Techno-Economic Analysis of Clean Hydrogen Production Plants in Sicily: Comparison of Distributed and Centralized Production
Abstract
:1. Introduction
1.1. Electrolyzers: The State of the Art
1.2. Literature Review on Techno-Economic Evaluations of Green Hydrogen Production
1.3. Motivation and Literature Gap
2. Materials and Methods
- is the rated size of the compressor [kW];
- is the hydrogen mass flow rate [kg/s];
- is the specific work of the compressor [kJ/kg];
- is the isentropic efficiency (80%);
- is the mechanical efficiency (98%);
- is the electric generator efficiency (96%);
- is the ratio between the specific heat at constant pressure and the specific heat at constant volume and is equal to 1.4 for hydrogen;
- is the hydrogen gas constant (4.12 kJ/kgK);
- is the temperature of the hydrogen entering the compressor;
- is the pressure of the hydrogen leaving the compressor;
- is the pressure of the hydrogen entering the compressor;
3. Results
3.1. Case 1: On-Site Production
3.1.1. Cases 1. A.1 (PV System without Electric Energy Storage System)
3.1.2. Cases 1. A.2 (PV System with Electric Energy Storage System)
3.1.3. Cases 1. B (Grid-Powered Plants)
3.2. Case 2: Centralized Production
3.2.1. Cases 2. A.1 and 2. B.1 (Alkaline Systems Powered by Solar PV and Wind Energy)
3.2.2. Cases 2. A.2 and 2. B.2 (PEM Systems Powered by Solar PV and Wind Energy)
4. Discussion of Results and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. Global Hydrogen Review 2023; IEA: Paris, France, 2023. [Google Scholar]
- EU Rules for Renewable Hydrogen: Delegated Regulations on a Methodology for Renewable Fuels of Non-Biological Origin|Think Tank|European Parliament. Available online: https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2023)747085 (accessed on 20 May 2024).
- IRENA. Green Hydrogen Supply: A Guide to Policy Making; IRENA: Abu Dhabi, United Arab Emirates, 2021; ISBN 978-92-9260-344-1. [Google Scholar]
- IRENA. Renewable Power Generation Costs in 2022; IRENA: Abu Dhabi, United Arab Emirates, 2023; ISBN 978-92-9260-544-5. [Google Scholar]
- Confindustria, ENEA. Piano d’azione per l’idrogeno—Focus Tecnologie Industriali; ENEA: Roma, Italy, 2022. [Google Scholar]
- La Guardia, M.; D’Ippolito, F.; Cellura, M. A GIS-Based Optimization Model Finalized to the Localization of New Power-to-Gas Plants: The Case Study of Sicily (Italy). Renew. Energy 2022, 197, 828–835. [Google Scholar] [CrossRef]
- Climate Change: What the EU Is Doing—Consilium. Available online: https://www.consilium.europa.eu/en/policies/climate-change/ (accessed on 26 June 2024).
- Ddg 2070 Del 30.12.2022 Pubbl. Il 30.12.2022—D.G.—Approvazione Dell’avviso Pubblico Finalizzato Alla Selezione Di Proposte Progettuali Volte Alla Realizzazione Di Impianti Di Produzione Di Idrogeno Rinnovabile in Aree Industriali Dismesse, Da Finanzia|Regione Siciliana. Available online: https://www.regione.sicilia.it/istituzioni/servizi-informativi/decreti-e-direttive/ddg-2070-30122022-pubbl-30122022-dg-approvazione-avviso-pubblico-finalizzato-alla-selezione-proposte-progettuali-volte-alla-realizzazione-impianti (accessed on 27 September 2023).
- D.D.G. n 484 Del 16/05/2023. Available online: https://www.regione.sicilia.it/sites/default/files/2023-05/484-DDG%20approvazione%20graduatoria%20idrogeno%28firmato%29.pdf (accessed on 25 June 2024).
- HydroNews. Available online: https://hydronews.it/duferco-produrra-h2-green-nel-suo-stabilimento-siciliano-di-giammoro-grazie-alla-partnership-con-la-portoghese-fusion-fuel/ (accessed on 27 September 2023).
