Exploring the Role of Additives in Enhancing the Performance of Limestone-Based Thermochemical Energy Storage: A Review
Abstract
:1. Introduction
2. Types of Energy Storage
3. Introduction to Thermochemical Energy Storage
4. Limestone-Based Thermochemical Energy Storage
5. Strategies to Improve Energy Storage in Limestone-Based Systems
Additive/Support | Synthesis Method | Ternary Metal Oxide | Temperature Carb./Calci. | CO2 vol % Carb./Calci | Testing Conditions | CO2 Uptake (gCO2/gsorb) Last Cycle | Ref. |
---|---|---|---|---|---|---|---|
Al2O3 | |||||||
wt.% Al2O3 | |||||||
9 | wet mixing | Ca12Al14O33/Ca3Al2O6 | 650/850 °C | 20/0 | TGA—100 cycles | 0.34 | [142] |
9 | carbon gel templating | Ca12Al14O33 | 750/750 °C | 55/0 | TGA—30 cycles | 0.55 | [143] |
18 | flame spray pyrolysis | Ca12Al14O33 | 850/950 °C | 100/30 | TGA—100 cycles | 0.25 | [144] |
5 | dry mixing | Ca3Al2O6 | 650/900 °C | 15/70 | TGA—20 cycles | 0.14 | [119] |
15 | atomic layer deposition | Ca12Al14O33/Ca3Al2O6 | 650/900 °C | 20/100 | TGA—10 cycles | 0.41 | [145] |
9 | chemical vapor deposition | Ca3Al2O6 | 650/950 °C | 20/100 | TGA—20 cycles | 0.41 | [122] |
10 | sol–gel | Ca5A6O14 | 650/800 °C | 15/0 | TGA—50 cycles | 0.45 | [123] |
34 | sol–gel | Ca3Al2O6 | 650/850 °C | 15/0 | TGA—100 cycles | 0.41 | [146] |
20 | Ball milling | Ca5Al6O14/Ca9Al6O18 | 900/900 °C | 100/0 | Sieverts—50 cycles | 0.49 | [126] |
ZrO2 | |||||||
wt.% CaZrO3 | |||||||
34 | sol–gel | - | 650/850 °C | 15/0 | TGA—50 cycles | 0.46 | [120] |
34 | sol–gel | - | 650/920 °C | 10/80 | Fluidized bed—20 cycles | 0.31 | [120] |
26 | sol–gel | - | 900/900 °C | 80/0 | TGA—20 cycles | 0.65 | [147] |
29 | sol–gel | - | 650/800 °C | 50/0 | TGA—90 cycles | 0.34 | [148] |
76 | flame spry pyrolysis | - | 700/700 °C | 50/50 | TGA—1200 cycles | 0.11 | [131] |
58 | flame spry pyrolysis | - | 700/700 °C | 30/0 | TGA—100 cycles | 0.21 | [149] |
10 | citrate sol–gel | - | 650/780 °C | 100/0 | TGA—10 cycles | 0.69 | [150] |
29 | sol–gel | - | 650/900 °C | 15/0 | TGA—30 cycles | 0.45 | [151] |
29 | spray drying | - | 650/950 °C | 90/90 | TGA—100 cycles | 0.45 | [152] |
7 | Ball milling | - | 850/1000 °C | 100/100 | TGA—11 cycles | 0.22 | [153] |
20 | Wet precipitation | - | 884/884 °C | 100/0 | TGA—40 cycles | 0.7 | [128] |
SiO2 | |||||||
wt.% SiO2 | |||||||
70 | wet impregnation | Ca2SiO4 | 650/850 °C | 15/0 | TGA—80 cycles | 0.07 | [154] |
9 | one-pot synthesis route | - | 650/950 °C | 100/0 | TGA—50 cycles | 0.26 | [132] |
20 | dry mixing | Ca2SiO4/CaSiO3 | 650/850 °C | 15/0 | TGA—100 cycles | 0.18 | [155] |
33 | wet mixing | - | 700/910 °C | 100/0 | TGA—40 cycles | 0.42 | [156] |
10 | freeze-drying | Ca2SiO4 | 700/920 °C | 100/100 | TGA—30 cycles | 0.21 | [157] |
2 | Ball milling | - | 900/900 °C | 100/0 | TGA—20 cycles | 0.18 | [158] |
Additive/Support | Synthesis Method | Temperature Carb./Calci. | CO2 vol % Carb./Calci | Testing Conditions | CO2 Uptake (gCO2/gsorb) Last Cycle | Ref. |
---|---|---|---|---|---|---|
MgO | ||||||
wt.% MgO | ||||||
16 | carbon gel templating | 650/900 °C | TGA—10 cycles | 0.55 | [159] | |
8 | one-pot recrystallization | 650/900 °C | 20/100 | TGA—10 cycles | 0.47 | [160] |
15 | wet mechanochemical activation | 650/900 °C | 20/100 | TGA—30 cycles | 0.30 | [161] |
25 | wet mixing | 650/900 °C | 15/0 | TGA—24 cycles | 0.56 | [162] |
25 | wet mixing | 650/850 °C | 20/0 | TGA—50 cycles | 0.27 | [163] |
41 | wet mixing | 650/900 °C | 100/0 | dual fixed bed—10 cycles | 0.28 | [164] |
34 | sol–gel | 650/850 °C | 15/0 | TGA—100 cycles | 0.32 | [165] |
20 | wet mixing | 600/900 °C | 15/0 | fixed bed—10 cycles | 0.25 | [166] |
26 | dry mixing | 758/850 °C | 100/0 | dual fixed bed—50 cycles | 0.53 | [167] |
6 | sol–gel | 675/950 °C | 15/80 | TGA—50 cycles | 0.58 | [168] |
26 | wet mixing | 650/850 °C | 15/0 | TGA—50 cycles | 0.40 | [169] |
Y2O3 and CeO | ||||||
20 wt.% Y2O3 | calcination | 650/850 °C | 20/0 | TGA—10 cycles | 0.57 | [140] |
20 wt.% Y2O3 | calcination | 650/950 °C | 25/100 | TGA—10 cycles | 0.49 | [140] |
15Ca/Ce ratio | sol–gel combustion | 600/700 °C | 50/0 | TGA—18 cycles | 0.59 | [170] |
6. Challenges and Limitations
7. Conclusions
Funding
Conflicts of Interest
References
- Larcher, D.; Tarascon, J.M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29. [Google Scholar] [CrossRef]
- Quaschning, V.V. Renewable Energy and Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Schlömer, S.; von Stechow, C. Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Karduri, R.K. Integrating Renewable Energy into Existing Power Systems: Challenges and Opportunities. Int. J. Adv. Res. Manag. Archit. Technol. Eng. (IJARMATE) 2018, 2. [Google Scholar] [CrossRef]
- Jones, L.E. Renewable Energy Integration: Practical Management of Variability, Uncertainty, and Flexibility in Power Grids; Academic press: Cambridge, MA, USA, 2017. [Google Scholar]
- Tan, K.M.; Babu, T.S.; Ramachandaramurthy, V.K.; Kasinathan, P.; Solanki, S.G.; Raveendran, S.K. Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. J. Energy Storage 2021, 39, 102591. [Google Scholar] [CrossRef]
- Sullivan, G.; Griffiths, C.; Jewell, E.; Searle, J.; Elvins, J. Cycling Stability of Calcium-Impregnated Vermiculite in Open Reactor Used as a Thermochemical Storage Material. Energies 2023, 16, 7225. [Google Scholar] [CrossRef]
- Shchegolkov, A.; Shchegolkov, A.; Demidova, A. The use of nanomodified heat storage materials for thermal stabilization in the engineering and aerospace industry as a solution for economy. In Proceedings of the International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2018), Sevastopol, Russian, 10–14 September 2018. [Google Scholar]
