Modeling the Drying Process of Onion Slices Using Artificial Neural Networks
Abstract
:1. Introduction
- Determining the impact of drying parameters on the product quality, including sensory properties (e.g., appearance, texture, taste, and aroma), nutritional and health-promoting properties (e.g., content of bioactive compounds: total content of polyphenols, flavonoids, glycosides, vitamin C and volatile compounds), and physico-mechanical properties (e.g., shrinkage; microstructure) [7,8,9].
1.1. Drying Vegetables
1.2. Drying Onions
1.3. Drying Models—Kinetics
1.4. Modeling of Drying Kinetics Using ANNs
1.5. Aim of the Paper
2. Materials and Methods
2.1. Research Material and Its Preparation
2.2. Semantic Models Formulation
2.3. Selection of the ANN Type and the Learning Process
2.4. Selection of the Best Neural Models
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Radojčin, M.; Pavkov, I.; Bursać Kovačević, D.; Putnik, P.; Wiktor, A.; Stamenković, Z.; Kešelj, K.; Gere, A. Effect of Selected Drying Methods and Emerging Drying Intensification Technologies on the Quality of Dried Fruit: A Review. Processes 2021, 9, 132. [Google Scholar] [CrossRef]
- Mujumdar, A.S. Drying technology in agriculture and food science. Dry. Technol. 2001, 19, 1217–1218. [Google Scholar] [CrossRef]
- Tulej, W.; Głowacki, S. Modeling of the Drying Process of Apple Pomace. Appl. Sci. 2022, 12, 1434. [Google Scholar] [CrossRef]
- Abouelenein, D.; Acquaticci, L.; Alessandroni, L.; Borsetta, G.; Caprioli, G.; Mannozzi, C.; Marconi, R.; Piatti, D.; Santanatoglia, A.; Sagratini, G.; et al. Volatile Profile of Strawberry Fruits and Influence of Different Drying Methods on Their Aroma and Flavor: A Review. Molecules 2023, 28, 5810. [Google Scholar] [CrossRef] [PubMed]
- Ozsan Kilic, T.; Boyar, I.; Dincer, C.; Ertekin, C.; Onus, A.N. Effects of Different Osmotic Pre-Treatments on the Drying Characteristics, Modeling and Physicochemical Properties of Momordica charantia L. Slices. Agriculture 2023, 13, 1887. [Google Scholar] [CrossRef]
- Thonglit, W.; Suanjan, S.; Chupawa, P.; Inchuen, S.; Duangkhamchan, W. Enhanced Quick-Cooking Red Beans: An Energy-Efficient Drying Method with Hot Air and Stepwise Microwave Techniques. Foods 2024, 13, 763. [Google Scholar] [CrossRef] [PubMed]
- Zawiślak, A.; Francik, R.; Francik, S.; Knapczyk, A. Impact of Drying Conditions on Antioxidant Activity of Red Clover (Trifolium pratense), Sweet Violet (Viola odorata) and Elderberry Flowers (Sambucus nigra). Materials 2022, 15, 3317. [Google Scholar] [CrossRef]
- Dziki, D.; Habza-Kowalska, E.; Gawlik-Dziki, U.; Miś, A.; Różyło, R.; Krzysiak, Z.; Hassoon, W.H. Drying Kinetics, Grinding Characteristics, and Physicochemical Properties of Broccoli Sprouts. Processes 2020, 8, 97. [Google Scholar] [CrossRef]
- Francik, S.; Francik, R.; Sadowska, U.; Bystrowska, B.; Zawiślak, A.; Knapczyk, A.; Nzeyimana, A. Identification of phenolic compounds and determination of antioxidant activity in extracts and infusions of salvia leaves. Materials 2020, 13, 5811. [Google Scholar] [CrossRef]
