Partial Shading of Photovoltaic Modules with Thin Linear Objects: Modelling in MATLAB Environment and Measurement Experiments
Abstract
:1. Introduction
Characteristics of Solar Radiation Reaching the PV Panel Surface
- Direct radiation. This is short-wave radiation with the direction of propagation aligned with the line connecting the Sun and the PV panel surface. The wavelengths of direct solar radiation, which after passing through the atmosphere reach the Earth’s surface at a rate of 98%, range from 0.3 to 2.5 µm. In this range is all visible radiation with wavelengths of 0.4–07 µm, infrared radiation in the IR-a range of 0.7–1.5 µm, and the upper part (1.5–2.5 µm) of infrared radiation in the IR-Bp range, as well as ultraviolet (UV) radiation in the UV-B and UV-A ranges.
- Diffuse radiation. This is the radiation which results from the refraction, reflection, and absorption of direct radiation by the Earth’s atmosphere. This is the cause of the blue radiation in the sky, due to the easier scattering of blue (short-wave) direct radiation from the Sun. Its spectral composition depends on haze, cloud cover, and the purity of the atmosphere. In addition, diffuse radiation includes the long-wave radiation emitted by the atmosphere, which has a much longer wavelength than direct and diffuse solar radiation. It is emitted around the clock in the wavelength range of 4–120 µm. The Liu–Jordan isotropic model for solar radiation reaching the active surface of a photovoltaic panel assumes that diffuse radiation reaches an arbitrarily directed surface uniformly from the entire blue hemisphere.
- Reflected solar radiation (albedo). This is the part of the direct and diffuse radiation reaching the surface of the PV panel which has been reflected by the PV panel’s surroundings in its direction. It depends on the reflectance of the PV panel’s ambient elements and is the product of the sum of the direct and diffuse radiation and the ambient reflectance.
2. Experiment Confirming the Significant Effect of Small Linear Shading on the Electrical Parameters of a PV Module
2.1. Description and Methodology of the Experiment
- No shade: The shade from the lightning conductor did not reach the module. This measurement was taken as a reference.
- Shade No. 1: The shade covered 3 cells per section.
- Shade No. 2: The shade covered 10 cells per section.
- Shade No. 3: The shade covered 12 cells per section.
2.2. Conclusions from the Experiment
3. Shade Modelling
3.1. Methodology
3.2. Mathematical Description of the Shading Phenomenon Originating from Sunlight
4. Experimental Verification of the Shade Modelling Results on a PV Module
- Pearson’s linear correlation coefficient r tells us about the strength and direction of the relationship between variables. A coefficient value of one indicates a perfect linear relationship.
- The determination coefficient R2 measures the proportion of variation in the explanatory variable, which is explained by the linear effect of the explanatory variable.
- The convergence coefficient Ⴔ, which complements R2, indicates which part of the measurement results is not explained by the model.
- The fitting coefficient d refers to the ratio of the maximum residual or deviation to its mean value.
5. Uncertainty and Measurement Error
- Incomplete definition of the measured quantity;
- Imperfections in the technical characteristics of the instrument (hysteresis, spread of indications, or specified resolution);
- Imperfect realisation of the measured quantity;
- Non-representative measurements, the results of which may not represent the measured quantity;
- Incomplete knowledge of the influence of external conditions on the measurement procedure;
- Subjective observer errors in reading analog instrument indications (parallax error);
- Limited resolution or threshold sensitivity of the instrument;
- Inaccurately known values assigned to standards and reference materials;
- Inaccurately known values of constants and other parameters obtained from external sources and used in data processing procedures;
- Simplifying approximations and assumptions used in measurement methods and procedures.
6. Summary
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sekhar, V.R.; Pradeep, P. A Review Paper on Advancements in Solar PV Technology, Environmental Impact of PV Cell Manufacturing. Int. J. Adv. Res. Sci. Commun. Technol. (IJARSCT) 2021, 8, 485–492. [Google Scholar] [CrossRef]
- Udayakumar, M.D.; Anushree, G.; Sathyaraj, J.; Manjunathan, A. The impact of advanced technological developments on solar PV value chain. Mater. Today Proc. 2021, 45, 2053–2058. [Google Scholar] [CrossRef]
- Renewable Capacity Statistics 2023; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2023; ISBN 978-92-9260-525-4.