- Stecca, M.; Elizondo, L.R.; Soeiro, T.B.; Bauer, P.; Palensky, P. A Comprehensive Review of the Integration of Battery Energy Storage Systems Into Distribution Networks. IEEE Open J. Ind. Electron. Soc. 2020, 1, 46–65. [Google Scholar] [CrossRef]
- Kebede, A.A.; Kalogiannis, T.; Van Mierlo, J.; Berecibar, M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew. Sustain. Energy Rev. 2022, 159, 112213. [Google Scholar] [CrossRef]
- Jasiūnas, J.; Lund, P.D.; Mikkola, J. Energy system resilience–A review. Renew. Sustain. Energy Rev. 2021, 150, 111476. [Google Scholar] [CrossRef]
- Nkwanyana, T.B.; Siti, M.W.; Wang, Z.H.; Toudjeu, I.; Mbungu, N.T.; Mulumba, W. An assessment of hybrid-energy storage systems in the renewable environments. J. Energy Storage 2023, 72, 108307. [Google Scholar] [CrossRef]
- Nadeem, F.; Hussain, S.S.; Tiwari, P.K.; Goswami, A.K.; Ustun, T.S. Comparative review of energy storage systems, their roles, and impacts on future power systems. IEEE Access 2018, 7, 4555–4585. [Google Scholar] [CrossRef]
- Semadeni, M. Energy Storage as an Essential Part of Sustainable Energy Systems: A Review on Applied Energy Storage Technologies; CEPE Working Paper No. 24; CEPE: Zurich, Switzerland, 2003. [Google Scholar]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Teske, S. Achieving the Paris Climate Agreement Goals: Global and Regional 100% Renewable Energy Scenarios with Non-Energy GHG Pathways for +1.5 C and +2 C; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Dell, R.M.; Rand, D.A.J. Energy storage—A key technology for global energy sustainability. J. Power Sources 2001, 100, 2–17. [Google Scholar] [CrossRef]
- Azzuni, A.; Breyer, C. Energy security and energy storage technologies. Energy Procedia 2018, 155, 237–258. [Google Scholar] [CrossRef]
- Zsiborács, H.; Baranyai, N.H.; Vincze, A.; Zentkó, L.; Birkner, Z.; Máté, K.; Pintér, G. Intermittent renewable energy sources: The role of energy storage in the European power system of 2040. Electronics 2019, 8, 729. [Google Scholar] [CrossRef]
- Alami, A.H. Mechanical Energy Storage for Renewable and Sustainable Energy Resources; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Mahmoud, M.; Ramadan, M.; Olabi, A.G.; Pullen, K.; Naher, S. A review of mechanical energy storage systems combined with wind and solar applications. Energy Convers. Manag. 2020, 210, 112670. [Google Scholar] [CrossRef]
- Moseley, P.T. Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Newnes: Oxford, UK, 2014. [Google Scholar]
- Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef] [PubMed]
- Dincer, I.; Rosen, M.A. Thermal Energy Storage: Systems and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Alva, G.; Lin, Y.X.; Fang, G.Y. An overview of thermal energy storage systems. Energy 2018, 144, 341–378. [Google Scholar] [CrossRef]
- Ferreira, H.L.; Garde, R.; Fulli, G.; Kling, W.; Lopes, J.P. Characterisation of electrical energy storage technologies. Energy 2013, 53, 288–298. [Google Scholar] [CrossRef]
- Arsad, A.Z.; Hannan, M.A.; Al-Shetwi, A.Q.; Mansur, M.; Muttaqi, K.M.; Dong, Z.Y.; Blaabjerg, F. Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions. Int. J. Hydrogen Energy 2022, 47, 17285–17312. [Google Scholar] [CrossRef]
- Becherif, M.; Ramadan, H.S.; Cabaret, K.; Picard, F.; Simoncini, N.; Bethoux, O. Hydrogen Energy Storage: New Techno-Economic Emergence Solution Analysis. Energy Procedia 2015, 74, 371–380. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Shchegolkov, A.V.; Zemtsova, N.V.; Stanishevskiy, Y.M.; Vetcher, A.A. Recent Advantages on Waste Management in Hydrogen Industry. Polymers 2022, 14, 4992. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped hydro energy storage system: A technological review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- Berrada, A.; Loudiyi, K. Gravity Energy Storage; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Budt, M.; Wolf, D.; Span, R.; Yan, J.Y. A review on compressed air energy storage: Basic principles, past milestones and recent developments. Appl. Energy 2016, 170, 250–268. [Google Scholar] [CrossRef]
- Amiryar, M.E.; Pullen, K.R. A Review of Flywheel Energy Storage System Technologies and Their Applications. Appl. Sci. 2017, 7, 286. [Google Scholar] [CrossRef]
- Saikia, B.K.; Benoy, S.M.; Bora, M.; Tamuly, J.; Pandey, M.; Bhattacharya, D. A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel 2020, 282, 118796. [Google Scholar] [CrossRef]
- Vulusala, G.V.S.; Madichetty, S. Application of superconducting magnetic energy storage in electrical power and energy systems: A review. Int. J. Energy Res. 2018, 42, 358–368. [Google Scholar] [CrossRef]
- Holla, R.V. Energy storage methods-Superconducting magnetic energy storage—A Review. J. Undergrad. Res. 2015, 5, 49–54. [Google Scholar] [CrossRef]
- Panchenko, V.A.; Kovalev, A.A.; Litti, Y.V.; Daus, Y.V. Prospects for the production of green hydrogen: Review of countries with high potential*. Int. J. Hydrogen Energy 2023, 48, 4551–4571. [Google Scholar] [CrossRef]
- Chi, J.; Yu, H.M. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 2018, 39, 390–394. [Google Scholar] [CrossRef]
- Zuttel, A. Hydrogen storage methods. Naturwissenschaften 2004, 91, 157–172. [Google Scholar] [CrossRef]
- Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy 2008, 36, 4356–4362. [Google Scholar] [CrossRef]
- Buckley, D.N.; O’Dwyer, C.; Quill, N.; Lynch, R.P. Electrochemical energy storage. Energy Storage Options Their Environ. Impact 2018, 46, 115. [Google Scholar]
- Zhang, Y.; Zhou, C.-G.; Yang, J.; Xue, S.-C.; Gao, H.-L.; Yan, X.-H.; Huo, Q.-Y.; Wang, S.-W.; Cao, Y.; Yan, J. Advances and challenges in improvement of the electrochemical performance for lead-acid batteries: A comprehensive review. J. Power Sources 2022, 520, 230800. [Google Scholar] [CrossRef]