- Bialik, M.; Wiktor, A.; Rybak, K.; Witrowa-Rajchert, D.; Latocha, P.; Gondek, E. The Impact of Vacuum and Convective Drying Parameters on Kinetics, Total Phenolic Content, Carotenoid Content and Antioxidant Capacity of Kiwiberry (Actinidia arguta). Appl. Sci. 2020, 10, 6914. [Google Scholar] [CrossRef]
- Guo, H.-L.; Chen, Y.; Xu, W.; Xu, M.-T.; Sun, Y.; Wang, X.-C.; Wang, X.-Y.; Luo, J.; Zhang, H.; Xiong, Y.-K. Assessment of Drying Kinetics, Textural and Aroma Attributes of Mentha haplocalyx Leaves during the Hot Air Thin-Layer Drying Process. Foods 2022, 11, 784. [Google Scholar] [CrossRef] [PubMed]
- Jayasuriya, H.; Pathare, P.B.; Al-Attabi, Z.; Al-Hamdani, A. Drying Kinetics and Quality Analysis of Coriander Leaves Dried in an Indirect, Stand-Alone Solar Dryer. Processes 2023, 11, 1596. [Google Scholar] [CrossRef]
- Golisz, E.; Wielewska, I.; Roman, K.; Kacprzak, M. Probabilistic Model of Drying Process of Leek. Appl. Sci. 2022, 12, 11761. [Google Scholar] [CrossRef]
- Hao, W.; Liu, S.; Mi, B.; Lai, Y. Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature. Energies 2020, 13, 350. [Google Scholar] [CrossRef]
- Raponi, F.; Moscetti, R.; Monarca, D.; Colantoni, A.; Massantini, R. Monitoring and Optimization of the Process of Drying Fruits and Vegetables Using Computer Vision: A Review. Sustainability 2017, 9, 2009. [Google Scholar] [CrossRef]
- Ozgen, F.; Celik, N. Evaluation of Design Parameters on Drying of Kiwi Fruit. Appl. Sci. 2019, 9, 10. [Google Scholar] [CrossRef]
- Savas, E. The Modelling of Convective Drying Variables’ Effects on the Functional Properties of Sliced Sweet Potatoes. Foods 2022, 11, 741. [Google Scholar] [CrossRef] [PubMed]
- Moura, J.d.S.; Sousa, R.P.E.; Martins, L.H.; Costa, C.E.F.d.; Chisté, R.C.; Lopes, A.S. Thermal Degradation of Carotenoids from Jambu Leaves (Acmella oleracea) during Convective Drying. Foods 2023, 12, 1452. [Google Scholar] [CrossRef]
- Musielak, G.; Mieszczakowska-Frąc, M.; Mierzwa, D. Convective Drying of Apple Enhanced with Microwaves and Ultrasound—Process Kinetics, Energy Consumption, and Product Quality Approach. Appl. Sci. 2024, 14, 994. [Google Scholar] [CrossRef]
- Strumiłło, C. Perspectives on Developments in Drying. Dry. Technol. 2006, 24, 1059–1068. [Google Scholar] [CrossRef]
- Alfeo, V.; Planeta, D.; Velotto, S.; Palmeri, R.; Todaro, A. Cherry Tomato Drying: Sun versus Convective Oven. Horticulturae 2021, 7, 40. [Google Scholar] [CrossRef]
- Radhakrishnan, G.; Breaz, T.O.; Al Mahrouqi, A.W.A.; Al Zakwani, N.A.; Al Fahdi, M.H.; Al Shuraiqi, A.S.; Al Awamri, S.A.; Al Aamri, R.S.; Karthikeyan, K.R. A Comparative Management Analysis on the Performance of Different Solar Drying Methods for Drying Vegetables and Fruits. Sustainability 2024, 16, 775. [Google Scholar] [CrossRef]
- Talens, C.; Arboleya, J.C.; Castro-Giraldez, M.; Fito, P.J. Effect of microwave power coupled with hot air drying on process efficiency and physico-chemical properties of a new dietary fibre ingredient obtained from orange peel. LWT-Food Sci. Technol. 2017, 77, 110–118. [Google Scholar] [CrossRef]
- Mitra, J.; Shrivastava, S.L.; Rao, P.S. Onion dehydration: A review. J. Food Sci. Technol. 2012, 49, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Lewicki, P.P.; Witrowa-Rajchert, D.; Nowak, D. Effect of drying mode on drying kinetics of onion. Dry. Technol. 1998, 16, 59–81. [Google Scholar] [CrossRef]