- Focusicilia. Available online: https://focusicilia.it/rinnovabili-la-sicilia-punta-sullidrogeno-verde-per-le-imprese-629-mln-di-euro/ (accessed on 27 September 2023).
- Enel Green Power. Available online: https://www.enelgreenpower.com/it/media/news/2022/07/idrogeno-verde-acciaierie-sicilia (accessed on 27 September 2023).
- Chatenet, M.; Pollet, B.G.; Dekel, D.R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R.D.; Bazant, M.Z.; Eikerling, M.; Staffell, I.; et al. Water Electrolysis: From Textbook Knowledge to the Latest Scientific Strategies and Industrial Developments. Chem. Soc. Rev. 2022, 51, 4583–4762. [Google Scholar] [CrossRef] [PubMed]
- Tracking Clean Energy Progress 2023—Analysis. IEA. Available online: https://www.iea.org/reports/tracking-clean-energy-progress-2023 (accessed on 27 September 2023).
- HydroNews. Available online: https://hydronews.it/entro-fine-2023-la-capacita-di-elettrolisi-installata-a-livello-globale-superera-i-3-gw-secondo-lultimo-report-della-iea/ (accessed on 27 September 2023).
- IRENA. Geopolitics of the Energy Transformation: The Hydrogen Factor; IRENA: Abu Dhabi, United Arab Emirates, 2022. [Google Scholar]
- Guo, J.; Zheng, Y.; Hu, Z.; Zheng, C.; Mao, J.; Du, K.; Jaroniec, M.; Qiao, S.Z.; Ling, T. Direct Seawater Electrolysis by Adjusting the Local Reaction Environment of a Catalyst. Nat. Energy 2023, 8, 264–272. [Google Scholar] [CrossRef]
- Loomba, S.; Khan, M.W.; Haris, M.; Mousavi, S.M.; Zavabeti, A.; Xu, K.; Tadich, A.; Thomsen, L.; McConville, C.F.; Li, Y.; et al. Nitrogen-Doped Porous Nickel Molybdenum Phosphide Sheets for Efficient Seawater Splitting. Small 2023, 19, 2207310. [Google Scholar] [CrossRef] [PubMed]
- IEA. Global Hydrogen Review 2022; IEA: Paris, France, 2022. [Google Scholar]
- Shin, H.; Jang, D.; Lee, S.; Cho, H.S.; Kim, K.H.; Kang, S. Techno-Economic Evaluation of Green Hydrogen Production with Low-Temperature Water Electrolysis Technologies Directly Coupled with Renewable Power Sources. Energy Convers. Manag. 2023, 286, 117083. [Google Scholar] [CrossRef]
- Nasser, M.; Hassan, H. Thermo-Economic Performance Maps of Green Hydrogen Production via Water Electrolysis Powered by Ranges of Solar and Wind Energies. Sustain. Energy Technol. Assess. 2023, 60, 103424. [Google Scholar] [CrossRef]
- Dufo-López, R.; Lujano-Rojas, J.M.; Bernal-Agustín, J.L. Optimisation of Size and Control Strategy in Utility-Scale Green Hydrogen Production Systems. Int. J. Hydrogen Energy 2023, 50, 292–309. [Google Scholar] [CrossRef]
- Perna, A.; Minutillo, M.; Di Micco, S.; Jannelli, E. Design and Costs Analysis of Hydrogen Refuelling Stations Based on Different Hydrogen Sources and Plant Configurations. Energies 2022, 15, 541. [Google Scholar] [CrossRef]
- Minutillo, M.; Perna, A.; Forcina, A.; Di Micco, S.; Jannelli, E. Analyzing the Levelized Cost of Hydrogen in Refueling Stations with On-Site Hydrogen Production via Water Electrolysis in the Italian Scenario. Int. J. Hydrogen Energy 2021, 46, 13667–13677. [Google Scholar] [CrossRef]
- Ciancio, A.; De Santoli, L. Assessing the Levelized Cost of Hydrogen Production in a Renewable Hydrogen Community in South Italy. In Proceedings of the 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe, Madrid, Spain, 6–9 June 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023. [Google Scholar]
- HyResponder, Lezione 3: Stoccaggio Dell’idrogeno. Available online: https://hyresponder.eu/wp-content/uploads/2023/03/L3_HyResponder_Livello3_ITA.pdf (accessed on 15 February 2024).
