Renewable Energy Share in European Industry: Analysis and Extrapolation of Trends in EU Countries
Abstract
:1. Introduction
2. Theoretical Background of Analysis
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Document 52011DC0885. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Energy Roadmap 2050/COM/2011/0885 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A52011DC0885 (accessed on 5 December 2023).
- European Council. Fit for 55. 2021. Available online: https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55/ (accessed on 10 February 2024).
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions: The European Green Deal (COM/2019/640 Final). 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (accessed on 10 February 2024).
- CBAM Regulation (EU) 2023/956 of the European Parliament and of the Council of 10 May 2023 Establishing a Carbon Border Adjustment Mechanism, L 130/52 [EN], Official Journal of the European Union 16.5.2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R0956 (accessed on 10 February 2024).
- Commission Communication of 10 January 2007: “Renewable Energy Road Map. Renewable Energies in the 21st Century: Building a More Sustainable Future” [COM(2006) 848 Final—Not Published in the Official Journal]. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:52006DC0848 (accessed on 10 February 2024).
- The Net-Zero Industry Act: Accelerating the Transition to Climate Neutrality, 16 March 2023. Available online: https://single-market-economy.ec.europa.eu/industry/sustainability/net-zero-industry-act_en (accessed on 10 February 2024).
- Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_bal_s__custom_8856531/default/table?lang=en (accessed on 5 December 2023).
- IEA. International Energy Outlook 2023 with Projections to 2050. U.S. Energy Information Administration. 2023. Available online: https://www.eia.gov/outlooks/ieo/data.php (accessed on 5 December 2023).
- European Commission. Climate Action: 2050 Long-Term Strategy. Available online: https://ec.europa.eu/clima/policies/strategies/2050_en (accessed on 22 June 2020).
- European Commission. Leading the Clean Industrial Revolution. 2021. Available online: https://ec.europa.eu/commission/presscorner/detail/%5Beuropa_tokens:europa_interface_language%5D/fs_21_3675 (accessed on 13 December 2023).
- European Commission. National Long-Term Strategies. 2023. Available online: https://commission.europa.eu/energy-climate-change-environment/implementation-eu-countries/energy-and-climate-governance-and-reporting/national-long-term-strategies_en#national-long-term-strategies (accessed on 13 December 2023).
- IRENA. Global Energy Transformation: A Roadmap to 2050, International Renewable Energy Agency, Abu Dhabi. 2018. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_Report_GET_2018.pdf (accessed on 13 December 2023).
- Murtaugh, D. “China Is the Emissions Behemoth. Can it Change Fast Enough?” Bloomberg Green, 21 January 2020. Available online: https://www.bloomberg.com/news/articles/2020-01-21/where-china-stands-on-climatetarget-goals-from-5-year-plan (accessed on 25 August 2020).
- Accelerating America’s Green Transition, 12 September 2019. Available online: https://www.greeninvestmentgroup.com/en/projects-and-perspectives/accelerating-americas-green-transition.html (accessed on 10 February 2024).
- Pianta, M.; Lucchese, M. Rethinking the European green Deal: An industrial policy for a just transition in Europe. Rev. Radic. Political Econ. 2020, 52, 633–641. [Google Scholar] [CrossRef]
- European Commission. Circular Economy Action Plan. 2023. Available online: https://environment.ec.europa.eu/strategy/circular-economyaction-plan_en (accessed on 10 February 2024).
- van Diemen, R.; Matthews, J.B.R.; Möller, V.; Fuglestvedt, J.S.; Masson-Delmotte, V.; Méndez, C.; Reisinger, A.; Semenov, S. (Eds.) IPCC, 2022: Annex I: Glossary Archived 13 March 2023 at the Wayback Machine. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Archived 2 August 2022 at the Wayback Machine; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Victoria, M.; Zhu, K.; Brown, T.; Andresen, G.B.; Greiner, M. Early decarbonization of the European energy system pays off. Nat. Commun. 2020, 11, 6223. [Google Scholar] [CrossRef] [PubMed]
- Jarosławska-Sobór, S. Decarbonization—Origins and Evolution of The Process on the European Level. J. Sustain. Min. 2021, 20, 250–259. [Google Scholar] [CrossRef]
- Drummond, P.; Ekins, P. Cost-effective decarbonization in the EU: An overview of policy suitability. Clim. Policy 2017, 17, S51–S71. [Google Scholar] [CrossRef]
- Adler, D.; Wargan, P. Decarbonization without democracy: Tennis-ball politics and the EU Green Deal. In Routledge Handbook on the Green New Deal; Routledge: London, UK, 2022; pp. 299–314. [Google Scholar]
- Coghlan, C.; Bricout, A.; Velasco, L.R.; Trottier-Chi, C.; Makuch, Z. A Justice-Driven Approach to EU Power Sector Decarbonization. Eur. Energy Environ. Law Rev. 2022, 31, 70–104. [Google Scholar]
- Gajdzik, B.; Wolniak, R.; Grebski, W.W. Electricity and Heat Demand in Steel Industry Technological Processes in Industry 4.0 Conditions. Energies 2023, 16, 787. [Google Scholar] [CrossRef]
- Bhaskar, A.; Abhishek, R.; Assadi, M.; Somehesaraei, H.N. Decarbonizing primary steel production: Techno-economic assessment of a hydrogen based green steel production plant in Norway. J. Clean. Prod. 2022, 350, 131339. [Google Scholar] [CrossRef]
- Birat, J.P. Innovation paradigms for the steel industry of the 21st Century—Future directions for steel industry and continuous casting. La Rev. Metall.–CIT 2002, 99, 957. [Google Scholar] [CrossRef]
- Quadera, M.; Ahmed, S.; Ghazillaa, R.; Ahmed, S.; Dahari, M. A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing. Renew. Sustain. Energy Rev. 2015, 50, 594–614. [Google Scholar] [CrossRef]
- Clean Energy for All Europeans—Unlocking Europe’s Growth Potential. IP_16_4009. European Commission, Brussel. 2016. Available online: https://europa.eu/rapid/press-release_IP-16-4009_en.htm (accessed on 15 October 2023).
- Energy Roadmap 2050; Publications Office of the European Union, European Commission: Luxembourg; Brussels, Belgium, 2012.
- Schiffer, Z.J.; Manthiram, K. Electrification and Decarbonization of the Chemical Industry. Joule 2017, 1, 10–14. [Google Scholar] [CrossRef]
- Agora Energiewende; Wuppertal Institute. Breakthrough Strategies for Climate-Neutral Industry in Europe: Policy and Technology Pathways for Raising EU Climate Ambition, Berlin 2021, p. 30. Available online: https://static.agora-energiewende.de/fileadmin/Projekte/2020/2020_10_Clean_Industry_Package/A-EW_197_Strategies-Climate-Neutral-Industry-EU_Summary_WEB.pdf (accessed on 10 February 2024).
- UNFCCC. Adoption of the Paris Agreement. Report No. FCCC/CP/2015/L.9/Rev.1. 2015. Available online: http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 15 May 2023).
