Adjustable Robust Energy Operation Planning under Uncertain Renewable Energy Production
Abstract
:1. Introduction
2. State of the Art
2.1. Deterministic Optimization
2.2. Stochastic Optimization
2.3. Robust Optimization
3. Adjustable Robust Optimization
4. Numerical Case Study
4.1. Use Case
4.2. Deterministic Model
4.3. Adjustable Robust Model
5. Results
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Braun, P.; Grüne, L.; Kellett, C.M.; Weller, S.R.; Worthmann, K. Towards price-based predictive control of a small-scale electricity network. Int. J. Control 2020, 93, 40–61. [Google Scholar] [CrossRef]
- Alhumaid, Y.; Khan, K.; Alismail, F.; Khalid, M. Multi-Input Nonlinear Programming Based Deterministic Optimization Framework for Evaluating Microgrids with Optimal Renewable-Storage Energy Mix. Sustainability 2021, 13, 5878. [Google Scholar] [CrossRef]
- Astolfi, M.; Mazzola, S.; Silva, P.; Macchi, E. A synergic integration of desalination and solar energy systems in stand-alone microgrids. Desalination 2017, 419, 169–180. [Google Scholar] [CrossRef]
- Zhang, L.; Barakat, G.; Yassine, A. Deterministic optimization and cost analysis of hybrid PV/wind/battery/diesel power system. Int. J. Renew. Energy Res. 2012, 2, 686–696. [Google Scholar]
- Bischi, A.; Taccari, L.; Martelli, E.; Amaldi, E.; Manzolini, G.; Silva, P. A detailed MILP optimization model for combined cooling, heat and power system operation planning. Energy 2014, 74, 12–26. [Google Scholar] [CrossRef]
- Mitra, S.; Sun, L.; Grossmann, I.E. Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices. Energy 2013, 54, 194–211. [Google Scholar] [CrossRef]
- Silvente, J.; Kopanos, G.M.; Pistikopoulos, E.N.; Espuña, A. A rolling horizon optimization framework for the simultaneous energy supply and demand planning in microgrids. Appl. Energy 2015, 155, 485–501. [Google Scholar] [CrossRef]
- Worthmann, K.; Kellett, C.M.; Grüne, L.; Weller, S.R. Distributed and decentralized control of residential energy systems incorporating battery storage. IEEE Trans. Smart Grid 2015, 6, 1914–1923. [Google Scholar] [CrossRef]
- Worthmann, K.; Kellett, C.M.; Grüne, L.; Weller, S.R. Distributed control of residential energy systems using a market maker. IFAC Proc. Vol. 2014, 47, 11641–11646. [Google Scholar] [CrossRef]
- Cong, D.; Shiyi, M.; Jun, W.; Fuqiang, L.; Yuou, H. Study on Peak Shaving Strategy of Pumped Storage Power Station Combined with Wind and Photovoltaic Power Generation. In Proceedings of the 2017 International Converence on Computer Systemy, Electronics and Control (ICCSEC), Dalian, China, 25–27 December 2017; pp. 871–874. [Google Scholar]
- Liu, Z.; Guo, F.; Liu, J.; Lin, X.; Li, A.; Zhang, Z.; Liu, Z. A Compound Coordinated Optimal Operation Strategy of Day-Ahead-Rolling-Realtime in Integrated Energy System. Energies 2023, 16, 500. [Google Scholar] [CrossRef]
- Netztransparenz, Uniform Imbalance Price (reBAP) (2024). Available online: https://www.netztransparenz.de/en/Balancing-Capacity/Imbalance-price/Uniform-imbalance-price-reBAP (accessed on 1 February 2024).