- Raj, D.; Subanna, V.C.; Ahlawat, O.P.; Gupta, P.; Huddar, A.G. Effect of pre-treatments on the quality characteristics of dehydrated onion rings during storage. Int. J. Food Agric. Environ. 2006, 4, 30–33. [Google Scholar]
- Tsamo, C.V.P.; Bilame, A.-F.; Ndjouenkeu, R. Air Drying Behaviour of Fresh and Osmotically Dehydrated Onion Slices (Allium Cepa) and Tomato Fruits (Lycopersicon esculentum). Int. J. Food Prop. 2006, 9, 877–888. [Google Scholar] [CrossRef]
- Sahoo, N.R.; Bal, L.M.; Pal, U.S.; Sahoo, D. Impact of pretreatment and drying methods on quality attributes of onion shreds. Food Technol. Biotechnol. 2015, 53, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Baroni, A.F.; Hubinger, M.D. Drying of onion: Effects of pretreatments on moisture content. Dry. Technol. 1998, 16, 2083–2094. [Google Scholar] [CrossRef]
- Demiray, E.; Seker, A.; Tulek, Y. Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat Mass Transf. 2017, 53, 1817–1827. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, H.J. Drying kinetics of onion slices in a hot-air dryer. J. Food Sci. Nutr. 2008, 13, 225–230. [Google Scholar] [CrossRef]
- Compaoré, A.; Putranto, A.; Dissa, A.O.; Ouoba, S.; Rémond, R.; Rogaume, Y.; Zoulalian, A.; Béré, A.; Koulidiati, J. Convective drying of onion: Modeling of drying kinetics parameters. J. Food Sci. Technol. 2019, 56, 3347–3354. [Google Scholar] [CrossRef] [PubMed]
- Mujumdar, A.S.; Devahastin, S. Fundamental Principles of Drying. In Mujumdar’s Practical Guide to Industrial Drying; Exergex: Brossard, QC, Canada, 2000; pp. 1–22. [Google Scholar]
- Pabis, S. Theoretical models of vegetable drying by convection. In Drying of Porous Materials; Kowalski, S.J., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 77–87. ISBN 978-1-4020-5480-8. [Google Scholar]
- Boyar, İ.; Kovaci, T.; Dikmen, E.; Şencan Şahin, A. Using Gene Expression Programming (GEP) for Modelling the Drying Characteristics of Onion Slices (Allium Cepa). Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Derg. 2022, 25, 1134–1145. [Google Scholar] [CrossRef]
- Attkan, A.K.; Raleng, A.; Yadav, Y.K. Drying Kinetics of Onion (Allium cepa L.) Slices using Low-humidity Airassisted Hybrid Solar Dryer. J. Agric. Eng. 2021, 58, 262–273. [Google Scholar] [CrossRef]
- Kalbasi, M. Heat and Moisture Transfer Model for Onion Drying. Dry. Technol. 2003, 21, 1575–1584. [Google Scholar] [CrossRef]
- Wrobel, M.; Fraczek, J.; Francik, S.; Slipek, Z.; Mudryk, K. Modelling of unit contact surface of bean seeds using Artificial Neural Networks. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia, 23–24 May 2013; pp. 287–291. [Google Scholar]
- Sharabiani, V.R.; Kaveh, M.; Taghinezhad, E.; Abbaszadeh, R.; Khalife, E.; Szymanek, M.; Dziwulska-Hunek, A. Application of Artificial Neural Networks, Support Vector, Adaptive Neuro-Fuzzy Inference Systems for the Moisture Ratio of Parboiled Hulls. Appl. Sci. 2022, 12, 1771. [Google Scholar] [CrossRef]
- Francik, S.; Łapczyńska-Kordon, B.; Francik, R.; Wójcik, A. Modeling and Simulation of Biomass Drying Using Artificial Neural Networks. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2018; pp. 571–581. ISBN 9783319723716. [Google Scholar]