- Brundtland, G.H. Our Common Future, Report of the World Commission on Environment and Development, Our Common Future (Brundtland Report); Oxford University Press: New York, NY, USA, 1987. [Google Scholar]
- Valackienė, A.; Nagaj, R. Shared Taxonomy for the Implementation of Responsible Innovation Approach in Industrial Ecosystems. Sustainability 2021, 13, 9901. [Google Scholar] [CrossRef]
- Gajdzik, B.; Jaciow, M.; Wolniak, R.; Wolny, R.; Grebski, W.W. Energy Behaviors of Prosumers in Example of Polish Households. Energies 2023, 16, 3186. [Google Scholar] [CrossRef]
- Pacana, A.; Siwiec, D. Model to Predict Quality of Photovoltaic Panels Considering Customers’ Expectations. Energies 2022, 15, 1101. [Google Scholar] [CrossRef]
- Siwiec, D.; Pacana, A. Model of Choice Photovoltaic Panels Considering Customers’ Expectation. Energies 2021, 14, 5977. [Google Scholar] [CrossRef]
- Rosenbloom, D. Pathways: An emerging concept for the theory and governance of low-carbon transitions. Glob. Environ. Chang. 2017, 43, 37–50. [Google Scholar] [CrossRef]
- Bogdanov, D.; Ram, M.; Aghahosseini, A.; Traber, T.; Breyer, C. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 2021, 227, 120467. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R.; Nagaj, R.; Grebski, W.W.; Romanyshyn, T. Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries. Energies 2023, 16, 7364. [Google Scholar] [CrossRef]
- Monyeia, C.G.; Sovacoold, B.K.; Browne, M.A.; Jenkinsf, K.E.H.; Viririb, S.; Li, Y. Justice, poverty, and electricity decarbonization. Electr. J. 2019, 32, 47–51. [Google Scholar] [CrossRef]
- Regulation (EU) 2023/955 Establishing a Social Climate Fund, Regulation (EU) 2023/955 of the European Parliament and of the Council of 10 May 2023 Establishing a Social Climate Fund and Amending Regulation (EU) 2021/1060. Available online: https://climate-laws.org/document/regulation-eu-2023955-establishing-a-social-climate-fund-ce42 (accessed on 10 February 2024).
- Industrial Decarbonization Network 06/14/2022. Available online: https://www.industrialdecarbonizationnetwork.com/leadership-strategy/articles/the-4-pathways-to-industrial-decarbonization (accessed on 10 February 2024).
- Deloitte Report: The 2030 Decarbonization Challenge the Path to the Future of Energy. Available online: https://www2.deloitte.com/pl/pl/pages/energy-and-resources/articles/dekarbonizacja-i-rozwoj-odnawialnych-zrodel-energii.html (accessed on 10 February 2024).
- European Commission. Finance and the Green Deal. 2023. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/finance-and-green-deal_en (accessed on 10 February 2024).
- Pacana, A.; Siwiec, D.; Sprinc, L.; Krasnici, D. Simplified model supporting decisionmaking considering the criteria of sustainable development and life cycle assessment (LCA). Acta Montan. Slovaca 2023, 28, 408–423. [Google Scholar]
- European Commission. EU Taxonomy for Sustainable Activities. 2023. Available online: https://finance.ec.europa.eu/sustainable-finance/tools-and-standards/eu-taxonomysustainable-activities_en (accessed on 10 February 2024).
- Industrial Transformation 2050—Towards an Industrial Strategy for a Climate Neutral Europe. Institute for European Studies, Vrije Universiteit Brussel. Available online: https://www.ies.be/files/Industrial_Transformation_2050_0.pdf (accessed on 20 November 2023).
- Sartal, A.; Bellas, R.; Mejías, A.M.; García-Collado, A. The sustainable manufacturing concept, evolution and opportunities within Industry 4.0: A literature review. Adv. Mech. Eng. 2020, 12, 1687814020925232. [Google Scholar] [CrossRef]
- Bag, S.; Pretorius, J.H.C. Relationships between industry 4.0, sustainable manufacturing and circular economy: Proposal of a research framework. Int. J. Organ. Anal. 2020, 30, 864–898. [Google Scholar] [CrossRef]
- EC: European Commission. Industry 5.0 Towards a Sustainable, Human Centric and Resilient European Industry; Manuscript completed in January 2021; European Commission: Brussels, Belgium, 2021; p. 14. [Google Scholar]
- Branca, T.A.; Fornai, B.; Murri, M.M.; Streppa, E.; Schröder, A.J. The Challenge of Digitalization in the Steel Sector. Metals 2020, 10, 288. [Google Scholar] [CrossRef]
- Kermeli, K.; Crijns-Graus, W.; Johannsen, R.M.; Mathiesen, B.V. Energy efficiency potentials in the EU industry: Impacts of deep decarbonization technologies. Energy Effic. 2022, 15, 68. [Google Scholar] [CrossRef]
- Khatiwada, D.; Vasudevan, R.A.; Santos, B.H. Decarbonization of natural gas systems in the EU—Costs, barriers, and constraints of hydrogen production with a case study in Portugal. Renew. Sustain. Energy Rev. 2022, 168, 112775. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Wang, B.; Hui, N.S.; Lu, B.; Wang, C.; Xu, S.; Zhou, Z.; Zhang, B.; Zheng, Y. The decarbonization pathway of power system by high-resolution model under different policy scenarios in China. Appl. Energy 2024, 355, 122235. [Google Scholar] [CrossRef]
- Roginko, S.A. EU green steel deal: Maneuvers on the decarbonization track. Chernye Met. 2022, 11, 66–72. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Del Rio, D.F.; Zhang, W. The political economy of net-zero transitions: Policy drivers, barriers, and justice benefits to decarbonization in eight carbon-neutral countries. J. Environ. Manag. 2023, 347, 119154. [Google Scholar] [CrossRef] [PubMed]
- Plazas-Niño, F.A.; Yeganyan, R.; Cannone, C.; Howells, M.; Quirós-Tortós, J. Informing sustainable energy policy in developing countries: An assessment of decarbonization pathways in Colombia using open energy system optimization modelling. Energy Strategy Rev. 2023, 50, 101226. [Google Scholar] [CrossRef]
- Yeung, G.; Liu, Y. Local government policies and public transport decarbonization through the production and adoption of fuel cell electric vehicles (FCEVs) in China. J. Clean. Prod. 2023, 422, 138552. [Google Scholar] [CrossRef]
- Huang, L.; Long, Y.; Chen, J.; Yoshida, Y. Sustainable lifestyle: Urban household carbon footprint accounting and policy implications for lifestyle-based decarbonization. Energy Policy 2023, 181, 113696. [Google Scholar] [CrossRef]
- Kafetzis, A.; Bampaou, M.; Kardaras, G.; Panopoulos, K. Decarbonization of Former Lignite Regions with Renewable Hydrogen: The Western Macedonia Case. Energies 2023, 16, 7029. [Google Scholar] [CrossRef]