- Coveri, M.; Ferraro, M.; Massaro, F.; Sanseverino, E.R.; Ruffino, S. The Sustainable Energy Development in Southern Italy through Green Hydrogen: A Cost Analysis. In Proceedings of the 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 6–9 June 2023; pp. 1–6. [Google Scholar] [CrossRef]
- IEA. Projected Costs of Generating Electricity; IEA: Paris, France, 2020. [Google Scholar]
- Clerici, A.; Furfari, S. Challenges for Green Hydrogen Development. In Proceedings of the 2021 AEIT International Annual Conference, AEIT 2021, Virtual, 4–8 October 2021. [Google Scholar] [CrossRef]
- Terna. Study on Reference Technologies for Electricity Storage; Terna: Roma, Italy, 2023. [Google Scholar]
- Tariffe Uso Commerciale—A.M.A.M. S.p.A. Available online: https://www.amam.it/portale-utenti/le-tariffe/uso-commerciale/ (accessed on 29 January 2024).
- European Union Joint Research Centre (JRC). Photovoltaic Geographical Information System (PVGIS). European Union Joint Research Centre (JRC): Brussels, Belgium. Available online: https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis_en (accessed on 27 June 2024).
- Confindustria; ANIMA (Confindustria Meccanica Varia). Modelli Di Business per l’utilizzo Dell’H2 e Lo Sviluppo Della Filiera in Italia; Confindustria: Roma, Italy, 2024. [Google Scholar]
- Zauner, A.; Böhm, H.; Rosenfeld, D.C.; Tichler, R. Innovative Large-Scale Energy Storage Technologies and Power-to-Gas Concepts after Optimization Analysis on Future Technology Options and on Techno-Economic Optimization; 2019.
- Energy Sector Management Assistance Program (ESMAP). Global Solar Atlas; Energy Sector Management Assistance Program (ESMAP): Washington, DC, USA, 2020. [Google Scholar]
- Technical University of Denmark (DTU). Global Wind Atlas 3.0; Technical University of Denmark (DTU): Lyngby, Denmark, 2024. [Google Scholar]
- European Hydrogen Observatory. Available online: https://observatory.clean-hydrogen.europa.eu/hydrogen-landscape/end-use/hydrogen-demand (accessed on 22 May 2024).
- GME (Gestore Mercati Energetici). Available online: https://mercatoelettrico.org/it/ (accessed on 25 March 2024).
- Park, J.; Kang, S.; Kim, S.; Cho, H.S.; Heo, S.; Lee, J.H. Techno-Economic Analysis of Solar Powered Green Hydrogen System Based on Multi-Objective Optimization of Economics and Productivity. Energy Convers. Manag. 2024, 299, 117823. [Google Scholar] [CrossRef]
- Statistics|Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_205__custom_10680922/default/table?lang=en (accessed on 4 April 2024).
- Delegated Regulation—2023/1184—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg_del/2023/1184/oj (accessed on 11 April 2024).