- Sun, Q.; Zhang, M.; Mujumdar, A.S. Recent developments of artificial intelligence in drying of fresh food: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2258–2275. [Google Scholar] [CrossRef] [PubMed]
- Przybył, K.; Koszela, K. Applications MLP and Other Methods in Artificial Intelligence of Fruit and Vegetable in Convective and Spray Drying. Appl. Sci. 2023, 13, 2965. [Google Scholar] [CrossRef]
- Šovljanski, O.; Lončar, B.; Pezo, L.; Saveljić, A.; Tomić, A.; Brunet, S.; Filipović, V.; Filipović, J.; Čanadanović-Brunet, J.; Ćetković, G.; et al. Unlocking the Potential of the ANN Optimization in Sweet Potato Varieties Drying Processes. Foods 2024, 13, 134. [Google Scholar] [CrossRef]
- Rahman, S.M.A.; Nassef, A.M.; Al-Dhaifallah, M.; Abdelkareem, M.A.; Rezk, H. The Effect of a New Coating on the Drying Performance of Fruit and Vegetables Products: Experimental Investigation and Artificial Neural Network Modeling. Foods 2020, 9, 308. [Google Scholar] [CrossRef]
- Kaveh, M.; Rasooli Sharabiani, V.; Amiri Chayjan, R.; Taghinezhad, E.; Abbaspour-Gilandeh, Y.; Golpour, I. ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato, garlic and cantaloupe drying under convective hot air dryer. Inf. Process. Agric. 2018, 5, 372–387. [Google Scholar] [CrossRef]
- Beigi, M.; Ahmadi, I. Artificial neural networks modeling of kinetic curves of celeriac (Apium graveolens L.) in vacuum drying. Food Sci. Technol. 2019, 39, 35–40. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Janius, R.B.; Nawi, N.; Abdan, K. Modelling the convective drying process of pumpkin (Cucurbita moschata) using an artificial neural network. Int. Food Res. J. 2016, 23, S237–S243. [Google Scholar]
- Sadeghi, E.; Movagharnejad, K.; Haghighi Asl, A. Mathematical modeling of infrared radiation thin-layer drying of pumpkin samples under natural and forced convection. J. Food Process. Preserv. 2019, 43, e14229. [Google Scholar] [CrossRef]
- Dhurve, P.; Tarafdar, A.; Arora, V.K. Vibro-Fluidized Bed Drying of Pumpkin Seeds: Assessment of Mathematical and Artificial Neural Network Models for Drying Kinetics. J. Food Qual. 2021, 2021, 7739732. [Google Scholar] [CrossRef]
- Fabani, M.P.; Capossio, J.P.; Román, M.C.; Zhu, W.; Rodriguez, R.; Mazza, G. Producing non-traditional flour from watermelon rind pomace: Artificial neural network (ANN) modeling of the drying process. J. Environ. Manag. 2021, 281, 111915. [Google Scholar] [CrossRef]
- Salmeron, J.L.; Ruiz-Celma, A. Elliot and Symmetric Elliot Extreme Learning Machines for Gaussian Noisy Industrial Thermal Modelling. Energies 2019, 12, 90. [Google Scholar] [CrossRef]
- Sasikumar, R.; Mangang, I.B.; Vivek, K.; Jaiswal, A.K. Effect of ultrasound-assisted thin bed drying for retaining the quality of red bell pepper and compare the predictive ability of the mathematical model with artificial neural network. J. Food Process Eng. 2023, 46, e14468. [Google Scholar] [CrossRef]
- Winiczenko, R.; Kaleta, A.; Górnicki, K. Application of a MOGA Algorithm and ANN in the Optimization of Apple Drying and Rehydration Processes. Processes 2021, 9, 1415. [Google Scholar] [CrossRef]
