on the design of hybrid energy systems. IET Renew. Power Gener. 2017, 11, 1113–1119. [Google Scholar] [CrossRef]
- European Commission. The EU Blue Economy Report 2023; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Kozyrakis, G.V.; Spanoudaki, K.; Varouchakis, E.A. Long-term wave energy potential estimation in the Aegean and Ionian seas using dynamic downscaling and wave modelling techniques. Appl. Ocean Res. 2023, 131, 103446. [Google Scholar] [CrossRef]
- Castro-Santos, L.; Bento, A.R.; Soares, C.G. The Economic Feasibility of Floating Offshore Wave Energy Farms in the North of Spain. Energies 2020, 13, 806. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Wang, C.M.; Tay, Z.Y.; Luong, V.H. Wave energy converter and large floating platform integration: A review. Ocean Eng. 2020, 213, 107768. [Google Scholar] [CrossRef]
- Pennock, S.; Vanegas-Cantarero, M.M.; Bloise-Thomaz, T.; Jeffrey, H.; Dickson, M.J. Life cycle assessment of a point-absorber wave energy array. Renew. Energy 2022, 190, 1078–1088. [Google Scholar] [CrossRef]
- Rezaei, S.; Rahimi, A.; Parvizian, J.; Mansourzadeh, S.; Düster, A. Dimensional optimization of a two-body Wave energy converter using response surface methodology. Ocean Eng. 2022, 261, 112186. [Google Scholar] [CrossRef]
- Dalton, G.; Alcorn, R.; Lewis, T. Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America. Renew. Energy 2009, 35, 443–455. [Google Scholar] [CrossRef]
- He, H.; Qu, Q.; Li, J. Numerical Simulation of Section Systems in the Pelamis Wave Energy Converter. Adv. Mech. Eng. 2013, 5, 186056. [Google Scholar] [CrossRef]
- Ibarra-Berastegi, G.; Sáenz, J.; Ulazia, A.; Serras, P.; Esnaola, G.; Garcia-Soto, C. Electricity production, capacity factor, and plant efficiency index at the Mutriku wave farm (2014–2016). Ocean Eng. 2018, 147, 20–29. [Google Scholar] [CrossRef]
- Frigaard, P.; Tedd, J.; Kofoed, J.P.; Friis-Madsen, E. 3 years’ experience with energy production on the Nissum Bredning Wave Dragon Prototype. In Proceedings of the CA-OE Workshop, Lisbon, Protugal, 16–17 November 2006. [Google Scholar]
- Contestabile, P.; Di Lauro, E.; Galli, P.; Corselli, C.; Vicinanza, D. Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives). Sustainability 2017, 9, 613. [Google Scholar] [CrossRef]
- Beatty, S.J.; Wild, P.; Buckham, B.J. Integration of a wave energy converter into the electricity supply of a remote Alaskan island. Renew. Energy 2010, 35, 1203–1213. [Google Scholar] [CrossRef]
- Lavidas, G.; Venugopal, V. Application of numerical wave models at European coastlines: A review. Renew. Sustain. Energy Rev. 2018, 92, 489–500. [Google Scholar] [CrossRef]
- Lavidas, G.; Venugopal, V. Characterising the wave power potential of the Scottish coastal environment. Int. J. Sustain. Energy 2018, 37, 684–703. [Google Scholar] [CrossRef]
- Lavidas, G.; Blok, K. Shifting wave energy perceptions: The case for wave energy converter (WEC) feasibility at milder resources. Renew. Energy 2021, 170, 1143–1155. [Google Scholar] [CrossRef]
- Lavidas, G.; Venugopal, V. Prospects and applicability of wave energy for South Africa. Int. J. Sustain. Energy 2018, 37, 230–248. [Google Scholar] [CrossRef]
- Dialyna, E.; Tsoutsos, T. Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects. Energies 2021, 14, 4764. [Google Scholar] [CrossRef]
- Foteinis, S.; Synolakis, C.E. Field based estimates of wave power at a nearshore Mediterranean locale for sustainable wave energy harnessing. Sustain. Energy Technol. Assess. 2023, 59, 103410. [Google Scholar] [CrossRef]
- Reguero, B.G.; Losada, I.J.; Méndez, F.J. A global wave power resource and its seasonal, interannual and long-term variability. Appl. Energy 2015, 148, 366–380. [Google Scholar] [CrossRef]
- Emine, A.; Akpınar, A.; Kankal, M.; Amarouche, K. Wave Power Trends over the Mediterranean Sea Based on Innovative Methods and 60-Year ERA5 Reanalysis. Sustainability 2023, 15, 8590. [Google Scholar] [CrossRef]
- Lavidas, G.; Venugopal, V. Wave energy resource evaluation and characterisation for the Libyan Sea. Int. J. Mar. Energy 2017, 18, 1–14. [Google Scholar] [CrossRef]
- Simonetti, I.; Cappietti, L. Mediterranean coastal wave-climate long-term trend in climate change scenarios and effects on the optimal sizing of OWC wave energy converters. Coast. Eng. 2023, 179, 104247. [Google Scholar] [CrossRef]
- Miquel, A.; Lamberti, A.; Antonini, A.; Archetti, R. The MoonWEC, a new technology for wave energy conversion in the Mediterranean Sea. Ocean Eng. 2020, 217, 107958. [Google Scholar] [CrossRef]
- Jadidoleslam, N.; Özger, M.; Ağıralioğlu, N. Wave power potential assessment of Aegean Sea with an integrated 15-year data. Renew. Energy 2016, 86, 1045–1059. [Google Scholar] [CrossRef]
- Soukissian, T.; Gizari, N.; Chatzinaki, M. Wave Potential of the Greek Seas. WIT Trans. Ecol. Environ. 2011, 143, 203–213. [Google Scholar]
- Parmeggiani, S.; Chozas, J.F.; Pecher, A.; Friis-Madsen, E.; Sørensen, H.C.; Kofoed, J.P. Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology. In Proceedings of the 9th European Wave and Tidal Conference, Southampton, UK, 5–9 September 2011. [Google Scholar]
- Sørensen, H.C.; Friis-Madsen, E. Wave Dragon 1.5 MW North Sea Demonstrator Phase 1; EUDP J.nr. 64010-0405; Wave Dragon: Copenhagen, Denmark, 2015; Available online: https://energiforskning.dk/files/slutrapporter/wd15mwv4_efm-17.pdf (accessed on 9 July 2024).