- Issa, M.; Ilinca, A.; Rousse, D.R.; Boulon, L.; Groleau, P. Renewable Energy and Decarbonization in the Canadian Mining Industry: Opportunities and Challenges. Energies 2023, 16, 6967. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Astiaso Garcia, D.; Huang, L. Grid-connected renewable energy systems flexibility in Norway islands’ Decarbonization. Renew. Sustain. Energy Rev. 2023, 185, 113658. [Google Scholar] [CrossRef]
- Carmona-Martínez, A.A.; Bartolomé, C.; Jarauta-Córdoba, C.A. The Role of Biogas and Biomethane as Renewable Gases in the Decarbonization Pathway to Zero Emissions. Energies 2023, 16, 6164. [Google Scholar] [CrossRef]
- Paraschiv, L.S.; Paraschiv, S. Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development. Energy Rep. 2023, 9, 535–544. [Google Scholar] [CrossRef]
- Meraj, S.T.; Yu, S.S.; Rahman, M.S.; Hossain Lipu, M.S.; Trinh, H. Energy management schemes, challenges and impacts of emerging inverter technology for renewable energy integration towards grid decarbonization. J. Clean. Prod. 2023, 405, 137002. [Google Scholar] [CrossRef]
- Yan, C.; Murshed, M.; Ozturk, I.; Ghardallou, W.; Khudoykulov, K. Decarbonization blueprints for developing countries: The role of energy productivity, renewable energy, and financial development in environmental improvement. Resour. Policy 2023, 83, 103674. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, J.; Dong, K.; Wang, K. How does renewable energy encourage carbon unlocking? A global case for decarbonization. Resour. Policy 2023, 83, 103622. [Google Scholar] [CrossRef]
- Romasheva, N.; Cherepovitsyna, A. Renewable Energy Sources in Decarbonization: The Case of Foreign and Russian Oil and Gas Companies. Sustainability 2023, 15, 7416. [Google Scholar] [CrossRef]
- Yu, B.; Fang, D.; Xiao, K.; Pan, Y. Drivers of renewable energy penetration and its role in power sector’s deep decarbonization towards carbon peak. Renew. Sustain. Energy Rev. 2023, 178, 113247. [Google Scholar] [CrossRef]
- Hossain, M.R.; Singh, S.; Sharma, G.D.; Apostu, S.-A.; Bansal, P. Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA. Energy Policy 2023, 174, 113469. [Google Scholar] [CrossRef]
- Rao, C.; Wei, X.; Xiao, X.; Shi, Y.; Goh, M. Oversampling method via adaptive double weights and Gaussian kernel function for the transformation of unbalanced data in risk assessment of cardiovascular disease. Inf. Sci. 2024, 665, 120410. [Google Scholar] [CrossRef]
- Rao, C.; Xu, Y.; Xiao, X.; Hu, F.; Goh, M. Imbalanced customer churn classification using a new multi-strategy collaborative processing method. Expert Syst. Appl. 2024, 247, 123251. [Google Scholar] [CrossRef]
- Xiao, Q.; Gao, M.; Chen, L.; Jiang, J. Dynamic multi-attribute evaluation of digital economy development in China: A perspective from interaction effect. Technol. Econ. Dev. Econ. 2023, 29, 1728–1752. [Google Scholar] [CrossRef]
- Adun, H.; Ishaku, H.P.; Jazayeri, M.; Dagbasi, M.; Olusola, B.; Okoye, T.; Dike, G.C. Decarbonization of EU energy sector: Techno-feasibility analysis of 100% renewables by 2050 in Cyprus. Clean Technol. Environ. Policy 2022, 24, 2801–2824. [Google Scholar] [CrossRef]
- Zeng, B.; Wang, W.; Zhang, W.; Wang, Y.; Tang, C.; Wang, J. Optimal configuration planning of vehicle sharing station-based electro-hydrogen micro-energy systems for transportation decarbonization. J. Clean. Prod. 2023, 387, 135906. [Google Scholar] [CrossRef]
- Aktas, T.U.; Shi, J.; Lim, G.J.; D’Agostino, F.; Liang, C. Decarbonization of the Maritime Transportation Systems: Recent Progress, Challenges, and Prospects. In Proceedings of the 2023 IEEE Electric Ship Technologies Symposium, ESTS 2023, Old Town Alexandria, VA, USA, 1–4 August 2023; pp. 224–230. [Google Scholar]
- Ali, Q.; Di Silvestre, M.L.; Lombardi, P.; Sanseverino, E.R.; Zizzo, G. The Role of Renewable Energy Generation in Electric Vehicles Transition and Decarbonization of Transportation Sector. In Proceedings of the 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2023, Madrid, Spain, 6–9 June 2023. [Google Scholar]
- Price, C.R.; Nimbalkar, S.U.; Thirumaran, K.; Cresko, J. Smart Manufacturing Pathways for Industrial Decarbonization and Thermal Process Intensification. Smart Sustain. Manuf. Syst. 2023, 7, 41–53. [Google Scholar] [CrossRef]
- Schneider, C.; Büttner, S.; Sauer, A. Optimal Selection of Decarbonization Measures in Manufacturing Using Mixed-Integer Programming. In Congress of the German Academic Association for Production Technology; Springer International Publishing: Cham, Switzerland, 2022; pp. 749–760. [Google Scholar]
- Powell, B.; Milton, N. Decarbonization of a Large Brownfield (Electrical Products) Manufacturing Plant. In Proceedings of the AEE World Energy Conference and Expo 2022, Atlanta, GA, USA, 21–23 September 2022. [Google Scholar]
- Arogundade, S.; Dulaimi, M.; Ajayi, S.; Saka, A.; Ilori, O. Decarbonization of construction projects: A review and interpretive structural modelling of carbon reduction drivers. J. Eng. Des. Technol. 2023, ahead-of-print. [CrossRef]
- Hooper, B. All-Electric New Construction and Building Decarbonization. In Proceedings of the Air and Waste Management Association’s Annual Conference and Exhibition, AWMA, San Francisco, CA, USA, 27–30 June 2022. [Google Scholar]
- González Ríos, I. Towards a progressive decarbonization of construction through energy rehabilitation. Cuad. De Derecho Local 2021, 57, 82–121. [Google Scholar]
- Anyanwu, C.N.; Ojike, O.; Emodi, N.V.; Elochukwu, A.E.; Nnamani, U.A. Deep decarbonization options for the agriculture, forestry, and other land use (AFOLU) sector in Africa: A systematic literature review. Environ. Monit. Assess. 2023, 195, 565. [Google Scholar] [CrossRef]
- Pombo-Romero, J.; Rúas-Barrosa, O. A Blockchain-Based Financial Instrument for the Decarbonization of Irrigated Agriculture. Sustainability 2022, 14, 8848. [Google Scholar] [CrossRef]
- Feng, R.; Xu, X.; Yu, Z.-T.; Lin, Q. A machine-learning assisted multi-cluster assessment for decarbonization in the chemical fiber industry toward net-zero: A case study in a Chinese province. J. Clean. Prod. 2023, 425, 138965. [Google Scholar] [CrossRef]
- Barecka, M.H.; Ager, J.W. Towards an accelerated decarbonization of the chemical industry by electrolysis. Energy Adv. 2023, 2, 268–279. [Google Scholar] [CrossRef]