- Jeyaseelan, C.; Jain, A.; Khurana, P.; Kumar, D.; Thatai, S. Ni-Cd Batteries. In Rechargeable Batteries: History, Progress, and Applications; Wiley: Hoboken, NJ, USA, 2020; pp. 177–194. [Google Scholar]
- Feng, F.; Geng, M.; Northwood, D.O. Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: A review. Int. J. Hydrogen Energy 2001, 26, 725–734. [Google Scholar] [CrossRef]
- Deng, D. Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 2015, 3, 385–418. [Google Scholar] [CrossRef]
- Long, L.Z.; Wang, S.J.; Xiao, M.; Meng, Y.Z. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038–10069. [Google Scholar] [CrossRef]
- Folorunso, O.; Olukanmi, P.O.; Shongwe, T. Progress towards sustainable energy storage: A concise review. Eng. Rep. 2023, 5, e12731. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef]
- Zayed, M.E.; Kabeel, A.E.; Shboul, B.; Ashraf, W.M.; Ghazy, M.; Irshad, K.; Rehman, S.; Zayed, A.A.A. Performance augmentation and machine learning-based modeling of wavy corrugated solar air collector embedded with thermal energy storage: Support vector machine combined with Monte Carlo simulation. J. Energy Storage 2023, 74, 109533. [Google Scholar] [CrossRef]
- Afolabi, L.O.; Enweremadu, C.C.; Kareem, M.W.; Arogundade, A.I.; Irshad, K.; Islam, S.; Oladosu, K.O.; Elfaghi, A.M.; Didane, D.H. Experimental investigation of double slope solar still integrated with PCM nanoadditives microencapsulated thermal energy storage. Desalination 2023, 553, 116477. [Google Scholar] [CrossRef]
- Khan, I.U.; Tirth, V.; Algahtani, A.; Khan, R.; Sohail, M.; Ali, A.; Islam, S.; Irshad, K. Optimization of Single alpha-Phase for Promoting Ferromagnetic Properties of 44Fe-28Cr-22Co-3Mo-1Ti-2V Permanent Magnet with Varying Co Concentration for Energy Storage. Materials 2022, 15, 2344. [Google Scholar] [CrossRef] [PubMed]
- Zahir, M.H.; Rahman, M.M.; Basamad, S.K.S.; Mohaisen, K.O.; Irshad, K.; Rahman, M.M.; Aziz, M.A.; Ali, A.; Hossain, M.M. Preparation of a Sustainable Shape-Stabilized Phase Change Material for Thermal Energy Storage Based on Mg2+-Doped CaCO3/PEG Composites. Nanomaterials 2021, 11, 1639. [Google Scholar] [CrossRef] [PubMed]
- Li, G. Sensible heat thermal storage energy and exergy performance evaluations. Renew. Sustain. Energy Rev. 2016, 53, 897–923. [Google Scholar] [CrossRef]
- Sharma, S.D.; Sagara, K. Latent heat storage materials and systems: A review. Int. J. Green Energy 2005, 2, 1–56. [Google Scholar] [CrossRef]
- Prieto, C.; Cooper, P.; Fernández, A.I.; Cabeza, L.F. Review of technology: Thermochemical energy storage for concentrated solar power plants. Renew. Sustain. Energy Rev. 2016, 60, 909–929. [Google Scholar] [CrossRef]
- Rostami, S.; Afrand, M.; Shahsavar, A.; Sheikholeslami, M.; Kalbasi, R.; Aghakhani, S.; Shadloo, M.S.; Oztop, H.F. A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage. Energy 2020, 211, 118698. [Google Scholar] [CrossRef]
- Ortiz, C.; Valverde, J.M.; Chacartegui, R.; Perez-Maqueda, L.A.; Giménez, P. The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants. Renew. Sustain. Energy Rev. 2019, 113, 109252. [Google Scholar] [CrossRef]
- Khan, M.I.; Asfand, F.; Al-Ghamdi, S.G. Progress in research and technological advancements of thermal energy storage systems for concentrated solar power. J. Energy Storage 2022, 55, 105860. [Google Scholar] [CrossRef]
- Schoenung, S.M.; Hassenzahl, W.V. Long-vs. Short-Term Energy Storage Technologies Analysis: A Life-Cycle Cost Study: A Study for the DOE Energy Storage Systems Program; Sandia National Laboratories (SNL): Albuquerque, NM, USA; Livermore, CA, USA, 2003. [Google Scholar]
- Aspitarte, L.; Woodside, C.R. A techno-economic survey of energy storage media for long-duration energy storage applications. Cell Rep. Sustain. 2024, 1, 100007. [Google Scholar] [CrossRef]
- Cárdenas, B.; Swinfen-Styles, L.; Rouse, J.; Hoskin, A.; Xu, W.; Garvey, S.D. Energy storage capacity vs. renewable penetration: A study for the UK. Renew. Energy 2021, 171, 849–867. [Google Scholar] [CrossRef]
- The European Association for Storage of Energy. Energy Storage Targets 2030 and 2050; The European Association for Storage of Energy: Brussels, Belgium, 2024. [Google Scholar]
- Zou, C.F.; Zhang, L.; Hu, X.S.; Wang, Z.P.; Wik, T.; Pecht, M. A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors. J. Power Sources 2018, 390, 286–296. [Google Scholar] [CrossRef]
- Hameer, S.; van Niekerk, J.L. A review of large-scale electrical energy storage. Int. J. Energy Res. 2015, 39, 1179–1195. [Google Scholar] [CrossRef]
- Carrillo, A.J.; Gonzalez-Aguilar, J.; Romero, M.; Coronado, J.M. Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials. Chem. Rev. 2019, 119, 4777–4816. [Google Scholar] [CrossRef] [PubMed]
- Raganati, F.; Ammendola, P. Review of Carbonate-Based Systems for Thermochemical Energy Storage for Concentrating Solar Power Applications: State-of-the-Art and Outlook. Energy Fuels 2023, 37, 1777–1808. [Google Scholar] [CrossRef]
- Khosa, A.A.; Xu, T.X.; Xia, B.Q.; Yan, J.; Zhao, C.Y. Technological challenges and industrial applications of CaCO3/CaO based thermal energy storage system—A review. Sol. Energy 2019, 193, 618–636. [Google Scholar] [CrossRef]
- Sunku Prasad, J.; Muthukumar, P.; Desai, F.; Basu, D.N.; Rahman, M.M. A critical review of high-temperature reversible thermochemical energy storage systems. Appl. Energy 2019, 254, 113733. [Google Scholar] [CrossRef]
- Pardo, P.; Deydier, A.; Anxionnaz-Minvielle, Z.; Rougé, S.; Cabassud, M.; Cognet, P. A review on high temperature thermochemical heat energy storage. Renew. Sustain. Energy Rev. 2014, 32, 591–610. [Google Scholar] [CrossRef]
- Meier, A.; Bonaldi, E.; Cella, G.M.; Lipinski, W.; Wuillemin, D.; Palumbo, R. Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime. Energy 2004, 29, 811–821. [Google Scholar] [CrossRef]