- Liu, B.; Wang, Y. Energy system optimization under uncertainties: A comprehensive review. In Towards Sustainable Chemical Processes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 149–170. [Google Scholar]
- Petrelli, M.; Berizzi, A.; Bovo, C.; Amaldi, E. Robust optimization for the scheduling of isolated RES-based microgrids in developing countries. In Proceedings of the Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2018), Dubrovnik, Croatia, 12–15 November 2018; pp. 1–8. [Google Scholar]
- Farahani, M.; Samimi, A.; Shateri, H. Robust bidding strategy of battery energy storage system (BESS) in joint active and reactive power of day-ahead and real-time markets. J. Energy Storage 2023, 59, 106520. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Carli, R.; Dotoli, M. Robust Optimal Energy Management of a Residential Microgrid Under Uncertainties on Demand and Renewable Power Generation. IEEE Trans. Autom. Sci. Eng. 2021, 18, 618–637. [Google Scholar] [CrossRef]
- Li, D.; Gao, C.; Guo, X.; Han, S. Peak Shaving Effect of Power-to-Gas in Robust Energy Dispatching. In Proceedings of the 2022 12th International Conference on Power, Energy and Electrical Engineering (CPEEE), Shiga, Japan, 25–27 February 2022; pp. 292–297. [Google Scholar]
- Wang, X.; Zhao, H.; Xie, G.; Lin, K.; Hong, J. Research on Industrial and Commercial User-Side Energy Storage Planning Considering Uncertainty and Multi-Market Joint Operation. Sustainability 2023, 15, 1828. [Google Scholar] [CrossRef]
- Zhan, Y.; Gatsis, N.; Giannakis, G.B. Robust Energy Management for Microgrids With High-Penetration Renewables. IEEE Trans. Sustain. Energy 2013, 4, 944–953. [Google Scholar] [CrossRef]
- Aaslid, P.; Korpås, M.; Belsnes, M.; Fosso, O.B. Stochastic Optimization of Microgrid Operation With Renewable Generation and Energy Storages. IEEE Trans. Sustain. Energy 2022, 13, 1481–1491. [Google Scholar] [CrossRef]
- Zhang, X.; Kamgarpour, M.; Georghiou, A.; Goulart, P.; Lygeros, J. Robust optimal control with adjustable uncertainty sets. Automatica 2017, 75, 249–259. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, K.; Li, G.; Jiang, X.; Zhang, Y. Affinely Adjustable Robust Optimal Dispatch for Island Microgrids with Wind Power, Energy Storage and Diesel Generators. In Proceedings of the 2017 IEEE Conference Energy Internet Energy System Integration (EI2), Beijing, China, 26–28 November 2017. [Google Scholar]
- Pflug, G.C.; Pichler, A. Multistage Stochastic Optimization; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Birge, J.R.; Louveaux, F. Introduction to Stochastic Programming; Mikosch, T.V., Resnick, S.I., Zwart, B., Eds.; Springer Series in Operations Research and Financial Engineering; Springer: New York, NY, USA, 2011; pp. 59–60. [Google Scholar]
- Ben-Tal, A.; El Ghaoui, L.; Nemirovski, A. Robust Optimization, 1st ed.; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Gorissen, B.L.; Yanıkoglu, I.; den Hertog, D. A Practivcal Guide to Robust Optimization. Omega 2015, 53, 124–137. [Google Scholar] [CrossRef]
- Biefel, C.; Liers, F.; Rolfes, J.; Schmidt, M. Affinely adjustable robust linear complementarity problems. SIAM J. Optim. 2022, 32, 152–172. [Google Scholar] [CrossRef]
- Biefel, C.; Schmidt, M. On the relation between affinely adjustable robust linear complementarity and mixed-integer linear feasibility problems. Optim. Lett. 2024, accepted. [Google Scholar] [CrossRef]
- Open District Hub e.V. Wohnquartier Bochum-Weitmar. Available online: https://opendistricthub.de/bochum-weitmar/ (accessed on 6 February 2024).
- Vonovia, S.E. Das ODH-Projekt in Bochum-Weitmar. Available online: https://www.vonovia.de/de-de/wohnungen-in-bochum/odh-projekt-weitmar (accessed on 6 February 2024).
- Pflugradt, N. LoadProfileGenerator. Available online: https://www.loadprofilegenerator.de/ (accessed on 6 February 2024).
- Fraunhofer UMSICHT. Thermische Gebäudesimulation (Part of the Research Project ODH@Bochum-Weitmar); Fraunhofer UMSICHT: Oberhausen, Germany, 2022. [Google Scholar]
- Statistisches Bundesamt. Privathaushalte nach Haushaltsgröße. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/_Grafik/_Interaktiv/haushalte-familien-haushaltsgroesse.html (accessed on 6 February 2024).
- Vonovia, S.E. Gebäudeinformation (Part of the Research Project ODH@Bochum-Weitmar); Vonovia SE: Bochum, Germany, 2022. [Google Scholar]
- Bundesnetzagentur. SMARD—Strommarktdaten. Available online: https://www.smard.de/home (accessed on 6 February 2024).