- Ahmed, A.; Pompodakis, E.E.; Katsigiannis, Y.; Karapidakis, E.S. Optimizing the Installation of a Centralized Green Hydrogen Production Facility in the Island of Crete, Greece. Energies 2024, 17, 1924. [Google Scholar] [CrossRef]
- Emmanuel, K.; Kalogerakis, C.; Pompodakis, E. Sustainable Power Generation Expansion in Island Systems with Extensive RES and Energy Storage. Inventions 2023, 8, 127. [Google Scholar] [CrossRef]
- Kardakaris, K.; Boufidi, I.; Soukissian, T. Offshore Wind and Wave Energy Complementarity in the Greek Seas Based on ERA5 Data. Atmosphere 2021, 12, 1360. [Google Scholar] [CrossRef]
- Copernicus Marine System. Available online: https://data.marine.copernicus.eu/product/MEDSEA_ANALYSISFORECAST_WAV_006_017/description (accessed on 15 June 2024).
- Besio, G.; Mentaschi, L.; Mazzino, A. Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast. Energy 2016, 94, 50–63. [Google Scholar] [CrossRef]
- Iglesias, G.; Carballo, R. Wave energy resource in the Estaca de Bares area (Spain). Renew. Energy 2010, 35, 1574–1584. [Google Scholar] [CrossRef]
- Liberti, L.; Carillo, A.; Sannino, G. Wave energy resource assessment in the Mediterranean, the Italian perspective. Renew. Energy 2013, 50, 938–949. [Google Scholar] [CrossRef]
- Rusu, L.; Guedes Soares, C. Wave energy assessments in the Azores islands. Renew. Energy 2012, 45, 183–196. [Google Scholar] [CrossRef]
- Vicinanza, D.; Contestabile, P.; Ferrante, V. Wave energy potential in the north-west of Sardinia (Italy). Renew. Energy 2013, 50, 506–521. [Google Scholar] [CrossRef]
- Sheng, W.; Li, H. A Method for Energy and Resource Assessment of Waves in Finite Water Depths. Energies 2017, 10, 460. [Google Scholar] [CrossRef]
- Babarit, A. A database of capture width ratio of wave energy converters. Renew. Energy 2015, 80, 610–628. [Google Scholar] [CrossRef]
- Aderinto, T.; Li, H. Review on Power Performance and Efficiency of Wave Energy Converters. Energies 2019, 12, 4329. [Google Scholar] [CrossRef]
- Beels, C.; Troch, P.; Kofoed, J.P.; Frigaard, P.; Kringelum, J.V.; Kromann, P.C.; Donovan, M.H.; De Rouck, J.; De Backer, G. A methodology for production and cost assessment of a farm of wave energy converters. Renew. Energy 2011, 36, 3402–3416. [Google Scholar] [CrossRef]
- Vidura, A.; Nurjaya, I.W.; Iqbal, M.; Jaya, I. Ocean wave measurement and wave energy calculation using overtopping power plant scheme. IOP Conf. Ser. Earth Environ. Sci. 2020, 429, 012047. [Google Scholar] [CrossRef]
- Lavidas, G. Energy and socio-economic benefits from the development of wave energy in Greece. Renew. Energy 2019, 132, 1290–1300. [Google Scholar] [CrossRef]
- Astariz, S.; Iglesias, G. The economics of wave energy: A review. Renew. Sustain. Energy Rev. 2015, 45, 397–408. [Google Scholar] [CrossRef]
- 2023 Levelized Cost of Energy+. Lazard. 12 April 2023, p. 9. Available online: https://www.lazard.com/research-insights/2023-levelized-cost-of-energyplus/ (accessed on 27 August 2023).