Ref. | Clean H2 Technology Production | LCOH | RES | End Use of H2 | Country | Sensitivity on |
---|---|---|---|---|---|---|
[1] | Electrolysis with low-emission electricity | 3.4–12.0 USD/kg (≈3.13–11.04 €/kg) | Solar PV, wind onshore, wind offshore | - | US | Regional variations in costs and renewable resource conditions |
[19] | Electrolysis with renewable electricity | 4.0–9.0 USD/kg (≈3.68–8.28 €/kg) | Solar PV, wind onshore, wind offshore | - | US | Regional variations in costs and renewable resource conditions |
[20] | Electrolysis with alkaline and proton exchange membrane technologies | 7.25–13.44 USD/kg (≈6.67–12.36 €/kg) | Solar PV, wind onshore, wind offshore | - | KR | Price of each component and capacity factor of renewable energy |
[21] | Electrolysis with proton exchange membrane technology | 1–8 USD/kg (≈0.92–7.36 €/kg). PBP: 2.85–19.75 years | Solar PV, wind, solar PV + wind | - | - | Weather, degradation rate of wind turbines and PV panels |
[22] | Electrolysis with alkaline and proton exchange membrane technologies | 4.74–16.06 €/kg | Stand-alone/grid connected PV + wind | - | ES | Type of electrolyzer |
[23] | Cracking of green ammonia, autothermal reforming of biogas and electrolysis | 6.28–7.92 €/kg | Solar PV | Hydrogen Refueling Station | IT | Type of H2 technology production |
[24] | Electrolysis with alkaline technology | 9.29–12.48 €/kg | Solar PV | Hydrogen Refueling Station | IT | H2 production capacity; shares of EE from grid |
[25] | Electrolysis with unspecified technology | 3.82 €/kg | Solar PV + wind | Renewable Hydrogen Community | IT | Plant size |
This study | Electrolysis with alkaline and proton exchange membrane technologies | 2.66–10 €/kg | Solar PV, wind | Refineries | IT | PV plant size, presence of storage, interest rate, type of electrolyzer |
Component | ) | OPEX |
---|---|---|
Alkaline electrolyzer | 500–1400 USD/kWe [28] (≈460–1288 €/kWe) | 5% of investment [29] |
PEM electrolyzer | 1100–1800 USD/kWe [28] (≈1012–1656 €/kWe) | 5% of investment [29] |
Compressor | 8% of investment [23] | |
Photovoltaic system | 771 USD/kW [4] (≈709.32 €/kW) | 13.2 USD/kW [4] (≈12.14 €/kW) |
Lithium-ion battery storage system | 207–228 €/kWh [30] | 2.1–2.8 €/kWh [30] |
Location | Milazzo (ME), Sicily |
Nominal power | 1–2.7 MWp |
Slope | 34° |
Azimuth | −2° |
System losses | 14% |
Technology | Crystalline silicon |
Nominal power | 1 MW |
System AC power consumption | 5.1 kWh/Nm3 |
Operation range | 20–100% |
Feeding water | 1 L/Nm3 H2 |
Electrolyte | 30% KOH aqueous solution |
H2 purity | >99.998% after gas cleaning |
H2 nominal flow rate | 200 Nm3/h |
H2 delivery pressure | 27 to 30 bar (g), depending on configuration |
Nominal power | 1 MW |
System AC power consumption | 4.9 kWh/Nm3 |
Operation range | 5–100% |
Feeding water | <2 L/Nm3 H2 |
Electrolyte | polymeric membrane |
H2 purity | >99.999% |
H2 nominal flow rate | 200 Nm3/h |
H2 delivery pressure | 30 bar |
Refinery | Hydrogen Demand [Tons/Year] [37] | Renewable Hydrogen Needed [Tons/Year] | Daily Demand for Renewable Hydrogen [Tons/Day] |
---|---|---|---|
Gela Praoil | 19,512.5 | 3182.59 | 10.60 |
Priolo ISAB SpA (sud) | 28,578.81 | 4661.35 | 15.54 |
Melilli ISAB SpA (nord) | 10,899.14 | 1777.71 | 5.92 |
Augusta Sonatrach | 33,965.26 | 5539.91 | 18.47 |