- Renewable Energy Statistics 2023; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2023; ISBN 978-92-9260-537-7.
- Ding, H.; Zhou, D.Q.; Liu, G.Q.; Zhou, P. Cost reduction or electricity penetration: Government R&D-induced PV development and future policy schemes. Renew. Sustain. Energy Rev. 2020, 124, 109752. [Google Scholar] [CrossRef]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. A review of hybrid renewable energy systems: Solar and wind-powered solutions: Challenges, opportunities, and policy implications. Results Eng. 2023, 20, 101621. [Google Scholar] [CrossRef]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Zuhair, A.; Jaszczur, M.; Salman, H. Hydrogen as an energy carrier: Properties, storage methods, challenges, and future implications. Environ. Syst. Decis. 2024, 44, 327–350. [Google Scholar] [CrossRef]
- Kałuża, T.; Hämmerling, M.; Zawadzki, P.; Czekała, W.; Kasperek, R.; Sojka, M.; Mokwa, M.; Ptak, M.; Szkudlarek, A.; Czechlowski, M.; et al. The hydropower sector in Poland: Barriers and the outlook for the future. Renew. Sustain. Energy Rev. 2022, 163, 112500. [Google Scholar] [CrossRef]
- Kowalczyk-Juśko, A.; Pochwatka, P.; Mazurkiewicz, J.; Pulka, J.; Kępowicz, B.; Janczak, D.; Dach, J. Reduction of Greenhouse Gas Emissions by Replacing Fertilizers with Digestate. J. Ecol. Eng. 2023, 24, 312–319. [Google Scholar] [CrossRef]
- Eze, V.H.U.; Ernrst, E.; Kalyankolo, U.; Okafor, O.W.; Ugwu, C.; Ogenyi, F.C. Overview of Renewable Energy Power Generation and Conversion (2015–2023). Eurasian J. Sci. Eng. 2023, 4, 105–113. [Google Scholar]
- Drabczyk, K.; Sobik, P.; Kulesza-Matlak, G.; Jeremiasz, O. Laser-Induced Backward Transfer of Light Reflecting Zinc Patterns on Glass for High Performance Photovoltaic Modules. Materials 2023, 16, 7538. [Google Scholar] [CrossRef]
- Sibiński, M. Review of Luminescence-Based Light Spectrum Modifications Methods and Materials for Photovoltaics Applications. Materials 2023, 16, 3112. [Google Scholar] [CrossRef]
- Abdelaziz, G.; Hichem, H.; Chiheb, B.R.; Rached, G. Shading effect on the performance of a photovoltaic panel. In Proceedings of the 2nd IEEE International Conference on Signal, Control and Communication (SCC) 2021, Tunis, Tunisia, 20–22 December 2021. [Google Scholar] [CrossRef]
- Teneta, J.; Janowski, M.; Bender, K. Analysis of the Deposition of Pollutants on the Surface of Photovoltaic Modules. Energies 2023, 16, 7749. [Google Scholar] [CrossRef]
- Ramaprabha, R.; Mathur, B.L. A Comprehensive Review and Analysis of Solar Photovoltaic, Array Configurations under Partial Shaded Conditions. Int. J. Photoenergy 2012, 2012, 120214. [Google Scholar] [CrossRef]
- Gupta, A.K.; Singh, R.; Kumar, S. I–V Characteristics-Based Shading Detection Technique for PV Applications. Trans. Indian Natl. Acad. Eng. 2023, 8, 607–615. [Google Scholar] [CrossRef]
- Fathy, A.; Ame, D.A.; Al-Dhaifallah, M. Modified tunicate swarm algorithm-based methodology for enhancing the operation of partially shaded photovoltaic system. Alex. Eng. J. 2023, 79, 449–470. [Google Scholar] [CrossRef]
- Fu, C.; Zhang, L. A novel method based on tuna swarm algorithm under complex partial shading conditions in PV system. Sol. Energy 2022, 248, 2840. [Google Scholar] [CrossRef]
- Ragb, O.; Bakr, H. A new technique for estimation of photovoltaic system and tracking power peaks of PV array under partial shading. Energy 2023, 268, 126680. [Google Scholar] [CrossRef]