- Mallapragada, D.S.; Dvorkin, Y.; Modestino, M.A.; Aydil, E.S.; Taylor, A.D. Decarbonization of the chemical industry through electrification: Barriers and opportunities. Joule 2023, 7, 23–41. [Google Scholar] [CrossRef]
- Bogodukhova, E.S.; Britvina, V.V.; Gavrilyuk, A.V.; Sorokin, A.Y.; Bobrov, K.R. Trends in the development of decarbonization in energy systems using information technology. IOP Conf. Ser. Earth Environ. Sci. 2022, 990, 012007. [Google Scholar] [CrossRef]
- Yan, X.; Yang, C.; Zhang, R. How does green finance derive the resource efficiency and decarbonization of the economy? Resour. Policy 2023, 85, 103934. [Google Scholar] [CrossRef]
- Han, J.; Zhang, W.; Işık, C.; Muhammad, A.; Yan, J. General equilibrium model-based green finance, decarbonization and high-quality economic development: A new perspective from knowledge networks. Environ. Dev. Sustain. 2023. [CrossRef]
- Nagaj, R.; Žuromskaitė, B. Young Travellers and Green Travel in the Post-COVID Era. Sustainability 2023, 15, 13822. [Google Scholar] [CrossRef]
- Al Mamun, M.; Boubaker, S.; Nguyen, D.K. Green finance and decarbonization: Evidence from around the world. Financ. Res. Lett. 2022, 46, 102807. [Google Scholar] [CrossRef]
- Rej, S.; Bandyopadhyay, A.; Murshed, M.; Mahmood, H.; Razzaq, A. Pathways to decarbonization in India: The role of environmentally friendly tourism development. Environ. Sci. Pollut. Res. 2022, 29, 50281–50302. [Google Scholar] [CrossRef]
- Scott, D.; Hall, C.M.; Gössling, S. A review of the IPCC Fifth Assessment and implications for tourism sector climate resilience and decarbonization. J. Sustain. Tour. 2016, 24, 8–30. [Google Scholar] [CrossRef]
- Armocida, B.; Formenti, B.; Ussai, S.; Martuzzi, M.; Barone-Adesi, F. Decarbonization of the Italian healthcare system and European funds. A lost opportunity? Front. Public Health 2022, 10, 1037122. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/nama_10_a64__custom_8859016/default/table?lang=en (accessed on 5 December 2023).
- Anglani, N.; Di Salvo, S.R.; Oriti, G.; Julian, A.L. Steps towards Decarbonization of an Offshore Microgrid: Including Renewable, Enhancing Storage and Eliminating Need of Dump Load. Energies 2023, 16, 1411. [Google Scholar] [CrossRef]
- Destek, M.A.; Sinha, S. Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic Co-operation and development countries. J. Clean. Prod. 2020, 242, 118537. [Google Scholar] [CrossRef]
- Koeva, D.; Kutkarska, R.; Zinoviev, V. High Penetration of Renewable Energy Sources and Power Market Formation for Countries in Energy Transition: Assessment via Price Analysis and Energy Forecasting. Energies 2023, 16, 7788. [Google Scholar] [CrossRef]
- Mirza, Z.T.; Anderson, T.; Seadon, J.; Brent, A. A thematic analysis of the factors that influence the development of a renewable energy policy. Renew. Energy Focus 2024, 49, 100562. [Google Scholar] [CrossRef]
- IMF. World Economic Outlook Database April 2024. Available online: https://www.imf.org/en/Publications/WEO/weo-database/2024/April (accessed on 27 April 2024).
- Eurostat. Electricity Prices for Industrial Consumers—Bi-Annual Data (until 2007). Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_205_h/default/table?lang=en&category=nrg.nrg_price.nrg_pc_h (accessed on 28 April 2024).
- Eurostat. Electricity Prices for Non-Household Consumers—Bi-Annual Data (from 2007 Onwards). Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_205__custom_11105182/default/table?lang=en (accessed on 28 April 2024).
- Eurostat. General Government Expenditure by Function. Available online: https://ec.europa.eu/eurostat/databrowser/view/gov_10a_exp__custom_11105433/default/table?lang=en (accessed on 28 April 2024).
- Eurostat. Net Greenhouse Gas Emissions. Available online: https://ec.europa.eu/eurostat/databrowser/view/sdg_13_10__custom_11104852/default/table?lang=en (accessed on 28 April 2024).
- Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_ind_eff__custom_9531378/default/table?lang=en (accessed on 26 January 2024).
- Eurostat. Simplified Energy Balances. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_bal_s__custom_11097683/default/table?lang=en (accessed on 26 April 2024).
- Eurostat. National Accounts Aggregates by Industry. Available online: https://ec.europa.eu/eurostat/databrowser/view/nama_10_a64__custom_11097466/default/table?lang=en (accessed on 26 April 2024).
- Energy Institute. Statistical Review of World Energy. 2023. Available online: https://www.energyinst.org/statistical-review/ (accessed on 26 January 2024).
- Our World In Data, Share of Primary Energy Consumption That Comes from Renewables. Available online: https://ourworldindata.org/grapher/renewable-share-energy (accessed on 26 January 2024).
- Our World in Data, Modern Renewable Energy Generation by Source. Available online: https://ourworldindata.org/grapher/modern-renewable-prod (accessed on 29 April 2024).
- Statista. Forecast Electricity Price for Industries in Selected European Countries in 2030. Available online: https://www.statista.com/statistics/1420469/industrial-electricity-price-europe-forecast-by-country/ (accessed on 7 May 2024).
- European Environmental Agency. Environmental Protection Expenditure. 2023. Available online: https://www.eea.europa.eu/en/analysis/indicators/environmental-protection-expenditure-8th-eap (accessed on 3 May 2024).
- European Commission. The European Green Deal Striving to Be the First Climate-Neutral Continent. 2024. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 26 April 2024).
- Directive (EU) 2023/1791 of the European Parliament and of the Council of 13 September 2023 on Energy Efficiency and Amending Regulation (EU) 2023/955. OJ L 231, 20.09.2023, pp. 1–111. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:JOL_2023_231_R_0001 (accessed on 8 February 2024).
- Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 Amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as Regards the Promotion of Energy from Renewable Sources, and Repealing Council Directive (EU) 2015/652. OJ L, 31.10.2023, pp. 1–77. Available online: http://data.europa.eu/eli/dir/2023/2413/oj (accessed on 11 February 2024).
- IEA. World Energy Outlook 2023. Available online: https://iea.blob.core.windows.net/assets/86ede39e-4436-42d7-ba2a-edf61467e070/WorldEnergyOutlook2023.pdf (accessed on 27 April 2024).