- Bagherisereshki, E.; Tran, J.; Lei, F.Q.; AuYeung, N. Investigation into SrO/SrCO3 for high temperature thermochemical energy storage. Sol. Energy 2018, 160, 85–93. [Google Scholar] [CrossRef]
- André, L.; Abanades, S. Evaluation and performances comparison of calcium, strontium and barium carbonates during calcination/carbonation reactions for solar thermochemical energy storage. J. Energy Storage 2017, 13, 193–205. [Google Scholar] [CrossRef]
- Yan, T.; Wang, R.Z.; Li, T.X.; Wang, L.W.; Fred, I.T. A review of promising candidate reactions for chemical heat storage. Renew. Sustain. Energy Rev. 2015, 43, 13–31. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, C.Y. Thermodynamic and kinetic study of the dehydration process of CaO/Ca(OH)2 thermochemical heat storage system with Li doping. Chem. Eng. Sci. 2015, 138, 86–92. [Google Scholar] [CrossRef]
- Møller, K.T.; Sheppard, D.; Ravnsbæk, D.B.; Buckley, C.E.; Akiba, E.; Li, H.-W.; Jensen, T.R. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage. Energies 2017, 10, 1645. [Google Scholar] [CrossRef]
- Rönnebro, E.C.E.; Whyatt, G.; Powell, M.; Westman, M.; Zheng, F.; Fang, Z.Z. Metal Hydrides for High-Temperature Power Generation. Energies 2015, 8, 8406–8430. [Google Scholar] [CrossRef]
- Ward, P.A.; Teprovich, J.A.; Liu, Y.F.; He, J.; Zidan, R. High temperature thermal energy storage in the CaAl2 system. J. Alloys Compd. 2018, 735, 2611–2615. [Google Scholar] [CrossRef]
- Wierse, M.; Werner, R.; Groll, M. Magnesium Hydride for Thermal-Energy Storage in a Small-Scale Solar Thermal Power-Station. J. Less-Common Met. 1991, 172, 1111–1121. [Google Scholar] [CrossRef]
- Felderhoff, M.; Bogdanovic, B. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications. Int. J. Mol. Sci. 2009, 10, 325–344. [Google Scholar] [CrossRef]
- Reilly, J.J.; Wiswall, R.H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg. Chem. 2002, 7, 2254–2256. [Google Scholar] [CrossRef]
- Fernandes, S.M.; Landzberg, M.J. Pregnancy in patients with tetralogy of fallot: Invited commentary. World J. Pediatr. Congenit. Heart Surg. 2010, 1, 175–176. [Google Scholar] [CrossRef]
- Neises, M.; Tescari, S.; de Oliveira, L.; Roeb, M.; Sattler, C.; Wong, B. Solar-heated rotary kiln for thermochemical energy storage. Sol. Energy 2012, 86, 3040–3048. [Google Scholar] [CrossRef]
- Agrafiotis, C.; Roeb, M.; Sattler, C. Cobalt Oxide-Based Structured Thermochemical Reactors/Heat Exchangers for Solar Thermal Energy Storage in Concentrated Solar Power Plants. In Proceedings of the ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology, Boston, MA, USA, 30 June–2 July 2014. [Google Scholar]
- Agrafiotis, C.; Roeb, M.; Sattler, C. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 4: Screening of oxides for use in cascaded thermochemical storage concepts. Sol. Energy 2016, 139, 695–710. [Google Scholar] [CrossRef]
- Miguel, S.Á.D.; Gonzalez-Aguilar, J.; Romero, M. 100-Wh Multi-purpose Particle Reactor for Thermochemical Heat Storage in Concentrating Solar Power Plants. Energy Procedia 2014, 49, 676–683. [Google Scholar] [CrossRef]
- Fahim, M.A.; Ford, J.D. Energy-Storage Using the Bao2-Bao Reaction Cycle. Chem. Eng. J. Biochem. Eng. J. 1983, 27, 21–28. [Google Scholar] [CrossRef]
- Jafarian, M.; Arjomandi, M.; Nathan, G.J. Thermodynamic potential of molten copper oxide for high temperature solar energy storage and oxygen production. Appl. Energy 2017, 201, 69–83. [Google Scholar] [CrossRef]
- Dunn, R.; Lovegrove, K.; Burgess, G. A Review of Ammonia-Based Thermochemical Energy Storage for Concentrating Solar Power. Proc. IEEE 2012, 100, 391–400. [Google Scholar] [CrossRef]
- Pelay, U.; Lu, L.A.; Fan, Y.L.; Stitou, D.; Rood, M. Thermal energy storage systems for concentrated solar power plants. Renew. Sustain. Energy Rev. 2017, 79, 82–100. [Google Scholar] [CrossRef]
- Airò Farulla, G.; Cellura, M.; Guarino, F.; Ferraro, M. A Review of Thermochemical Energy Storage Systems for Power Grid Support. Appl. Sci. 2020, 10, 3142. [Google Scholar] [CrossRef]
- Wang, K.; Yan, T.; Li, R.; Pan, W. A review for Ca(OH)2/CaO thermochemical energy storage systems. J. Energy Storage 2022, 50, 104612. [Google Scholar] [CrossRef]
- Dubey, S.K.; Kumar, K.R.; Tiwari, V.; Srivastva, U. Impacts, Barriers, and Future Prospective of Metal Hydride-Based Thermochemical Energy Storage System for High-Temperature Applications: A Comprehensive Review. Energy Technol. 2024, 12, 2300768. [Google Scholar] [CrossRef]
- Han, X.Y.; Wang, L.; Ling, H.S.; Ge, Z.W.; Lin, X.P.; Dai, X.J.; Chen, H.S. Critical review of thermochemical energy storage systems based on cobalt, manganese, and copper oxides. Renew. Sustain. Energy Rev. 2022, 158, 112076. [Google Scholar] [CrossRef]
- Anwar, R.; Vijayaraghavan, R.K.; McNally, P.J.; Dardavila, M.M.; Voutsas, E.; Sofianos, M.V. Investigating the activity of Ca2Fe2O5 additives on the thermochemical energy storage performance of limestone waste. RSC Adv. 2023, 13, 32523–32531. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, C.; Valverde, J.M.; Chacartegui, R.; Pérez-Maqueda, L.A.; Gimenez-Gavarrell, P. Scaling-up the Calcium-Looping Process for CO2 Capture and Energy Storage. KONA Powder Part. J. 2021, 38, 189–208. [Google Scholar] [CrossRef]
- Valverde, J.M.; Raganati, F.; Quintanilla, M.A.S.; Ebri, J.M.P.; Ammendola, P.; Chirone, R. Enhancement of CO2 capture at Ca-looping conditions by high-intensity acoustic fields. Appl. Energy 2013, 111, 538–549. [Google Scholar] [CrossRef]
- Tregambi, C.; Salatino, P.; Solimene, R.; Montagnaro, F. An experimental characterization of Calcium Looping integrated with concentrated solar power. Chem. Eng. J. 2018, 331, 794–802. [Google Scholar] [CrossRef]