- Sağlam, C.; Çetin, N. Machine learning algorithms to estimate drying characteristics of apples slices dried with different methods. J. Food Process. Preserv. 2022, 46, e16496. [Google Scholar] [CrossRef]
- Yang, T.; Zheng, X.; Xiao, H.; Shan, C.; Yao, X.; Li, Y.; Zhang, J. Drying Temperature Precision Control System Based on Improved Neural Network PID Controller and Variable-Temperature Drying Experiment of Cantaloupe Slices. Plants 2023, 12, 2257. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, M.; Xu, B.; Sun, J.; Mujumdar, A.S. Artificial intelligence assisted technologies for controlling the drying of fruits and vegetables using physical fields: A review. Trends Food Sci. Technol. 2020, 105, 251–260. [Google Scholar] [CrossRef]
- Khaled, A.Y.; Kabutey, A.; Selvi, K.Ç.; Mizera, Č.; Hrabe, P.; Herák, D. Application of computational intelligence in describing the drying kinetics of persimmon fruit (Diospyros kaki) during vacuum and hot air drying process. Processes 2020, 8, 544. [Google Scholar] [CrossRef]
- Mahesh, J.S.; Ramalakshmi, K.; Balakrishnaraja, R. Investigation of mass transfer parameters, phytochemical analysis of dried ripen graviola fruit (Annona muricata) and its comparative approach by using statistical tools: ANN and mathematical modelling. Chem. Pap. 2023, 77, 7085–7098. [Google Scholar] [CrossRef]
- Mahesh, J.S.; Rengaraju, B.; Kuathooran, R.; Tarafdar, A. Phytochemical studies and mass transfer phenomenon of raw soursop fruit at different drying temperatures and kinetics evaluation by ANN and mathematical modeling. Biomass Convers. Biorefinery 2023. [Google Scholar] [CrossRef]
- Şahin, U.; Öztürk, H.K. Comparison between Artificial Neural Network model and mathematical models for drying kinetics of osmotically dehydrated and fresh figs under open sun drying. J. Food Process Eng. 2018, 41, e12804. [Google Scholar] [CrossRef]
- Abbaspour-Gilandeh, Y.; Jahanbakhshi, A.; Kaveh, M. Prediction kinetic, energy and exergy of quince under hot air dryer using ANNs and ANFIS. Food Sci. Nutr. 2020, 8, 594–611. [Google Scholar] [CrossRef] [PubMed]
- Chasiotis, V.K.; Tzempelikos, D.A.; Filios, A.E.; Moustris, K.P. Artificial neural network modelling of moisture content evolution for convective drying of cylindrical quince slices. Comput. Electron. Agric. 2020, 172, 105074. [Google Scholar] [CrossRef]
- Singh, A.; Mehta, A.; Singh, A.P.; Prabhakar, P.K. Ultrasonic modulated osmotic dehydration of Aonla (Phyllanthus emblica L.) slices: An integrated modeling through ANN, GPR, and RSM. J. Food Process. Preserv. 2022, 46, e16247. [Google Scholar] [CrossRef]
- Jahedi Rad, S.; Kaveh, M.; Sharabiani, V.R.; Taghinezhad, E. Fuzzy logic, artificial neural network and mathematical model for prediction of white mulberry drying kinetics. Heat Mass Transf. Stoffuebertragung 2018, 54, 3361–3374. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, M.; Wang, X.; Wu, W.; Zheng, Z.; Hu, Z.; Ma, B. Modeling and optimization for konjac vacuum drying based on response surface methodology (RSM) and artificial neural network (ANN). Processes 2020, 8, 1430. [Google Scholar] [CrossRef]