- Lazaroiu, A.C.; Panait, C.; Popescu, C.L.; Popescu, M.O. Renewable Energy Sources for Decarbonization of Smart Cities. In Proceedings of the 2023 IEEE International Smart Cities Conference, ISC2 2023, Bucharest, Romania, 24–27 September 2023. [Google Scholar]
- Kamalu, K.; Wan Ibrahim, W.H.B. Towards full decarbonization: Does environmental tax and renewable energy matters in developing countries? J. Environ. Econ. Policy 2023, 1–16. [Google Scholar] [CrossRef]
- Anser, M.K.; Khan, K.A.; Umar, M.; Awosusi, A.A.; Shamansurova, Z. Formulating sustainable development policy for a developed nation: Exploring the role of renewable energy, natural gas efficiency and oil efficiency towards decarbonization. Int. J. Sustain. Dev. World Ecol. 2023, 31, 247–263. [Google Scholar] [CrossRef]
- Dumitrescu, D.G.; Horobeț, A.; Tudor, C.D.; Belașcu, L. Renewables and Decarbonization: Implications for Energy Policy in the European Union. Amfiteatru Econ. 2023, 25, 254–271. [Google Scholar] [CrossRef] [PubMed]
- Cormos, C.-C.; Petrescu, L.; Cormos, A.-M.; Dinca, C.; Sandru, M. Integration of renewable energy and CO2 capture and utilization technologies for decarbonization of energy intensive process industries. Comput. Aided Chem. Eng. 2023, 52, 2777–2784. [Google Scholar]
- Cracknell, R.; Ciatti, S.; Dorofeev, S.; McManus, K.; Nakata, K. Decarbonization of mobility, including transportation and renewable fuels. Proc. Combust. Inst. 2023, 39, 1–9. [Google Scholar] [CrossRef]
- Sameti, M.; Syron, E. 100% renewable industrial decarbonization: Optimal integration of solar heat and photovoltaics. Smart Energy 2022, 8, 100087. [Google Scholar] [CrossRef]
- Hirao, K.; Nakajima, T.; Chan, B.; Lee, H.-J. The verification of delta SCF and Slater’s transition state theory for the calculation of core ionization energy. J. Comput. Chem. 2024, 45, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Caetano, R.V.; Marques, A.C. Could energy transition be a game changer for the transfer of polluting industries from developed to developing countries? An application of game theory. Struct. Chang. Econ. Dyn. 2023, 65, 351–363. [Google Scholar] [CrossRef]
- Alhammadi, K.; Marashdeh, H.; Hussain, M. Assessing the effect of innovation diffusion and technology readiness theories on attitude, behavioral intention and implementation of smart learning. Cross Cult. Strateg. Manag. 2023, 30, 657–675. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R.; Grebski, W. Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry. Energies 2023, 16, 3384. [Google Scholar] [CrossRef]
- Santos Ayllón, L.M.; Jenkins, K.E.H. Energy justice, Just Transitions and Scottish energy policy: A re-grounding of theory in policy practice. Energy Res. Soc. Sci. 2023, 96, 102922. [Google Scholar] [CrossRef]
- Simpson, G.; Clifton, J. Testing Diffusion of Innovations Theory with data: Financial incentives, early adopters, and distributed solar energy in Australia. Energy Res. Soc. Sci. 2017, 29, 12–22. [Google Scholar] [CrossRef]
- Rezgui, K.; Sellami, H.M. Using Innovation Diffusion Theory to Understand the Factors Impacting the Adoption of Competency-Based Applications. In Proceedings of the 9th 2023 International Conference on Control, Decision and Information Technologies, CoDIT 2023, Rome, Italy, 3–6 July 2023; pp. 1332–1337. [Google Scholar]
- Guidolin, M. Innovation Diffusion Models: Theory and Practice. In Innovation Diffusion Models: Theory and Practic; Wiley: Hoboken, NJ, USA, 2023; pp. 1–186. [Google Scholar]
Industry | Realization of Decarbonization Policy |
---|---|
Energy and Power Generation [74] | Transitioning from fossil fuel-based power generation to renewable energy sources, such as wind, solar, and hydropower. Implementation of carbon capture and storage (CCS) technologies to reduce emissions from existing power plants. Establishment of targets for renewable energy capacity and carbon intensity reduction. |
Transportation [75,76,77] | Promoting the use of electric vehicles (EVs), hydrogen-powered vehicles, and other low-emission transport modes. Investing in charging infrastructure and renewable fuels. Setting emission standards for vehicles and incentivizing the adoption of cleaner transportation technologies. |
Manufacturing [78,79,80] | Implementing energy efficiency measures and adopting cleaner production processes. Incorporating renewable energy sources in manufacturing operations. Setting emission reduction targets and adopting sustainable supply chain practices. |
Construction and Buildings [81,82,83] | Promoting energy-efficient building design and construction. Implementing energy retrofits and upgrades for existing structures. Encouraging the use of sustainable materials and green building standards. |
Agriculture and Agri-food [84,85] | Encouraging sustainable farming practices, precision agriculture, and agroforestry. Implementing methane capture from livestock. Supporting the use of renewable energy in agricultural operations. |
Chemical and Petrochemical [86,87,88] | Investing in cleaner production technologies and processes. Reducing reliance on fossil fuels as feedstock. Implementing carbon capture and utilization (CCU) technologies. |
Information and Communication Technology (ICT) [89] | Promoting energy-efficient data centers, green computing, and the use of renewable energy in ICT infrastructure. Implementing measures to reduce the carbon footprint of digital technologies. |