- Alovisio, A.; Chacartegui, R.; Ortiz, C.; Valverde, J.M.; Verda, V. Optimizing the CSP-Calcium Looping integration for Thermochemical Energy Storage. Energy Convers. Manag. 2017, 136, 85–98. [Google Scholar] [CrossRef]
- Chacartegui, R.; Alovisio, A.; Ortiz, C.; Valverde, J.M.; Verda, V.; Becerra, J.A. Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle. Appl. Energy 2016, 173, 589–605. [Google Scholar] [CrossRef]
- Raganati, F.; Chirone, R.; Ammendola, P. Calcium-looping for thermochemical energy storage in concentrating solar power applications: Evaluation of the effect of acoustic perturbation on the fluidized bed carbonation. Chem. Eng. J. 2020, 392, 123658. [Google Scholar] [CrossRef]
- Valverde, J.M.; Medina, S. Limestone calcination under calcium-looping conditions for CO(2) capture and thermochemical energy storage in the presence of H(2)O: An in situ XRD analysis. Phys. Chem. Chem. Phys. 2017, 19, 7587–7596. [Google Scholar] [CrossRef] [PubMed]
- Zeman, F. Effect of steam hydration on performance of lime sorbent for CO2 capture. Int. J. Greenh. Gas Control 2008, 2, 203–209. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, S.; Suzuki, Y. Limestone Calcination with CO2 Capture (II): Decomposition in CO2/Steam and CO2/N2 Atmospheres. Energy Fuels 2008, 22, 2326–2331. [Google Scholar] [CrossRef]
- Salaudeen, S.A.; Acharya, B.; Dutta, A. CaO-based CO2 sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling. J. CO2 Util. 2018, 23, 179–199. [Google Scholar] [CrossRef]
- Khinast, J.; Krammer, G.F.; Brunner, C.; Staudinger, G. Decomposition of limestone: The influence of CO2 and particle size on the reaction rate. Chem. Eng. Sci. 1996, 51, 623–634. [Google Scholar] [CrossRef]
- Benitez-Guerrero, M.; Valverde, J.M.; Sanchez-Jimenez, P.E.; Perejon, A.; Perez-Maqueda, L.A. Multicycle activity of natural CaCO3 minerals for thermochemical energy storage in Concentrated Solar Power plants. Sol. Energy 2017, 153, 188–199. [Google Scholar] [CrossRef]
- Biasin, A.; Segre, C.U.; Strumendo, M. CaCO3 Crystallite Evolution during CaO Carbonation: Critical Crystallite Size and Rate Constant Measurement by In-Situ Synchrotron Radiation X-ray Powder Diffraction. Cryst. Growth Des. 2015, 15, 5188–5201. [Google Scholar] [CrossRef]
- Ma, X.T.; Li, Y.J.; Yan, X.Y.; Zhang, W.; Zhao, J.L.; Wang, Z.Y. Preparation of a morph-genetic CaO-based sorbent using paper fibre as a biotemplate for enhanced CO2 capture. Chem. Eng. J. 2019, 361, 235–244. [Google Scholar] [CrossRef]
- Khosa, A.A.; Zhao, C.Y. Heat storage and release performance analysis of CaCO3/CaO thermal energy storage system after doping nano silica. Sol. Energy 2019, 188, 619–630. [Google Scholar] [CrossRef]
- Raganati, F.; Ammendola, P. Carbonation Kinetics of Fine CaO Particles in a Sound-Assisted Fluidized Bed for Thermochemical Energy Storage. Kona Powder Part. J. 2022, 39, 240–250. [Google Scholar] [CrossRef]
- Valverde, J.M.; Sanchez-Jimenez, P.E.; Perez-Maqueda, L.A. Relevant influence of limestone crystallinity on CO(2) capture in the Ca-looping technology at realistic calcination conditions. Environ. Sci. Technol. 2014, 48, 9882–9889. [Google Scholar] [CrossRef] [PubMed]
- Benitez-Guerrero, M.; Sarrion, B.; Perejon, A.; Sanchez-Jimenez, P.E.; Perez-Maqueda, L.A.; Valverde, J.M. Large-scale high-temperature solar energy storage using natural minerals. Sol. Energy Mater. Sol. Cells 2017, 168, 14–21. [Google Scholar] [CrossRef]
- Raganati, F.; Chirone, R.; Ammendola, P. Gas-solid fluidization of cohesive powders. Chem. Eng. Res. Des. 2018, 133, 347–387. [Google Scholar] [CrossRef]
- Raganati, F.; Ammendola, P.; Chirone, R. Role of Acoustic Fields in Promoting the Gas-Solid Contact in a Fluidized Bed of Fine Particles. Kona Powder Part. J. 2015, 32, 23–40. [Google Scholar] [CrossRef]
- Raganati, F.; Ammendola, P.; Chirone, R. CO2 adsorption on fine activated carbon in a sound assisted fluidized bed: Effect of sound intensity and frequency, CO2 partial pressure and fluidization velocity. Appl. Energy 2014, 113, 1269–1282. [Google Scholar] [CrossRef]
- Chen, J.; Duan, L.B.; Sun, Z.K. Review on the Development of Sorbents for Calcium Looping. Energy Fuels 2020, 34, 7806–7836. [Google Scholar] [CrossRef]
- Sarrión, B.; Perejón, A.; Sánchez-Jiménez, P.E.; Pérez-Maqueda, L.A.; Valverde, J.M. Role of calcium looping conditions on the performance of natural and synthetic Ca-based materials for energy storage. J. CO2 Util. 2018, 28, 374–384. [Google Scholar] [CrossRef]
- Benitez-Guerrero, M.; Valverde, J.M.; Sanchez-Jimenez, P.E.; Perejon, A.; Perez-Maqueda, L.A. Calcium-Looping performance of mechanically modified Al2O3-CaO composites for energy storage and CO2 capture. Chem. Eng. J. 2018, 334, 2343–2355. [Google Scholar] [CrossRef]
- Antzara, A.N.; Arregi, A.; Heracleous, E.; Lemonidou, A.A. In-depth evaluation of a ZrO2 promoted CaO-based CO2 sorbent in fluidized bed reactor tests. Chem. Eng. J. 2018, 333, 697–711. [Google Scholar] [CrossRef]
- Sánchez Jiménez, P.E.; Perejón, A.; Benítez Guerrero, M.; Valverde, J.M.; Ortiz, C.; Pérez Maqueda, L.A. High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants. Appl. Energy 2019, 235, 543–552. [Google Scholar] [CrossRef]
- Han, R.; Gao, J.H.; Wei, S.Y.; Su, Y.L.; Qin, Y.K. Development of highly effective CaO@Al2O3 with hierarchical architecture CO2 sorbents via a scalable limited-space chemical vapor deposition technique. J. Mater. Chem. A 2018, 6, 3462–3470. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, Z.M.; Zhao, C.J.; Cheng, Z.M. Catalytic performance of Ni/CaO-Ca5Al6O14 bifunctional catalyst extrudate in sorption-enhanced steam methane reforming. Catal. Today 2016, 259, 347–353. [Google Scholar] [CrossRef]