- Hussaian Basha, C.; Palati, M.; Dhanamjayulu, C.; Muyeen, S.M.; Prashanth, V. A novel on design and implementation of hybrid MPPT controllers for solar PV systems under various partial shading conditions. Sci. Rep. 2024, 14, 1609. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, A.M.; Shaikh, M.F.; Shaikh, S.A.; Krichen, M.; Rahimoon, R.A.; Qadir, A. Comparative analysis of different MPPT techniques using boost converter for photovoltaic systems under dynamic shading conditions. Sustain. Energy Technol. Assess. 2023, 57, 103259. [Google Scholar] [CrossRef]
- Xu, L.; Ding, P.; Zhang, Y.; Huang, Y.; Li, J.; Ma, R. Sensitivity analysis of the shading effects from obstructions at different positions on solar photovoltaic panels. Energy 2024, 290, 130229. [Google Scholar] [CrossRef]
- Petrakis, T.; Thomopoulos, V.; Kavga, A.; Argiriou, A.A. An algorithm for calculating the shade created by greenhouse integrated photovoltaics. Energ. Ecol. Environ. 2023, 9, 272–300. [Google Scholar] [CrossRef]
- Kermadi, M.; Chin, V.J.; Mekhilef, S.; Salam, Z. A fast and accurate generalized analytical approach for PV arrays modeling under partial shading conditions. Sol. Energy 2020, 208, 753–765. [Google Scholar] [CrossRef]
- Sakthivel, G.; Winston, D.P.; Kumar, B.P.; Ilhami, C. Power enhancement in PV arrays under partial shaded conditions with different array configuration. Heliyon 2024, 10, e23992. [Google Scholar] [CrossRef]
- Kumar, S.K.; Winston, D.P. Performance analysis of winnowing dynamic reconfiguration in partially shaded solar photovoltaic system. Sol. Energy 2024, 268, 112309. [Google Scholar] [CrossRef]
- Ramachandra, N.; Natarajan, R. An efficient power extraction approach for roof-top photovoltaic systems under immobile shade scenarios. J. Clean. Prod. 2023, 429, 139312. [Google Scholar] [CrossRef]
- Kumar, P.R.; Kumar, M.; Babu, T.S.; Kumar, S.N.; Kuchhal, P.; Minai, A.F.; Sharma, A. Study on Meta-heuristics techniques for shade dispersion to enhance GMPP of PV array systems under PSCs. Sustain. Energy Technol. Assess. 2023, 58, 103353. [Google Scholar] [CrossRef]
- Ahluwalia, D.; Anjum, S.; Mukherjee, V. Boost in energy generation using robust reconfiguration: A novel scheme for photovoltaic array under realistic fractional partial shadings. Energy Convers. Manag. 2023, 290, 117211. [Google Scholar] [CrossRef]
- Murugesan, P.; Winston, D.P.; Murugesan, P.; Solaisamy, N.K. One-step adaptive reconfiguration technique for partial shaded photovoltaic array. Sol. Energy 2023, 26, 111949. [Google Scholar] [CrossRef]
- Jha, V. Generalized modelling of PV module and different PV array configurations under partial shading condition. Sustain. Energy Technol. Assess. 2023, 56, 103021. [Google Scholar] [CrossRef]
- Satpathy, P.R.; Aljafari, B.; Thanikanti, S.B.; Sharma, R. An efficient power extraction technique for improved performance and reliability of solar PV arrays during partial shading. Energy 2023, 282, 128992. [Google Scholar] [CrossRef]
- Murugesan, P.; Winston, D.P.; Murugesan, P.; Periyasamy, P. Battery based mismatch reduction technique for partial shaded solar PV system. Energy 2023, 272, 127063. [Google Scholar] [CrossRef]