Raffineria di Milazzo SpA (Eni) | 108,779.1 | 17,742.44 | 59.14 |
Technology | Nominal Power | Power Consumption | Net Production Rate |
---|---|---|---|
Alkaline | 100 MW | 3.33 kWh/Nm3 | 30,000 Nm3/h |
Proton exchange membrane | 22.14 MW | 4.5 kWh/Nm3 | 4920 Nm3/h |
Site of Use | Production Site | Renewable Source | Distance [km] | Optimal Transportation Solution | LCOH [€/kg] |
---|---|---|---|---|---|
Gela | Misterbianco | PV | 100 | Tank trucks | 4.31 |
Castronovo di Sicilia | Wind | 130 | Tank trucks | 4.15 | |
Santa Croce Camerina | PV | 50 | Tank trucks | 3.82 | |
Priolo Gargallo | Nicolosi | Wind | 84 | Pipelines | 2.70 |
Misterbianco | PV | 52 | Pipelines | 2.85 | |
Santa Croce Camerina | PV | 85 | Pipelines | 2.86 | |
Melilli | Nicolosi | Wind | 68 | Tank trucks | 3.29 |
Misterbianco | PV | 51 | Tank trucks | 3.82 | |
Santa Croce Camerina | PV | 91 | Tank trucks | 3.70 | |
Augusta | Nicolosi | Wind | 62 | Pipelines | 2.66 |
Misterbianco | PV | 47 | Pipelines | 2.85 | |
Santa Croce Camerina | PV | 100 | Pipelines | 2.92 | |
Milazzo | Nicolosi | Wind | 100 | Pipelines | 2.76 |
Misterbianco | PV | 109 | Pipelines | 2.92 | |
Castronovo di Sicilia | Wind | 217 | Pipelines | 3.11 |
Site of Use | Production Site | Renewable Source | Distance [km] | Optimal Transportation Solution | LCOH [€/kg] |
---|---|---|---|---|---|
Gela | Misterbianco | PV | 100 | Tank trucks | 5.80 |
Castronovo di Sicilia | Wind | 130 | Tank trucks | 5.59 | |
Santa Croce Camerina | PV | 50 | Tank trucks | 5.31 | |
Priolo Gargallo | Nicolosi | Wind | 84 | Pipelines | 4.14 |
Misterbianco | PV | 52 | Pipelines | 4.34 | |
Santa Croce Camerina | PV | 85 | Pipelines | 4.35 | |
Melilli | Nicolosi | Wind | 68 | Tank trucks | 4.73 |
Misterbianco | PV | 51 | Tank trucks | 5.31 | |
Santa Croce Camerina | PV | 91 | Tank trucks | 5.19 | |
Augusta | Nicolosi | Wind | 62 | Pipelines | 4.10 |
Misterbianco | PV | 47 | Pipelines | 4.34 | |
Santa Croce Camerina | PV | 100 | Pipelines | 4.41 | |
Milazzo | Nicolosi | Wind | 100 | Pipelines | 4.20 |
Misterbianco | PV | 109 | Pipelines | 4.41 | |
Castronovo di Sicilia | Wind | 217 | Pipelines | 4.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massaro, F.; Ferraro, M.; Montana, F.; Riva Sanseverino, E.; Ruffino, S. Techno-Economic Analysis of Clean Hydrogen Production Plants in Sicily: Comparison of Distributed and Centralized Production. Energies 2024, 17, 3239. https://doi.org/10.3390/en17133239
Massaro F, Ferraro M, Montana F, Riva Sanseverino E, Ruffino S. Techno-Economic Analysis of Clean Hydrogen Production Plants in Sicily: Comparison of Distributed and Centralized Production. Energies. 2024; 17(13):3239. https://doi.org/10.3390/en17133239
Chicago/Turabian StyleMassaro, Fabio, Marco Ferraro, Francesco Montana, Eleonora Riva Sanseverino, and Salvatore Ruffino. 2024. "Techno-Economic Analysis of Clean Hydrogen Production Plants in Sicily: Comparison of Distributed and Centralized Production" Energies 17, no. 13: 3239. https://doi.org/10.3390/en17133239
APA StyleMassaro, F., Ferraro, M., Montana, F., Riva Sanseverino, E., & Ruffino, S. (2024). Techno-Economic Analysis of Clean Hydrogen Production Plants in Sicily: Comparison of Distributed and Centralized Production. Energies, 17(13), 3239. https://doi.org/10.3390/en17133239