Finance and Banking [90,91,92] | Incorporating environmental, social, and governance (ESG) criteria into investment decisions. Supporting green financing and investments in sustainable projects. Discouraging investments in carbon-intensive industries. |
Tourism and Hospitality [93,94,95] | Encouraging sustainable tourism practices, including eco-friendly accommodations and transportation. Promoting carbon offset programs for travel-related emissions. |
Healthcare [96] | Implementing energy-efficient practices in healthcare facilities. Reducing the carbon footprint of pharmaceutical production and distribution. Supporting research and innovation in green healthcare technologies. |
Independent Variable | Source |
---|---|
X1 | International Monetary Fund [102]. For each country, the IMF provides the forecast level of GDP per capita |
X2 | Statista [113]. Forecast prices are given for each EU country |
X3 | European Environmental Agency [114] |
X4 | European Commission [115]. The EU set a target in the EU Green Deel. It is 55% lower than in 1990. |
X5 | The target was set in Directive 2023/1791 [116]. It amounts to 992.5 Mtoe for the entire EU in the case of primary energy consumption. Compared to 2022, energy consumption levels in 2030 will be 21.0% lower. |
X6 | The target was set in Directive 2023/1791 [116]. It amounts to 763 Mtoe in the case of final energy consumption. Compared to 2022, energy consumption levels in 2030 will be 23.3% lower. |
X7 | Directive (EU) 2023/2413 [117] set the target at 42.5% but each country set its individual national long-term strategy [11]. The levels will be presented in the section ‘Results’. |
X8 | International Energy Agency [118], p. 264 |
Country | 1995 | 2022 | Change in p.p. |
---|---|---|---|
Belgium | 1.8 | 7.4 | 5.6 |
Bulgaria | 0.1 | 9.6 | 9.5 |
Czechia | 2.6 | 8.1 | 5.5 |
Denmark | 4.0 | 9.7 | 5.7 |
Germany | 0.9 | 6.8 | 5.9 |
Estonia | 10.0 | 5.7 | −4.3 |
Ireland | 3.2 | 9.0 | 5.8 |
Greece | 4.8 | 4.7 | −0.1 |
Spain | 6.3 | 11.8 | 5.6 |
France | 4.9 | 5.9 | 1.0 |
Croatia | 0.0 | 2.5 | 2.5 |
Italy | 0.5 | 2.1 | 1.6 |
Cyprus | 0.0 | 16.6 | 16.6 |
Latvia | 7.3 | 53.8 | 46.6 |
Lithuania | 2.0 | 13.6 | 11.5 |
Luxembourg | 0.0 | 2.2 | 2.2 |
Hungary | 1.3 | 7.2 | 5.9 |
Malta | 0.0 | 0.0 | 0.0 |
Netherlands | 0.4 | 1.4 | 1.0 |
Austria | 9.3 | 18.1 | 8.8 |
Poland | 2.3 | 10.6 | 8.3 |
Portugal | 25.8 | 23.6 | −2.2 |
Romania | 1.6 | 3.7 | 2.1 |
Slovenia | 5.2 | 6.5 | 1.3 |
Slovakia | 2.0 | 10.5 | 8.5 |
Finland | 30.2 | 37.4 | 7.1 |
Sweden | 31.3 | 42.8 | 11.5 |
Coefficients (α) | Standard Error | t-Statistic | p-Value | |
---|---|---|---|---|
Austria | Regression statistics: R = 0.9242; R2 = 0.8542; Adjusted R2 = 0.8425; F(2;25) = 73.22; p < 0.0122 | |||
Constant Variable X5 Variable X7 | −0.3297 0.7095 0.4897 | 0.0392 0.0774 0.0774 | −8.4152 9.1713 6.3302 | 0.0000 0.0000 0.0000 |
Durbin–Watson test statistics | DW = 1.6126 | |||
White test statistics | F = 0.9245; p(F) = 0.4839; p(chi-sq.) = 0.433 | |||
Belgium | Regression statistics: R = 0.9729; R2 = 0.9466; Adjusted R2 = 0.9423; F(2;25) = 221.61; p < 0.0047 | |||
Constant Variable X4 Variable X7 | 0.2379 −0.0143 −0.0028 | 0.0237 0.1656 0.1656 | 10.0230 −8.8223 −3.1366 | 0.0000 0.0000 0.0043 |
Durbin–Watson test statistics | DW = 1.6439 | |||
White test statistics | F = 1.5487; p(F) = 0.2159; p(chi-sq.) = 0.20 | |||
Bulgaria | Regression statistics: R = 0.9795; R2 = 0.9593; Adjusted R2 = 0.9477; F(4;14) = 82.56; p < 0.0074 | |||
Constant Variable X2 Variable X4 Variable X7 Variable X8 | −0.1660 −0.2528 0.4485 3.5047 −2.4514 | 0.0246 0.0853 0.0639 0.4165 0.4215 | −6.7350 −2.9647 7.0217 8.4143 −5.8161 | 0.0000 0.0102 0.0000 0.0000 0.0000 |
Durbin–Watson test statistics | DW = 1.1884 | |||
White test statistics | F = 0.5983; p(F) = 0.7878; p(chi-sq.) = 0.5376 | |||
Cyprus | Regression statistics: R = 0.9726; R2 = 0.9460; Adjusted R2 = 0.9426; F(1;16) = 280.21; p < 0.0000 | |||
Constant Variable X7 | −0.0437 0.0124 | 0.0072 0.0007 | −6.0867 16.7395 | 0.0000 0.0000 |
Durbin–Watson test statistics | DW = 1.5945 | |||
White test statistics | F = 2.7429; p(F) = 0.0966; p(chi-sq.) = 0.0898 | |||
Czech Republic | Regression statistics: R = 0.9717; R2 = 0.9442; Adjusted R2 = 0.9397; F(2;25) = 211.45; p < 0.0052 | |||
Constant Variable X1 Variable X7 | 0.0108 0.00001 0.0053 | 0.0025 0.0000 0.0007 | 4.3084 4.8198 7.2468 | 0.0002 0.0001 0.0000 |
Durbin–Watson test statistics | DW = 1.3922 | |||
White test statistics | F = 0.3108; p(F) = 0.9012; p(chi-sq.) = 0.8699 | |||
Denmark | Regression statistics: R = 0.9161; R2 = 0.9393; Adjusted R2 = 0.8264; F(2;25) = 65.28; p < 0.0000 | |||
Constant Variable X1 Variable X5 | 0.0946 0.000001 −0.0046 | 0.0333 0.0000 0.0014 | 2.8361 6.1088 −3.2836 | 0.0089 0.0000 0.0030 |
Durbin–Watson test statistics | 1.8735 | |||
White test statistics | F = 1.7962; p(F) = 0.1553; p(chi-sq.) = 0.1499 | |||
Estonia | Regression statistics: R = 0.6737; R2 = 0.4539; Adjusted R2 = 0.4102; F(2;25) = 10.39; p < 0.0005 | |||
Constant Variable X6 Variable X7 | 0.1880 −0.2353 −0.0094 | 0.0203 0.1120 0.0021 | 9.2654 −2.1004 −4.4470 | 0.0000 0.0459 0.0001 |
Durbin–Watson test statistics | DW = 1.4511 | |||