- Moheno-Barrueta, M.; Tzuc, O.M.; Martínez-Pereyra, G.; Cardoso-Fernández, V.; Rojas-Blanco, L.; Ramírez-Morales, E.; Pérez-Hernández, G.; Bassam, A. Experimental Evaluation and Theoretical Optimization of an Indirect Solar Dryer with Forced Ventilation under Tropical Climate by an Inverse Artificial Neural Network. Appl. Sci. 2021, 11, 7616. [Google Scholar] [CrossRef]
- Martínez-Martínez, V.; Baladrón, C.; Gomez-Gil, J.; Ruiz-Ruiz, G.; Navas-Gracia, L.M.; Aguiar, J.M.; Carro, B. Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks. Sensors 2012, 12, 14004–14021. [Google Scholar] [CrossRef] [PubMed]
- Selvi, K.Ç.; Alkhaled, A.Y.; Yıldız, T. Application of Artificial Neural Network for Predicting the Drying Kinetics and Chemical Attributes of Linden (Tilia platyphyllos Scop.) during the Infrared Drying Process. Processes 2022, 10, 2069. [Google Scholar] [CrossRef]
- Karakaplan, N.; Goz, E.; Tosun, E.; Yuceer, M. Kinetic and artificial neural network modeling techniques to predict the drying kinetics of Mentha spicata L. J. Food Process. Preserv. 2019, 43, e14142. [Google Scholar] [CrossRef]
- Tarafdar, A.; Jothi, N.; Kaur, B.P. Mathematical and artificial neural network modeling for vacuum drying kinetics of Moringa olifera leaves followed by determination of energy consumption and mass transfer parameters. J. Appl. Res. Med. Aromat. Plants 2021, 24, 100306. [Google Scholar] [CrossRef]
- Jafari, S.M.; Ganje, M.; Dehnad, D.; Ghanbari, V. Mathematical, Fuzzy Logic and Artificial Neural Network Modeling Techniques to Predict Drying Kinetics of Onion. J. Food Process. Preserv. 2016, 40, 329–339. [Google Scholar] [CrossRef]
- Kaveh, M.; Chayjan, R.A.; Golpour, I.; Poncet, S.; Seirafi, F.; Khezri, B. Evaluation of exergy performance and onion drying properties in a multi-stage semi-industrial continuous dryer: Artificial neural networks (ANNs) and ANFIS models. Food Bioprod. Process. 2021, 127, 58–76. [Google Scholar] [CrossRef]
- Zalpouri, R.; Singh, M.; Kaur, P.; Kaur, A.; Gaikwad, K.K.; Singh, A. Drying Kinetics, Physicochemical and Thermal Analysis of Onion Puree Dried Using a Refractance Window Dryer. Processes 2023, 11, 700. [Google Scholar] [CrossRef]
- Jeguirim, M.; Dutournié, P.; Zorpas, A.A.; Limousy, L. Olive Mill Wastewater: From a Pollutant to Green Fuels, Agricultural Water Source and Bio-Fertilizer—Part 1. The Drying Kinetics. Energies 2017, 10, 1423. [Google Scholar] [CrossRef]
- Stephenus, F.N.; Benjamin, M.A.Z.; Anuar, A.; Awang, M.A. Effect of Temperatures on Drying Kinetics, Extraction Yield, Phenolics, Flavonoids, and Antioxidant Activity of Phaleria macrocarpa (Scheff.) Boerl. (Mahkota Dewa) Fruits. Foods 2023, 12, 2859. [Google Scholar] [CrossRef] [PubMed]
- Francik, S.; Łapczyńska-Kordon, B.; Pedryc, N.; Szewczyk, W.; Francik, R.; Ślipek, Z. The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus. Sustainability 2022, 14, 3062. [Google Scholar] [CrossRef]
- Francik, S.; Kurpaska, S. The Use of Artificial Neural Networks for Forecasting of Air Temperature inside a Heated Foil Tunnel. Sensors 2020, 20, 652. [Google Scholar] [CrossRef] [PubMed]
- Allouhi, A.; Choab, N.; Hamrani, A.; Saadeddine, S. Machine learning algorithms to assess the thermal behavior of a Moroccan agriculture greenhouse. Clean. Eng. Technol. 2021, 5, 100346. [Google Scholar] [CrossRef]