- Paspatis, A.; Fiorentzis, K.; Katsigiannis, Y.; Karapidakis, E. Smart Campus Microgrids towards a Sustainable Energy Transition—The Case Study of the Hellenic Mediterranean University in Crete. Mathematics 2022, 10, 1065. [Google Scholar] [CrossRef]
- Pompodakis, E.E.; Kryonidis, G.C.; Karapidakis, E.S. Volt/Var control and energy management in non-interconnected insular networks with multiple hybrid power plants. Appl. Energy 2023, 331, 120427. [Google Scholar] [CrossRef]
- Pompodakis, E.E.; Kryonidis, G.C.; Karapidakis, E.S. Optimizing the installation of hybrid power plants in non-interconnected islands. J. Energy Storage 2023, 74, 109511. [Google Scholar] [CrossRef]
- Barbarelli, S.; Amelio, M.; Castiglione, T.; Florio, G.; Scornaienchi, N.M. Design and analysis of a new wave energy converter based on a point absorber and a hydraulic system harvesting energy from waves near the shore in calm seas. Int. J. Energy Res. 2020, 45, 661–690. [Google Scholar] [CrossRef]
- Oikonomou, C.L.; Gomes, R.P.; Gato, L.M. Unveiling the potential of using a spar-buoy oscillating-water-column wave energy converter for low-power stand-alone applications. Appl. Energy 2021, 292, 116835. [Google Scholar] [CrossRef]
- Foteinis, S. Wave energy converters in low energy seas: Current state and opportunities. Renew. Sustain. Energy Rev. 2022, 162, 112448. [Google Scholar] [CrossRef]
- Wave Dragon Website. Available online: https://www.wavedragon.com/ (accessed on 27 August 2024).
- Guillou, N.; Lavidas, G.; Chapalain, G. Wave Energy Resource Assessment for Exploitation—A Review. J. Mar. Sci. Eng. 2020, 8, 705. [Google Scholar] [CrossRef]
Equipment/Service | Cost per 1.5 MW WEC | Total Cost |
---|---|---|
Development | ||
Engineering and management, planning and consenting | 2 Mil. EUR | 60 Mil. EUR |
Structure | ||
Main material—concrete (6.450 t) | 1.29 Mil. EUR | 38.7 Mil. EUR |
Other material—steel (50 t) | 0.17 Mil. EUR | 5.1 Mil. EUR |
Access system and platform | 0.02 Mil. EUR | 0.6 Mil. EUR |
Machine housing | 0.05 Mil. EUR | 1.5 Mil. EUR |
50-ton glass fiber | 0.46 Mil. EUR | 13.8 Mil. EUR |
Power take-off system | ||
Generator and turbines | 1.2 Mil. EUR | 36 Mil. EUR |
Power electronics | 0.6 Mil. EUR | 18 Mil. EUR |
Control and safety system | 0.2 Mil. EUR | 6 Mil. EUR |
Air system and hydraulics | 0.3 Mil. EUR | 9 Mil. EUR |
Mooring system | 0.7 Mil. EUR | 21 Mil. EUR |
Installation | ||
Pre-assembly and transport | 0.4 Mil. EUR | 12 Mil. EUR |
Installation on site | 0.4 Mil. EUR | 12 Mil. EUR |
Electrical connection | 0.51 Mil. EUR | 15.3 Mil. EUR |
Contingencies (10%) | 0.83 Mil. EUR | 24.9 Mil. EUR |
Total CAPEX | 9.13 Mil. EUR | 273.9 Mil. EUR |
Crete–Kasos | Western Crete | Karpathos | Tinos | Skyros |
---|---|---|---|---|
40.7 MWh/m | 49.2 MWh/m | 36.6 MWh/m | 41.2 MWh/m | 39.3 MWh/m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pompodakis, E.E.; Orfanoudakis, G.I.; Katsigiannis, Y.; Karapidakis, E. Techno-Economic Feasibility Analysis of an Offshore Wave Power Facility in the Aegean Sea, Greece. Energies 2024, 17, 4588. https://doi.org/10.3390/en17184588
Pompodakis EE, Orfanoudakis GI, Katsigiannis Y, Karapidakis E. Techno-Economic Feasibility Analysis of an Offshore Wave Power Facility in the Aegean Sea, Greece. Energies. 2024; 17(18):4588. https://doi.org/10.3390/en17184588
Chicago/Turabian StylePompodakis, Evangelos E., Georgios I. Orfanoudakis, Yiannis Katsigiannis, and Emmanouel Karapidakis. 2024. "Techno-Economic Feasibility Analysis of an Offshore Wave Power Facility in the Aegean Sea, Greece" Energies 17, no. 18: 4588. https://doi.org/10.3390/en17184588
APA StylePompodakis, E. E., Orfanoudakis, G. I., Katsigiannis, Y., & Karapidakis, E. (2024). Techno-Economic Feasibility Analysis of an Offshore Wave Power Facility in the Aegean Sea, Greece. Energies, 17(18), 4588. https://doi.org/10.3390/en17184588