- Chen, X.L.; Yang, L.; Zhou, Z.M.; Cheng, Z.M. Core-shell structured CaO-Ca9Al6O18@Ca5Al6O14/Ni bifunctional material for sorption-enhanced steam methane reforming. Chem. Eng. Sci. 2017, 163, 114–122. [Google Scholar] [CrossRef]
- Ma, X.T.; Li, Y.J.; Qian, Y.; Wang, Z.Y. A Carbide Slag-Based, Ca12Al14O33-Stabilized Sorbent Prepared by the Hydrothermal Template Method Enabling Efficient CO2 Capture. Energies 2019, 12, 2617. [Google Scholar] [CrossRef]
- Møller, K.T.; Ibrahim, A.; Buckley, C.E.; Paskevicius, M. Inexpensive thermochemical energy storage utilising additive enhanced limestone. J. Mater. Chem. A 2020, 8, 9646–9653. [Google Scholar] [CrossRef]
- Wang, N.N.; Feng, Y.C.; Liu, L.; Guo, X. Effects of preparation methods on the structure and property of Al-stabilized CaO-based sorbents for CO2 capture. Fuel Process. Technol. 2018, 173, 276–284. [Google Scholar] [CrossRef]
- Anwar, R.; Navrátil, J.; Vijayaraghavan, R.K.; McNally, P.J.; Otyepka, M.; Blonski, P.; Sofianos, M.V. Upcycling natural Limestone waste for thermochemical energy storage by utilising tailored CaZrO3 nanoadditives. Mater. Adv. 2023, 4, 1905–1915. [Google Scholar] [CrossRef]
- Alay, E.A.S.M.; Nazir, S.; Cottenier, S.; Shaukat, A. Evaluation of thermodynamics, formation energetics and electronic properties of vacancy defects in CaZrO(3). Sci. Rep. 2017, 7, 8439. [Google Scholar] [CrossRef] [PubMed]
- Soria-Hoyo, C.; Valverde, J.M.; van Ommen, J.R.; Sánchez-Jiménez, P.E.; Pérez-Maqueda, L.A.; Sayagués, M.J. Synthesis of a nanosilica supported CO2 sorbent in a fluidized bed reactor. Appl. Surf. Sci. 2015, 328, 548–553. [Google Scholar] [CrossRef]
- Koirala, R.; Gunugunuri, K.R.; Pratsinis, S.E.; Smirniotis, P.G. Effect of Zirconia Doping on the Structure and Stability of CaO-Based Sorbents for CO2 Capture during Extended Operating Cycles. J. Phys. Chem. C 2011, 115, 24804–24812. [Google Scholar] [CrossRef]
- Li, C.C.; Wu, U.T.; Lin, H.P. Cyclic performance of CaCO3@mSiO2 for CO2 capture in a calcium looping cycle. J. Mater. Chem. A 2014, 2, 8252–8257. [Google Scholar] [CrossRef]
- Benitez-Guerrero, M.; Valverde, J.M.; Perejon, A.; Sanchez-Jimenez, P.E.; Perez-Maqueda, L.A. Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power. Appl. Energy 2018, 210, 108–116. [Google Scholar] [CrossRef]
- Zhao, M.; Shi, J.; Zhong, X.; Tian, S.C.; Blamey, J.; Jiang, J.G.; Fennell, P.S. A novel calcium looping absorbent incorporated with polymorphic spacers for hydrogen production and CO2 capture. Energy Environ. Sci. 2014, 7, 3291–3295. [Google Scholar] [CrossRef]
- Silaban, A.; Narcida, M.; Harrison, D.P. Characteristics of the reversible reaction between CO2(g) and calcined dolomite. Chem. Eng. Commun. 1996, 146, 149–162. [Google Scholar] [CrossRef]
- Albrecht, K.O.; Wagenbach, K.S.; Satrio, J.A.; Shanks, B.H.; Wheelock, T.D. Development of a CaO-Based CO2 Sorbent with Improved Cyclic Stability. Ind. Eng. Chem. Res. 2008, 47, 7841–7848. [Google Scholar] [CrossRef]
- Huang, L.; Zheng, Q.W.; Louis, B.; Wang, Q. A facile Solvent/Nonsolvent Preparation of Sintering-Resistant MgO/CaO Composites for High-Temperature CO2 Capture. Energy Technol. 2018, 6, 2469–2478. [Google Scholar] [CrossRef]
- Daud, F.D.M.; Vignesh, K.; Sreekantan, S.; Mohamed, A.R. Improved CO2 adsorption capacity and cyclic stability of CaO sorbents incorporated with MgO. New J. Chem. 2016, 40, 231–237. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, L.; Yang, Z.Q.; Tang, Q. Removal of CO2 by CaO/MgO and CaO/Ca9Al6O18 in the Presence of SO. Energy Fuels 2011, 25, 5514–5520. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, Z.G.; Peng, Y.; Su, W.K.; Sun, X.X.; Li, J.H. Investigation on a novel CaO-Y2O3 sorbent for efficient CO2 mitigation. Chem. Eng. J. 2014, 243, 297–304. [Google Scholar] [CrossRef]
- Derevschikov, V.S.; Lysikov, A.I.; Okunev, A.G. High Temperature CaO/Y2O3 Carbon Dioxide Absorbent with Enhanced Stability for Sorption-Enhanced Reforming Applications. Ind. Eng. Chem. Res. 2011, 50, 12741–12749. [Google Scholar] [CrossRef]
- Zhang, M.M.; Peng, Y.X.; Sun, Y.Z.; Li, P.; Yu, J.G. Preparation of CaO-Al2O3 sorbent and CO2 capture performance at high temperature. Fuel 2013, 111, 636–642. [Google Scholar] [CrossRef]
- Broda, M.; Muller, C.R. Synthesis of highly efficient, Ca-based, Al(2)O(3)-stabilized, carbon gel-templated CO(2) sorbents. Adv. Mater 2012, 24, 3059–3064. [Google Scholar] [CrossRef]
- Koirala, R.; Reddy, G.K.; Smirniotis, P.G. Single Nozzle Flame-Made Highly Durable Metal Doped Ca-Based Sorbents for CO2 Capture at High Temperature. Energy Fuels 2012, 26, 3103–3109. [Google Scholar] [CrossRef]
- Kurlov, A.; Armutlulu, A.; Donat, F.; Studart, A.R.; Müller, C.R. CaO-Based CO2 Sorbents with a Hierarchical Porous Structure Made via Microfluidic Droplet Templating. Ind. Eng. Chem. Res. 2020, 59, 7182–7188. [Google Scholar] [CrossRef]
- Angeli, S.D.; Martavaltzi, C.S.; Lemonidou, A.A. Development of a novel-synthesized Ca-based CO2 sorbent for multicycle operation: Parametric study of sorption. Fuel 2014, 127, 62–69. [Google Scholar] [CrossRef]
- Sultana, K.S.; Tran, D.T.; Walmsley, J.C.; Ronning, M.; Chen, D. CaO Nanoparticles Coated by ZrO2 Layers for Enhanced CO2 Capture Stability. Ind. Eng. Chem. Res. 2015, 54, 8929–8939. [Google Scholar] [CrossRef]
- Broda, M.; Müller, C.R. Sol-gel-derived, CaO-based, ZrO2-stabilized CO2 sorbents. Fuel 2014, 127, 94–100. [Google Scholar] [CrossRef]
- Lu, H.; Khan, A.; Pratsinis, S.E.; Smirniotis, P.G. Flame-Made Durable Doped-CaO Nanosorbents for CO2 Capture. Energy Fuels 2009, 23, 1093–1100. [Google Scholar] [CrossRef]
- Yoon, H.J.; Lee, K.B. Introduction of chemically bonded zirconium oxide in CaO-based high-temperature CO2 sorbents for enhanced cyclic sorption. Chem. Eng. J. 2019, 355, 850–857. [Google Scholar] [CrossRef]