- Codeluppi, G.; Davoli, L.; Ferrari, G. Forecasting air temperature on edge devices with embedded Ai. Sensors 2021, 21, 3973. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, F.; Govindan, R.; Bermak, A.; Yang, D.; Khadra, C.; Al-Ansari, T. Energy utilization assessment of a semi-closed greenhouse using data-driven model predictive control. J. Clean. Prod. 2021, 324, 129172. [Google Scholar] [CrossRef]
- Nisar, K.; Sabir, Z.; Zahoor Raja, M.A.; Ag Ibrahim, A.A.; Rodrigues, J.J.P.C.; Refahy Mahmoud, S.; Chowdhry, B.S.; Gupta, M. Artificial neural networks to solve the singular model with neumann–robin, dirichlet and neumann boundary conditions. Sensors 2021, 21, 6498. [Google Scholar] [CrossRef]
Function Name | Function Pattern | y Range |
---|---|---|
linear 1 | ||
logistic 1 | ||
hyperbolic tangent 1 | ||
exponential 1 |
ANN Model | Independent Variables (ANN Inputs) | ||||||
---|---|---|---|---|---|---|---|
X1 * | X2 * | X3 * | X4 * | X5 * | X6 * | ||
Ann1 | Error quotient | 333 | 1886 | 584 | 213 | 985 | 480 |
(6. MLP 8-10-1) | rank | 5 | 1 | 3 | 6 | 2 | 4 |
Ann2-N | Error quotient | 2123 | 893 | 30,655 | 21,249 | 3593 | |
(10. MLP 5-9-1) | rank | 4 | 5 | 1 | 2 | 3 | |
Ann2-B | Error quotient | 1,220,102 | 5204 | 3526 | 2455 | 6015 | |
(8. MLP 5-11-1) | rank | 1 | 3 | 4 | 5 | 2 | |
Ann2-D | Error quotient | 1238 | 227 | 812 | 572 | 4919 | |
(6. MLP 5-11-1) | rank | 2 | 5 | 3 | 4 | 1 |
Research Team | Kaveh et al. [72] | Jafari et al. [71] | Zalpouri et al. [73] |
---|---|---|---|
material | onion slices | onion slices | onion puree |
dryer | MSSICB 1 | fluidized bed dryer | tray dryer |
drying temperature | 40, 55, 70 °C | 40, 50, 60 °C | 50 °C |
ANN inputs | Tair 2, Vair 3, BLS 4, DT 5 | drying time, Tair 2, | drying time, PT 6 |
ANN output | moisture ratio | moisture ratio | moisture ratio |
ANN topology | 4-6-6-1 | 2-5-1 | 2-18-1 |
determination coefficient | 0.9995 | - | 0.9958 for PT = 2 mm 0.9986 for PT = 4 mm 0.9983 for PT = 6 mm |
correlation coefficient | - | 0.9996 for Vair = 2 m/s 0.9991 for Vair = 3 m/s | 0.9999 (Learn) 0.9997 (Valid) 0.9961 (Test) |
RMSE | 0.0019 | 0.006276 for Vair = 2 m/s 0.007906 for Vair = 3 m/s | 0.0004 for PT = 2 mm 0.0001 for PT = 4 mm 0.0001 for PT = 6 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francik, S.; Łapczyńska-Kordon, B.; Hajos, M.; Basista, G.; Zawiślak, A.; Francik, R. Modeling the Drying Process of Onion Slices Using Artificial Neural Networks. Energies 2024, 17, 3199. https://doi.org/10.3390/en17133199
Francik S, Łapczyńska-Kordon B, Hajos M, Basista G, Zawiślak A, Francik R. Modeling the Drying Process of Onion Slices Using Artificial Neural Networks. Energies. 2024; 17(13):3199. https://doi.org/10.3390/en17133199
Chicago/Turabian StyleFrancik, Sławomir, Bogusława Łapczyńska-Kordon, Michał Hajos, Grzegorz Basista, Agnieszka Zawiślak, and Renata Francik. 2024. "Modeling the Drying Process of Onion Slices Using Artificial Neural Networks" Energies 17, no. 13: 3199. https://doi.org/10.3390/en17133199
APA StyleFrancik, S., Łapczyńska-Kordon, B., Hajos, M., Basista, G., Zawiślak, A., & Francik, R. (2024). Modeling the Drying Process of Onion Slices Using Artificial Neural Networks. Energies, 17(13), 3199. https://doi.org/10.3390/en17133199