White test statistics | F = 2.5274; p(F) = 0.0594; p(chi-sq.) = 0.0693 | |||
Finland | Regression statistics: R = 0.9256; R2 = 0.8568; Adjusted R2 = 0.8453; F(2;25) = 74.78; p < 0.0000 | |||
Constant Variable X6 Variable X7 | 0.0598 0.8328 0.0077 | 0.0370 0.2311 0.0008 | 1.6194 3.6042 10.2003 | 0.1179 0.0014 0.0000 |
Durbin–Watson test statistics | DW = 1.2314 | |||
White test statistics | F = 1.9276; p(F) = 0.1304; p(chi-sq.) = 0.1294 | |||
France | Regression statistics: R = 0.7362; R2 = 0.5420; Adjusted R2 = 0.5054; F(2;25) = 14.79; p < 0.0038 | |||
Constant Variable X1 Variable X7 | 0.0440 −0.0000003 0.0017 | 0.0035 0.0000 0.0003 | 12.4913 −2.6599 5.4357 | 0.0000 0.0134 0.0000 |
Durbin–Watson test statistics | DW = 1.2967 | |||
White test statistics | F = 2.6273; p(F) = 0.0522; p(chi-sq.) = 0.0630 | |||
Germany | Regression statistics: R = 0.9565; R2 = 0.9148; Adjusted R2 = 0.90000; F(4;23) = 61.77; p < 0.0056 | |||
Constant Variable X1 Variable X5 Variable X7 Variable X8 | −0.2112 0.000001 0.0006 0.0117 −0.0007 | 0.0603 0.0000 0.0001 0.0032 0.0002 | −3.5002 2.6607 3.1713 3.6424 −3.1880 | 0.0019 0.0139 0.0042 0.0013 0.0040 |
Durbin–Watson test statistics | DW = 1.3704 | |||
White test statistics | F = 1.6960; p(F) = 0.1744; p(chi-sq.) = 0.2026 | |||
Greece | Regression statistics: R = 0.5954; R2 = 0.3544; Adjusted R2 = 0.3028; F(2;25) = 6.8640; p < 0.0042 | |||
Constant Variable X4 Variable X5 | 0.0257 −0.0075 0.0041 | 0.0119 0.0021 0.0011 | 2.1564 −3.4500 3.7037 | 0.0408 0.0020 0.0010 |
Durbin–Watson test statistics | DW = 1.0570 | |||
White test statistics | F = 1.5604; p(F) = 0.2126; p(chi-sq.) = 0.1972 | |||
Hungary | Regression statistics: R = 0.9713; R2 = 0.9435; Adjusted R2 = 0.9390; F(2;25) = 208.73; p < 0.0000 | |||
Constant Variable X4 Variable X7 | −0.1028 0.0160 0.0095 | 0.0177 0.0024 0.0006 | −5.7958 −6.6271 14.4149 | 0.0000 0.0000 0.0000 |
Durbin–Watson test statistics | DW = 1.5360 | |||
White test statistics | F = 0.7785; p(F) = 0.5758; p(chi-sq.) = 0.5197 | |||
Ireland | Regression statistics: R = 0.9662; R2 = 0.9335; Adjusted R2 = 0.9282; F(2;25) = 175.39; p < 0.0000 | |||
Constant Variable X4 Variable X5 | 0.0965 −0.0065 0.0057 | 0.0136 0.0003 0.0008 | 7.0597 −16.5660 7.0026 | 0.0000 0.0000 0.0000 |
Durbin–Watson test statistics | DW = 1.2708 | |||
White test statistics | F = 1.6063; p(F) = 0.2000; p(chi-sq.) = 0.1868 | |||
Italy | Regression statistics: R = 0.9399; R2 = 0.8834; Adjusted R2 = 0.8741; F(2;25) = 94.74; p < 0.0000 | |||
Constant Variable X4 Variable X6 | 0.0368 −0.0026 −0.1496 | 0.0024 0.0004 0.0594 | 14.9151 −5.8190 −2.5167 | 0.0000 0.0000 0.0186 |
Durbin–Watson test statistics | DW = 1.0394 | |||
White test statistics | F = 2.4290; p(F) = 0.0674; p(chi-sq.) = 0.0764 | |||
Latvia | Regression statistics: R = 0.9529; R2 = 0.9080; Adjusted R2 = 0.9045; F(1;26) = 256.73; p < 0.0000 | |||
Constant Variable X4 | 0.1069 0.0560 | 0.0140 0.0034 | 7.5959 16.0228 | 0.0000 0.0000 |
Durbin–Watson test statistics | DW = 1.0297 | |||
White test statistics | F = 2.9050; p(F) = 0.0734; p(chi-sq.) = 0.0714 | |||
Lithuania | Regression statistics: R = 0.9618; R2 = 0.9250; Adjusted R2 = 0.9156; F(3;24) = 98.68; p < 0.0000 | |||
Constant Variable X5 Variable X6 Variable X7 | −1539.0 1421.6 −46531.9 1321.5 | 806.779 612.784 8818.805 151.773 | −0.3201 2.3199 −5.2764 8.7069 | 0.4516 0.0291 0.0000 0.0000 |
Durbin–Watson test statistics | DW = 1.6158 | |||
White test statistics | F = 3.4012; p(F) = 0.0530; p(chi-sq.) = 0.0697 | |||
Luxembourg | Regression statistics: R = 0.9232; R2 = 0.8523; Adjusted R2 = 0.8405; F(2;25) = 72.13; p < 0.0064 | |||
Constant Variable X1 Variable X7 | −0.0274 0.000001 0.0024 | 0.0041 0.0000 0.0005 | −6.6441 11.0601 4.4867 | 0.0000 0.0000 0.0001 |
Durbin–Watson test statistics | DW = 1.4503 | |||
White test statistics | F = 3.3604; p(F) = 0.0566; p(chi-sq.) = 0.0660 | |||
Netherlands | Regression statistics: R = 0.9390; R2 = 0.8817; Adjusted R2 = 0.8722; F(2;25) = 93.17; p < 0.0000 | |||
Constant Variable X1 Variable X5 | 0.0263 0.0000002 −0.0004 | 0.0046 0.0000 0.0000 | 5.6820 8.3211 −6.5611 | 0.0000 0.0000 0.0000 |
Durbin–Watson test statistics | DW = 1.1109 | |||
White test statistics | F = 1.3848; p(F) = 0.2683; p(chi-sq.) = 0.2437 | |||
Poland | Regression statistics: R = 0.9690; R2 = 0.9391; Adjusted R2 = 0.9342; F(2;25) = 192.70; p < 0.0081 | |||
Constant Variable X6 Variable X7 | 0.0486 −0.1135 0.0086 | 0.0054 0.0321 0.0007 | 8.9042 −3.5278 10.9686 | 0.0000 0.0016 0.0000 |
Durbin–Watson test statistics | DW = 1.9021 | |||
White test statistics | F = 0.2598; p(F) = 0.7733; p(chi-sq.) = 0.7520 | |||
Portugal | Regression statistics: R = 0.8119; R2 = 0.6592; Adjusted R2 = 0.6307; F(2;24) = 23.20; p < 0.0000 | |||
Constant Variable X5 Variable X7 | −0.1669 0.0147 0.0032 | 0.0594 0.0023 0.0003 | −2.8076 6.2623 5.9542 | 0.0097 0.0000 0.0000 |
Durbin–Watson test statistics | DW = 1.7676 | |||
White test statistics | F = 0.6119; p(F) = 0.6919; p(chi-sq.) = 0.6335 | |||
Romania | Regression statistics: R = 0.8410; R2 = 0.7074; Adjusted R2 = 0.6961; F(1;26) = 62.847; p < 0.0044 | |||
Constant Variable X5 | 0.0861 −0.0015 | 0.0068 0.0001 | 12.5932 −7.9276 | 0.0000 0.0000 |
Durbin–Watson test statistics | DW = 1.9385 | |||
White test statistics | F = 1.1821; p(F) = 0.3232; p(chi-sq.) = 0.2983 | |||