- Pillai, D.S.; Prasanth Ram, J.P.; Shabunko, V.; Kim, Y.-J. A new shade dispersion technique compatible for symmetrical and unsymmetrical photovoltaic (PV) arrays. Energy 2021, 225, 120241. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A.; Semeraro, C.; Radi, M.A.; Rezk, H.; Muhaisen, O.; Al-Isawi, O.A.; Sayed, E.T. Artificial neural networks applications in partially shaded PV systems. Therm. Sci. Eng. Prog. 2023, 37, 101612. [Google Scholar] [CrossRef]
- Mathew, D.; Ram, J.P.; Kim, Y.-J. Unveiling the distorted irradiation effect (Shade) in photovoltaic (PV) power conversion—A critical review on Causes, Types, and its minimization methods. Sol. Energy 2023, 266, 112141. [Google Scholar] [CrossRef]
- Hong, Y.; Zhu, M.; Sun, K.; Gao, J.; Shan, C. Research on temperature anomalies caused by the shading of individual solar cells in photovoltaic modules. Sol. Energy 2024, 269, 112343. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Su, X.; Liu, Z.; Lian, J.; Luo, Y. Improved thermal-electrical-optical model and performance assessment of a PV-blind embedded glazing façade system with complex shading effects. Appl. Energy 2019, 255, 113896. [Google Scholar] [CrossRef]
- Piccoli, E.; Dama, A.; Dolara, A.; Leva, S. Experimental validation of a model for PV systems under partial shading for building integrated applications. Sol. Energy 2019, 183, 356–370. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; Ma, S.; Chen, M.; Zhang, B.; Jiang, B. Analysis of photovoltaic array maximum power point tracking under uniform environment and partial shading condition: A review. Energy Rep. 2022, 8, 13235–13252. [Google Scholar] [CrossRef]
- Ishaque, K.; Salam, Z.; Syafaruddin. A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model. Solar Energy 2011, 85, 2217–2227. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, S.; Xie, L.; Hong, R.; Shen, H. Investigating the Impact of Shading Effect on the Characteristics of a Large-Scale Grid-Connected PV Power Plant in Northwest China. Int. J. Photoenergy 2014, 2014, 763106. [Google Scholar] [CrossRef]
- Dolara, A.; Lazaroiu, G.C.; Ogliari, E. Efficiency analysis of PV power plants shaded by MV overhead lines. Int. J. Energy Environ. Eng. 2016, 7, 115–123. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; ISBN 978-0-470-87366-3. [Google Scholar]
- Kreft, W.; Filipowicz, M.; Żołądek, M. Reduction of electrical power loss in a photovoltaic chain in conditions of partial shading. Opt.-Int. J. Light Electron Opt. 2019, 202, 163559. [Google Scholar] [CrossRef]
- Pareek, S.; Dahiya, R. Enhanced power generation of partial shaded photovoltaic fields by forecasting the interconnection of modules. Energy 2016, 95, 561–572. [Google Scholar] [CrossRef]
- Mäki, A.; Valkealahti, S. Power Losses in Long String and Parallel-Connected Short Strings of Series-Connected Silicon-Based Photovoltaic Modules Due to Partial Shading Conditions. IEEE Trans. Energy Convers. 2012, 27, 173–183. [Google Scholar] [CrossRef]
- Villa, L.F.L.; Picault, D.; Raison, B.; Bacha, S.; Labonne, A. Maximizing the Power Output of Partially Shaded Photovoltaic Plants Through Optimization of the Interconnections Among Its Modules. IEEE J. Photovolt. 2012, 2, 154–163. [Google Scholar] [CrossRef]
- Belhaouas, N.; Cheikh, M.S.A.; Agathoklis, P.; Oularbi, M.R.; Amrouche, B.; Sedraoui, K.; Djilali, N. PV array power output maximization under partial shading using new shifted PV array arrangements. Appl. Energy 2017, 187, 326–337. [Google Scholar] [CrossRef]