- Zhao, C.J.; Zhou, Z.M.; Cheng, Z.M. Sol-gel-Derived Synthetic CaO-Based CO2 Sorbents Incorporated with Different Inert Materials. Ind. Eng. Chem. Res. 2014, 53, 14065–14074. [Google Scholar] [CrossRef]
- Zhao, M.; He, X.; Ji, G.Z.; Song, Y.Q.; Zhao, X. Zirconia incorporated calcium looping absorbents with superior sintering resistance for carbon dioxide capture from or processes. Sustain. Energy Fuels 2018, 2, 2733–2741. [Google Scholar] [CrossRef]
- Sarrion, B.; Sanchez-Jimenez, P.E.; Perejon, A.; Perez-Maqueda, L.A.; Valverde, J.M. Pressure Effect on the Multicycle Activity of Natural Carbonates and a Ca/Zr Composite for Energy Storage of Concentrated Solar Power. ACS Sustain. Chem. Eng. 2018, 6, 7849–7858. [Google Scholar] [CrossRef]
- Sanchez-Jimenez, P.E.; Perez-Maqueda, L.A.; Valverde, J.M. Nanosilica supported CaO: A regenerable and mechanically hard CO2 sorbent at Ca-looping conditions. Appl. Energy 2014, 118, 92–99. [Google Scholar] [CrossRef]
- Valverde, J.M.; Perejon, A.; Perez-Maqueda, L.A. Enhancement of fast CO2 capture by a nano-SiO2/CaO composite at Ca-looping conditions. Environ. Sci. Technol. 2012, 46, 6401–6408. [Google Scholar] [CrossRef]
- Huang, C.H.; Chang, K.P.; Yu, C.T.; Chiang, P.C.; Wang, C.F. Development of high-temperature CO2 sorbents made of CaO-based mesoporous silica. Chem. Eng. J. 2010, 161, 129–135. [Google Scholar] [CrossRef]
- Zhao, M.; Song, Y.Q.; Ji, G.Z.; Zhao, X. Demonstration of Polymorphic Spacing Strategy against Sintering: Synthesis of Stabilized Calcium Looping Absorbents for High-Temperature CO2 Sorption. Energy Fuels 2018, 32, 5443–5452. [Google Scholar] [CrossRef]
- Chen, X.Y.; Jin, X.G.; Liu, Z.M.; Ling, X.; Wang, Y. Experimental investigation on the CaO/CaCO3 thermochemical energy storage with SiO2 doping. Energy 2018, 155, 128–138. [Google Scholar] [CrossRef]
- Naeem, M.A.; Armutlulu, A.; Kierzkowska, A.; Müller, C.R. Development of high-performance CaO-based CO2 sorbents stabilized with Al2O3 or MgO. Energy Procedia 2017, 114, 158–166. [Google Scholar] [CrossRef]
- Broda, M.; Kierzkowska, A.M.; Müller, C.R. Development of Highly Effective CaO-based, MgO-stabilized CO2 Sorbents via a Scalable “One-Pot” Recrystallization Technique. Adv. Funct. Mater. 2014, 24, 5753–5761. [Google Scholar] [CrossRef]
- Kurlov, A.; Broda, M.; Hosseini, D.; Mitchell, S.J.; Pérez-Ramírez, J.; Müller, C.R. Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents. ChemSusChem 2016, 9, 2380–2390. [Google Scholar] [CrossRef]
- Liu, W.; Feng, B.; Wu, Y.; Wang, G.; Barry, J.; da Costa, J.C. Synthesis of sintering-resistant sorbents for CO2 capture. Environ. Sci. Technol. 2010, 44, 3093–3097. [Google Scholar] [CrossRef]
- Lan, P.Q.; Wu, S.F. Synthesis of a Porous Nano-CaO/MgO-Based CO2 Adsorbent. Chem. Eng. Technol. 2014, 37, 580–586. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, C. Development of a CaO-based sorbent with improved cyclic stability for CO2 capture in pressurized carbonation. Chem. Eng. J. 2011, 171, 197–205. [Google Scholar] [CrossRef]
- Antzara, A.; Heracleous, E.; Lemonidou, A.A. Development of CaO-based Mixed Oxides as Stable Sorbents for Post-Combustion CO2 capture via Carbonate Looping. Energy Procedia 2014, 63, 2160–2169. [Google Scholar] [CrossRef]
- Phromprasit, J.; Powell, J.; Assabumrungrat, S. Metals (Mg, Sr and Al) modified CaO based sorbent for CO2 sorption/desorption stability in fixed bed reactor for high temperature application. Chem. Eng. J. 2016, 284, 1212–1223. [Google Scholar] [CrossRef]
- Li, L.Y.; King, D.L.; Nie, Z.M.; Howard, C. Magnesia-Stabilized Calcium Oxide Absorbents with Improved Durability for High Temperature CO2 Capture. Ind. Eng. Chem. Res. 2009, 48, 10604–10613. [Google Scholar] [CrossRef]
- Chen, H.C.; Zhang, P.P.; Duan, Y.F.; Zhao, C.S. Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol-gel process. Appl. Energy 2016, 162, 390–400. [Google Scholar] [CrossRef]
- Luo, C.; Zheng, Y.; Xu, Y.Q.; Ding, N.; Shen, Q.W.; Zheng, C.G. Wet mixing combustion synthesis of CaO-based sorbents for high temperature cyclic CO2 capture. Chem. Eng. J. 2015, 267, 111–116. [Google Scholar] [CrossRef]
- Wang, S.; Fan, S.; Fan, L.; Zhao, Y.; Ma, X. Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles. Environ. Sci. Technol. 2015, 49, 5021–5027. [Google Scholar] [CrossRef] [PubMed]
- Venkataswamy, P.; Rao, K.N.; Jampaiah, D.; Reddy, B.M. Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures. Appl. Catal. B Environ. 2015, 162, 122–132. [Google Scholar] [CrossRef]
- Guo, H.X.; Feng, J.Q.; Zhao, Y.J.; Wang, S.P.; Ma, X.B. Effect of micro-structure and oxygen vacancy on the stability of (Zr-Ce)-additive CaO-based sorbent in CO2 adsorption. J. CO2 Util. 2017, 19, 165–176. [Google Scholar] [CrossRef]
- Peng, W.; Xu, Z.; Luo, C.; Zhao, H. Tailor-Made Core-Shell CaO/TiO2-Al2O3 Architecture as a High-Capacity and Long-Life CO2 Sorbent. Environ. Sci. Technol. 2015, 49, 8237–8245. [Google Scholar] [CrossRef]
- He, D.L.; Qin, C.L.; Zhang, Z.H.; Pi, S.; Ran, J.Y.; Pu, G. Investigation of Y2O3/MxOy-Incorporated Ca-Based Sorbents for Efficient and Stable CO2 Capture at High Temperature. Ind. Eng. Chem. Res. 2018, 57, 11625–11635. [Google Scholar] [CrossRef]
- Hlaing, N.N.; Sreekantan, S.; Othman, R.; Hinode, H.; Kurniawan, W.; Thant, A.A.; Mohamed, A.R.; Salim, C. A novel (Zr-Ce) incorporated Ca(OH)2 nanostructure as a durable adsorbent for CO2 capture. Mater. Lett. 2014, 133, 204–207. [Google Scholar] [CrossRef]
- Sun, H.; Li, Y.J.; Yan, X.Y.; Zhao, J.L.; Wang, Z.Y. Thermochemical energy storage performance of Al2O3/CeO2 co-doped CaO-based material under high carbonation pressure. Appl. Energy 2020, 263, 114650. [Google Scholar] [CrossRef]