Slovakia | Regression statistics: R = 0.9250; R2 = 0.8557; Adjusted R2 = 0.8501; F(1;26) = 154.18; p < 0.0000 | |||
Constant Variable X6 | 0.1208 −0.4569 | 0.0042 0.0368 | 28.1094 −12.4169 | 0.0000 0.0000 |
Durbin–Watson test statistics | DW = 1.5646 | |||
White test statistics | F = 0.2898; p(F) = 0.7733; p(chi-sq.) = 0.7520 | |||
Spain | Regression statistics: R = 0.8507; R2 = 0.7236; Adjusted R2 = 0.6891; F(3;24) = 20.948; p < 0.0000 | |||
Constant Variable X4 Variable X5 Variable X7 | 0.2309 −0.0290 0.0008 −0.0033 | 0.0457 0.0074 0.0003 −0.0033 | 5.0495 −3.9023 2.3584 −2.1520 | 0.0000 0.0007 0.0268 0.0417 |
Durbin–Watson test statistics | DW = 1.5520 | |||
White test statistics | F = 1.0028; p(F) = 0.4723; p(chi-sq.) = 0.4056 | |||
Sweden | Regression statistics: R = 0.8937; R2 = 0.7986; Adjusted R2 = 0.7909; F(1;26) = 103.11; p < 0.0209 | |||
Constant Variable X7 | 0.1293 0.0057 | 0.0220 0.0006 | 5.8636 10.1542 | 0.0000 0.0000 |
Durbin–Watson test statistics | DW = 1.6599 | |||
White test statistics | F = 1.1858; p(F) = 0.3221; p(chi-sq.) = 0.2973 |
Country | 2022 | 2030 | Average Annual Percentage Change in 2022/1995 | Average Annual Percentage Change in 2030/2022 |
---|---|---|---|---|
Belgium | 7.4 | 9.1 | 0.20 | 0.21 |
Bulgaria | 9.6 | 60.6 | 0.34 | 5.28 |
Czechia | 8.1 | 17.5 | 0.20 | 1.13 |
Denmark | 9.7 | 13.5 | 0.21 | 0.46 |
Germany | 6.8 | 69.3 | 0.21 | 6.26 |
Ireland | 9.0 | 10.7 | 0.21 | 0.22 |
Greece | 4.7 | 5.7 | 0.00 | 0.13 |
Spain | 11.8 | 21.4 | 0.20 | 1.15 |
France | 5.9 | 8.5 | 0.04 | 0.32 |
Italy | 2.1 | 2.4 | 0.06 | 0.04 |
Cyprus | 16.6 | 24.1 | 0.57 | 0.91 |
Latvia | 53.8 | 57.2 | 1.43 | 0.41 |
Lithuania | 13.6 | 22.9 | 0.41 | 1.13 |
Luxembourg | 2.2 | 12.6 | 0.08 | 1.24 |
Hungary | 7.2 | 16.1 | 0.21 | 1.08 |
Netherlands | 1.4 | 2.4 | 0.04 | 0.12 |
Austria | 18.1 | 26.4 | 0.31 | 1.00 |
Poland | 10.6 | 32.1 | 0.30 | 2.46 |
Portugal | 23.6 | 33.7 | −0.08 | 1.21 |
Romania | 3.7 | 5.0 | 0.08 | 0.16 |
Slovakia | 10.5 | 11.2 | 0.30 | 0.08 |
Finland | 37.4 | 51.7 | 0.26 | 1.69 |
Sweden | 42.8 | 50.3 | 0.40 | 0.90 |
Country | Projected Level in 2030 with Independent Variables Lower by 5% | Projected Level in 2030 with Independent Variables Higher by 5% |
---|---|---|
Belgium | 8.9 | 9.3 |
Bulgaria | 57.8 | 63.3 |
Czechia | 16.6 | 18.3 |
Denmark | 12.7 | 14.3 |
Germany | 66.0 | 72.6 |
Ireland | 10.8 | 10.7 |
Greece | 5.9 | 5.6 |
Spain | 21.3 | 21.5 |
France | 8.3 | 8.7 |
Italy | 2.3 | 2.5 |
Cyprus | 22.7 | 25.5 |
Latvia | 59.5 | 54.9 |
Lithuania | 22.4 | 23.5 |
Luxembourg | 11.8 | 13.3 |
Hungary | 15.5 | 16.8 |
Netherlands | 2.2 | 2.5 |
Austria | 25.9 | 26.9 |
Poland | 30.7 | 33.4 |
Portugal | 33.5 | 33.9 |
Romania | 4.8 | 5.2 |
Slovakia | 11.1 | 11.2 |
Finland | 49.8 | 53.6 |
Sweden | 48.4 | 52.1 |
Country | 2030 |
---|---|
Belgium | 18.3 |
Bulgaria | 61.0 |
Czechia | 22.0 |
Denmark | 55.0 |
Germany | 80.0 |
Estonia | 42.0 |
Ireland | 31.0 |
Greece | 61.0 |
Spain | 35.0 |
France | 33.0 |
Croatia | 53.2 |
Italy | 72.0 |
Cyprus | 23.0 |
Latvia | 36.7 |
Lithuania | 45.0 |
Luxembourg | 25.0 |
Hungary | 21.0 |
Malta | 40.5 |
Netherlands | 21.0–33.0 |
Austria | 76.0 |
Poland | 32.0 |
Portugal | 85.0 |
Romania | 30.7–34.0 |
Slovenia | 27.0 |
Slovakia | 19.2 |
Finland | 55.0 |
Sweden | 65.0 |
Country | EC Target | National Target | EC Target Assuming a 5% Fluctuation in the Independent Variables | National Target Assuming a 5% Fluctuation in the Independent Variables |
---|---|---|---|---|
Belgium | no | no | no | no |
Bulgaria | yes | no | yes | yes |
Czechia | no | no | no | no |
Denmark | no | no | no | no |
Germany | yes | no | yes | no |
Estonia | no | no | no | no |
Ireland | no | no | no | no |
Greece | no | no | no | no |
Spain | no | no | no | no |
France | no | no | no | no |
Croatia | no | no | no | no |
Italy | no | no | yes | no |
Cyprus | no | yes | no | yes |
Latvia | yes | yes | yes | yes |
Lithuania | no | no | no | no |
Luxembourg | no | no | no | no |
Hungary | no | no | no | no |
Malta | no | no | no | no |
Netherlands | no | no | no | no |
Austria | no | no | no | no |
Poland | no | yes | no | yes |
Portugal | no | no | no | no |
Romania | no | no | no | no |
Slovenia | no | no | no | no |
Slovakia | no | no | no | no |
Finland | yes | no | yes | no |
Sweden | yes | no | yes | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajdzik, B.; Nagaj, R.; Wolniak, R.; Bałaga, D.; Žuromskaitė, B.; Grebski, W.W. Renewable Energy Share in European Industry: Analysis and Extrapolation of Trends in EU Countries. Energies 2024, 17, 2476. https://doi.org/10.3390/en17112476
Gajdzik B, Nagaj R, Wolniak R, Bałaga D, Žuromskaitė B, Grebski WW. Renewable Energy Share in European Industry: Analysis and Extrapolation of Trends in EU Countries. Energies. 2024; 17(11):2476. https://doi.org/10.3390/en17112476
Chicago/Turabian StyleGajdzik, Bożena, Rafał Nagaj, Radosław Wolniak, Dominik Bałaga, Brigita Žuromskaitė, and Wiesław Wes Grebski. 2024. "Renewable Energy Share in European Industry: Analysis and Extrapolation of Trends in EU Countries" Energies 17, no. 11: 2476. https://doi.org/10.3390/en17112476
APA StyleGajdzik, B., Nagaj, R., Wolniak, R., Bałaga, D., Žuromskaitė, B., & Grebski, W. W. (2024). Renewable Energy Share in European Industry: Analysis and Extrapolation of Trends in EU Countries. Energies, 17(11), 2476. https://doi.org/10.3390/en17112476