- Kawamura, H.; Naka, K.; Yonekura, N.; Yamanaka, S.; Kawamura, H.; Ohno, H.; Naito, K. Simulation of I-V characteristics of a PV module with shaded PV cells. Sol. Energy Mater. Sol. Cells 2003, 75, 613–621. [Google Scholar] [CrossRef]
- Kreft, W.; Przenzak, E.; Filipowicz, M. Photovoltaic chain operation analysis in condition of partial shading for systems with and without bypass diodes. Opt.-Int. J. Light Electron Opt. 2021, 247, 167840. [Google Scholar] [CrossRef]
- Cole, I.R. Modelling CPV. Ph.D. Thesis, Loughborough University, Loughborough, UK, 2015. [Google Scholar]
Case | Isc | Voc | Impp | Vmpp | Pmpp | Pmpp Ver. Ref. |
---|---|---|---|---|---|---|
(A) | (V) | (A) | (V) | (W) | (%) | |
No shade | 9.53 | 37.11 | 8.71 | 29.31 | 255.21 | - |
Shade No. 1 | 9.66 | 37.43 | 8.50 | 29.59 | 251.64 | −1.40% |
Shade No. 2 | 9.47 | 36.82 | 8.18 | 29.29 | 239.47 | −6.17% |
Shade No. 3 | 8.54 | 37.30 | 8.09 | 29.77 | 240.93 | −5.60% |
Measured Data | Normalised Data | Original Model | Moving Window Model | ||
---|---|---|---|---|---|
Distance (mm) | Irradiation (W/m2) | Normalised Distance (mm) | Normalised Brightness | ||
10.25 | 194 | −74.2500 | 1.0000 | 1.000 | 1.000 |
17.99 | 194 | −66.5100 | 1.0000 | 1.000 | 1.000 |
25.07 | 192 | −59.4300 | 0.9890 | 0.995 | 0.967 |
29.76 | 135 | −54.7400 | 0.6740 | 0.612 | 0.608 |
30.97 | 106 | −53.5300 | 0.5138 | 0.475 | 0.476 |
31.8 | 77 | −52.7000 | 0.3536 | 0.381 | 0.386 |
33.31 | 56 | −51.1900 | 0.2376 | 0.219 | 0.230 |
34.03 | 31 | −50.4700 | 0.0994 | 0.150 | 0.168 |
36.36 | 16 | −48.1400 | 0.0166 | 0.005 | 0.034 |
62.79 | 13 | −21.7100 | 0.0000 | 0.000 | 0.000 |
102.95 | 12 | 18.4500 | −0.0055 | 0.000 | 0.000 |
108.57 | 13 | 24.0700 | 0.0000 | 0.000 | 0.000 |
113.87 | 12 | 29.3700 | −0.0055 | 0.000 | 0.000 |
131.37 | 13 | 46.8700 | 0.0000 | 0.000 | 0.006 |
134.01 | 23 | 49.5100 | 0.0552 | 0.071 | 0.099 |
135.08 | 38 | 50.5800 | 0.1381 | 0.161 | 0.177 |
136.36 | 63 | 51.8600 | 0.2762 | 0.289 | 0.297 |
138.99 | 107 | 54.4900 | 0.5193 | 0.584 | 0.581 |
139.34 | 146 | 54.8400 | 0.7348 | 0.623 | 0.619 |
140.23 | 165 | 55.7300 | 0.8398 | 0.720 | 0.713 |
141.98 | 184 | 57.4800 | 0.9448 | 0.889 | 0.867 |
154.21 | 194 | 69.7100 | 1.0000 | 1.000 | 1.000 |
Calculated Value | Symbol | Original Model | Moving Window Model |
---|---|---|---|
Correlation coefficient | r | 0.994303 | 0.999627 |
Determination coefficient | R2 | 0.988638 | 0.986691 |
Convergence coefficient | Ⴔ | 0.011362 | 0.013309 |
Fitting coefficient | d | 0.991351 | 0.992360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teneta, J.; Kreft, W.; Janowski, M. Partial Shading of Photovoltaic Modules with Thin Linear Objects: Modelling in MATLAB Environment and Measurement Experiments. Energies 2024, 17, 3546. https://doi.org/10.3390/en17143546
Teneta J, Kreft W, Janowski M. Partial Shading of Photovoltaic Modules with Thin Linear Objects: Modelling in MATLAB Environment and Measurement Experiments. Energies. 2024; 17(14):3546. https://doi.org/10.3390/en17143546
Chicago/Turabian StyleTeneta, Janusz, Wojciech Kreft, and Mirosław Janowski. 2024. "Partial Shading of Photovoltaic Modules with Thin Linear Objects: Modelling in MATLAB Environment and Measurement Experiments" Energies 17, no. 14: 3546. https://doi.org/10.3390/en17143546
APA StyleTeneta, J., Kreft, W., & Janowski, M. (2024). Partial Shading of Photovoltaic Modules with Thin Linear Objects: Modelling in MATLAB Environment and Measurement Experiments. Energies, 17(14), 3546. https://doi.org/10.3390/en17143546