- Kim, S.M.; Kierzkowska, A.M.; Broda, M.; Müller, C.R. Sol-gel synthesis of MgAl2O4-stabilized CaO for CO2 capture. Energy Procedia 2017, 114, 220–229. [Google Scholar] [CrossRef]
- Li, L.Y.; King, D.L.; Nie, Z.M.; Li, X.S.; Howard, C. MgAl2O4 Spinel-Stabilized Calcium Oxide Absorbents with Improved Durability for High-Temperature CO2 Capture. Energy Fuels 2010, 24, 3698–3703. [Google Scholar] [CrossRef]
- Sun, J.; Yang, Y.D.; Guo, Y.F.; Zhao, C.W.; Zhang, J.B.; Liu, W.Q.; Lu, P. Stabilized Performance of Al-Decorated and Al/Mg Co-Decorated Spray-Dried CaO-Based CO2 Sorbents. Chem. Eng. Technol. 2019, 42, 1283–1292. [Google Scholar] [CrossRef]
- Sedghkerdar, M.H.; Mahinpey, N.; Soleimanisalim, A.H.; Sun, Z.K.; Chen, Z.W.; Lim, J.; Kaliaguine, S. Core-shell structured CaO-based pellets protected by mesoporous ceramics shells for high-temperature CO2 capture. Can. J. Chem. Eng. 2016, 94, 2038–2044. [Google Scholar] [CrossRef]
- Naeem, M.A.; Armutlulu, A.; Imtiaz, Q.; Muller, C.R. CaO-Based CO(2) Sorbents Effectively Stabilized by Metal Oxides. Chemphyschem 2017, 18, 3280–3285. [Google Scholar] [CrossRef]
Characterization | SHS | LHS | TCES |
---|---|---|---|
Power density | ~50 kWh m−3 | ~100 kWh m−3 | ~500 kWh m−3 |
~0.02–0.03 kWh kg−3 | ~0.05–0.1 kWh kg−3 | ~0.05–0.1 kWh kg−3 | |
Energy density | ~0.2 GJ m−3 | ~0.3–0.6 GJ m−3 | ~0.5–4 GJ m−3 |
Energy storage temperature | Charging step T | Charging step T | Ambient T |
Storage period | Limited (hours/days due to heat loss) | Limited (hours/days due to heat loss) | Unlimited |
Transport | Short distance | Short distance | Short or Long distance |
Complexity of storage mechanism | Simple | Medium | High |
Maturity | Commercial scale | Commercial scale | Pilot Scale |
Chemical Reaction | Temperature | Pressure | Enthalpy | Energy Density | Ref. | |
---|---|---|---|---|---|---|
T (°C) | P (atm) | ΔH (kJ/mol) | (kJ/kg) | (kJ/m3) | ||
Carbonates | Solid–Gas | |||||
CaCO3 ↔ CaO + CO2 | 895–1273 | 1–10 | 178 | 1494 | 3–4 | [69,70,71] |
SrCO3 ↔ SrO + CO2 | 900–1200 | 1–2 | 234 | 926 | 4 | [72] |
BaCO3 ↔ BaO + CO2 | 1560 | 1 | 273 | 278 | - | [73,74] |
Hydroxides | Solid–Gas | |||||
CaO + H2O ↔ Ca(OH)2 | 400–600 | 0.1–10 | 104 | 2000 | 1.64 | [74,75] |
Metal hydrides | Solid–Gas | |||||
Ca + H2 ↔ CaH2 | 1100–1400 | 1–5 | 186 | 3857 | 7.37 | [76,77] |
CaAl2 + H2 ↔ CaH2 + Al | ∼600 | - | 83 | 865 | 1.49 | [78] |
Mg + H2 ↔ MgH2 | 300–480 | 1–63 | 75 | 2160 | 3.99 | [79] |
2Mg + Fe + 3H2 ↔ Mg2FeH6 | 300–500 | 0–60 | 77 | 2106 | 5.77 | [80] |
Mg2Ni + 2H2 ↔ Mg2NiH4 | 253–523 | 1–20 | 65 | 1160 | 3.14 | [76,81] |
Ti + H2 ↔ TiH2 | 650–750 | 1–10 | 170 | 890 | 4.01 | [82] |
Metal Oxides | Solid–Gas | |||||
Co3O4 ↔ 6CoO + O2 | ∼900 | ∼1 | 200 | 844 | 0.72 | [83,84] |
6Mn2O3 ↔ 4Mn3O3 + O2 | 1000 | 1 | 32 | 204 | 0.23 | [85,86] |
2BaO2 ↔ 2BaO + O2 | 727–1027 | 0.11–1 | 77 | 468 | 2.9 | [87] |
4CuO ↔ Cu2O + O2 | 1030 | ∼1 | 64 | 811 | - | [85,88] |
Others | Liquid–Gas | |||||
NH4HSO4 ↔ NH3 + H2O + SO3 | 417 | 1.5 | 336 | - | 3.01 | [70] |
Others | Gas–Gas | |||||
2NH3 ↔ N2 + H2 | 400–700 | 100–300 | 67 | 3924 | 6.75 × 10−4 | [89] |
CH4 + H2O ↔ 3H2 + CO | 1000–1500 | 20–150 | 250 | - | 2.81 × 10−2 | [90] |
CH4 + CO2 ↔ 2H2 + 2CO | 1000–1500 | 3–4 | 247 | 3924 | 2.77 × 10−2 | [90] |
2SO3 ↔ 2SO2 + O2 | 1000–1500 | 1–5 | 198 | - | 2.33 | [56,90] |
Operating Conditions | CCS | TCES |
---|---|---|
Calcination Temperature | ~950 °C | ~750–850 °C |
Calcination Pressure | High CO2 partial pressure | Relatively low CO2 partial pressure |
Carbonation Temperature | ~650 °C | >800 °C |
Carbonation Pressure | Low CO2 partial pressure | Highest CO2 partial pressures |
Gas Feed Composition | High CO2 concentration in combustion flue gas (10–20% vol) | Pure CO2 stream, excess CO2 for heat transfer fluid (HTF) |
Additive/Support | Synthesis Method | Temperature Carb./Calci. | CO2 vol % Carb./Calci | Testing Conditions | CO2 Uptake (gCO2/gsorb) Last Cycle | Ref. |
---|---|---|---|---|---|---|
ZrO2—CeO2 | precipitation | 800/800 °C | 100/0 | TGA—14 cycles | 0.6 | [175] |
Al2O3—CeO2 | wet mixing | 850/850 °C | 100/0 | dual fixed bed—30 cycles | 0.57 | [176] |
MgO—Al2O3 | sol–gel | 650/900 °C | 20/100 | TGA—10 cycles | 0.39 | [177] |
MgO—Al2O3 | wet mixing | 758/758 °C | 100/0 | TGA—130 cycles | 0.45 | [178] |
MgO—Al2O3 | spray drying | 650/900 °C | 15/40 | TGA—25 cycles | 0.35 | [179] |
CeO2—MnO2 | sol–gel | 600/700 °C | 50/0 | TGA—40 cycles | 0.61 | [178] |
Y2O3—ZrO2 | wet impregnations | 675/850 °C | 100/0 | TGA—20 cycles | 0.11 | [180] |
Al2O3—Y2O3 | Pechini | 650/900 °C | 20/100 | TGA—30 cycles | 0.38 | [181] |
Y2O3—MgO | sol–gel | 650/900 °C | 15/0 | TGA—122 cycles | 0.31 | [174] |
CeO2—Al2O3 | templating method | 650/900 °C | 15/0 | TGA—104 cycles | 0.44 | [173] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, R.; Sofianos, M.V. Exploring the Role of Additives in Enhancing the Performance of Limestone-Based Thermochemical Energy Storage: A Review. Energies 2024, 17, 2572. https://doi.org/10.3390/en17112572
Anwar R, Sofianos MV. Exploring the Role of Additives in Enhancing the Performance of Limestone-Based Thermochemical Energy Storage: A Review. Energies. 2024; 17(11):2572. https://doi.org/10.3390/en17112572
Chicago/Turabian StyleAnwar, Rehan, and M. Veronica Sofianos. 2024. "Exploring the Role of Additives in Enhancing the Performance of Limestone-Based Thermochemical Energy Storage: A Review" Energies 17, no. 11: 2572. https://doi.org/10.3390/en17112572
APA StyleAnwar, R., & Sofianos, M. V. (2024). Exploring the Role of Additives in Enhancing the Performance of Limestone-Based Thermochemical Energy Storage: A Review. Energies, 17(11), 2572. https://doi.org/10.3390/en17112572