- Sauerteig, P.; Worthmann, K. Towards multiobjective optimization and control of smart grids. Optim. Control Appl. Methods 2020, 41, 128–145. [Google Scholar] [CrossRef]
- Eichfelder, G. Twenty years of continuous multiobjective optimization in the twenty-first century. EURO J. Comput. Optim. 2021, 9, 100014. [Google Scholar] [CrossRef]
- Jiang, Y.; Sauerteig, P.; Houska, B.; Worthmann, K. Distributed optimization using ALADIN for MPC in smart grids. IEEE Trans. Control Syst. Technol. 2020, 29, 2142–2152. [Google Scholar] [CrossRef]
- Faulwasser, T.; Ou, R.; Pan, G.; Schmitz, P.; Worthmann, K. Behavioral theory for stochastic systems? A data-driven journey from Willems to Wiener and back again. Annu. Rev. Control 2023, 55, 92–117. [Google Scholar] [CrossRef]
- Schmitz, P.; Faulwasser, T.; Worthmann, K. Willems’ fundamental lemma for linear descriptor systems and its use for data-driven output-feedback MPC. IEEE Control Syst. Lett. 2022, 6, 2443–2448. [Google Scholar] [CrossRef]
- Eingartner, A. “Adjustable Robust Optimization” zur Einsatzplanung Eines Energiesystems mit Unsicherer Regenerativer Stromerzeugung. Master’s Thesis, Technische Universität Ilmenau, Ilmenau, Germany, 2022. [Google Scholar]
Component | Symbol [Unit] |
---|---|
Power purchase | [kW] |
Gas purchase | [kW] |
Power delivery | [kW] |
Battery storage SOC 1/input/output | [kWh]/ [kW] |
-storage SOC/input/output | [kWh]/ [kW] |
Heat buffer SOC/input/output | [kWh]/ [kW] |
CHP 2 electric and thermal power input/output | , [kW] |
Gas boiler input/output | [kW] |
Electrolyzer input/output | [kW] |
Air-source heat pump input/output | [kW] |
Ground-source heat pump input/output | [kW] |
Component | Symbol [Unit] | Value |
---|---|---|
PV production | [kW] | time series |
Electricity load | [kW] | time series |
Heat load | [kW] | time series |
Electricity buy price | [Euro/kWh] | 0.34281 |
Max electricity purchase | [kW] | 1000 |
Gas price | [Euro/kWh] | 0.066965 |
Max gas purchase | [kW] | 1000 |
Electricity sell price | [Euro/kWh] | 0.07 |
Max electricity delivery | [kW] | 1000 |
Nominal power gas boiler | [kW] | 800 |
Efficiency gas boiler | [%] | 90 |
Capacity battery storage | [kWh] | 250 |
Nominal power battery storage | [kW] | 55 |
Efficiency | [%] | 97.9 |
Capacity -storage | [kWh] | 2.7 |
Nominal power -storage | [kW] | 1 |
Efficiency | [%] | 100 |
Capacity heat buffer | [kWh] | 20 |
Nominal power heat buffer | [kW] | 5 |
Efficiency heat buffer | [%] | 95 |
Electric power CHP | [kW] | 24.7 |
Electrical efficiency CHP | [%] | 26.1 |
Thermal power CHP | [kW] | 36 |
Thermal efficiency CHP | [%] | 38.1 |
Nominal power electrolyzer | [kW] | 9.6 |
Efficiency electrolyzer | [%] | 73.5 |
Nominal power air-source heat pump | [kW] | 2.5 |
COP 1 air-source heat pump | 4 | |
Nominal power ground-source heat pump | [kW] | 12.8 |
COP ground-source heat pump | 4.38 |
Method | Deterministic | ARO |
---|---|---|
Planning costs | EUR 194.16 | EUR 211.50 |
Imbalance energy | kWh shortage | 0 kWh |
kWh surplus | 0 kWh | |
Imbalance costs | EUR 155.39 loss | EUR 0 |
EUR −9.83 profit | EUR 0 | |
Total operational costs | EUR 339.72 | EUR 211.50 |
Deviation from ideal costs | 112.2% | 32.1% |
Performance | 26 s | 182 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eingartner, A.; Naumann, S.; Schmitz, P.; Worthmann, K. Adjustable Robust Energy Operation Planning under Uncertain Renewable Energy Production. Energies 2024, 17, 1917. https://doi.org/10.3390/en17081917
Eingartner A, Naumann S, Schmitz P, Worthmann K. Adjustable Robust Energy Operation Planning under Uncertain Renewable Energy Production. Energies. 2024; 17(8):1917. https://doi.org/10.3390/en17081917
Chicago/Turabian StyleEingartner, Anna, Steffi Naumann, Philipp Schmitz, and Karl Worthmann. 2024. "Adjustable Robust Energy Operation Planning under Uncertain Renewable Energy Production" Energies 17, no. 8: 1917. https://doi.org/10.3390/en17081917
APA StyleEingartner, A., Naumann, S., Schmitz, P., & Worthmann, K. (2024). Adjustable Robust Energy Operation Planning under Uncertain Renewable Energy Production. Energies, 17(8), 1917. https://doi.org/10.3390/en17081917