Advances in High-Temperature Molten Salt-Based Carbon Nanofluid Research
Abstract
:1. Introduction
2. Preparation of Molten Salt Nanofluids
2.1. One-Step Method
2.2. Two-Step Aqueous Solution Method
2.3. High-Temperature Melting Method
2.4. High-Energy Ball Milling Method
3. Improvement of Thermal Storage Properties
3.1. Specific Heat Capacity of Molten Salt-Based Carbon Nanomaterials
3.2. Mechanism of Molten Salt Nanostructured Specific Heat Capacity Enhancement
3.3. Microstructure of Nanofluids
4. Improvement of Heat Transfer Performance
4.1. Thermal Conductivity of Molten Salt-Based Carbon Nanotube Nanofluids
4.2. Thermal Conductivity of Molten Salt-Based Graphene and Other Carbon Nanofluids
4.3. Effect of Nanoparticle Shape on the Thermal Conductivity of Nanofluids
4.4. Mechanism of Thermal Conductivity Enhancement of Molten Salts by Nanoparticles
4.4.1. Brownian Motion Theory
4.4.2. Semi-Solid Layer Theory
4.4.3. Nanoparticle Agglomeration Effect
5. Existing Problems and Future Directions
5.1. Nanofluid Stability Issues and Future Directions for Enhancement
5.1.1. Nanoparticle Surface Modification
5.1.2. Addition of Surfactants
5.1.3. Hybrid Nanoparticles
5.1.4. PH Control
5.2. Mechanisms and Future Directions for Improving the Heat Transfer and Storage Performance of Molten Salts
5.3. Viscosity and Corrosion
5.4. Costs
6. Conclusions
- Many methods are used for the preparation of molten salt nanofluids. The two-step aqueous solution method prepares nanofluids with poor thermal stability, and the high-energy ball milling method prepares composites with low purity and non-uniform particle size distribution. The one-step method involving redox should not be suitable for the preparation of carbon-based molten salt nanomaterials. Nanofluids prepared by the high-temperature melting method are thermally stable and can be used steadily at high temperatures for a long time with minimal change in SHC and mass. Therefore, nanofluids prepared by the high-temperature melting method are suitable for promotion as industrial production and can be focused on in the future.
- Composites prepared by adding carbon nanoparticles to high-temperature molten salt have greatly enhanced specific heat and thermal conductivity. They broaden the temperature applicability range of the base fluid, although the melting point and decomposition temperature do not change much. They are beneficial to increasing the energy storage density of the molten salt and reducing the cost of heat storage.
- The mechanism of specific heat and thermal conductivity of molten salts enhanced by nanomaterials is not yet unified and is still at the speculative stage. The heat transfer mechanism of carbon nanomaterials remains unclear, and the future research should focus on the heat transfer mechanism of carbon nanomaterials and the mechanism of interaction between nanomaterials and molten salts by means of MD simulation and CFD.
- Nanoparticle shape affects the thermal conductivity and stability of nanofluids. The thermal conductivity of nanofluids increases as the specific surface area of nanoparticles increases. Cylindrical nanoparticles have a larger specific surface area than other nanoparticles, such as spherical particles, and are therefore more conducive to the enhancement of fluid heat transfer properties.
- This paper summarizes a variety of methods to improve the dispersibility of carbon nanomaterials, among which adjusting the pH of the base fluid contaminates the nanofluid, the dispersant decomposes at high temperatures, and the cost of surface modification is high. Hybrid nanoparticles can combine the thermal properties of multiple nanoparticles while reducing the dispersion of nanoparticles. However, the preparation technology of hybrid nanoparticles is still immature, the complexity of selecting matching nanoparticles is much higher than that of ordinary nanoparticles, and further research on simpler preparation methods is needed in the future to reduce the cost of hybrid nanoparticles.
- Carbon nanomaterials have excellent thermodynamic properties, but only carbon materials such as CNTs and graphite are being studied. Research rarely examines the preparation of nanofluids by adding carbon nanofibers and ND to molten salts, which can be explored in the future.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rubanenko, O.; Yanovych, V. Analysis of instability generation of Photovoltaic power station. In Proceedings of the 2020 IEEE 7th International Conference on Energy Smart Systems, Kyiv, Ukraine, 12–14 May 2020; Volume 7, pp. 128–133. [Google Scholar]
- Li, P.; Gao, X.; Li, Z.; Zhou, X. Effect of the temperature difference between land and lake on photovoltaic power generation. Renew. Energy 2022, 185, 86–95. [Google Scholar] [CrossRef]
- Eftekharnejad, S.; Vittal, V.; Heydt, G.T.; Keel, B.; Loehr, J. Impact of Increased Penetration of Photovoltaic Generation on Power Systems. IEEE Trans. Power Syst. 2013, 28, 893–901. [Google Scholar] [CrossRef]
- Jain, A.; Tripathyt, S.C.; Balasubramanian, R. Reliability and economic analysis of a power generation system including a photovoltaic system. Energy Conv. Manag. 1995, 36, 183–189. [Google Scholar] [CrossRef]
- Eftekharnejad, S.; Heydt, G.T.; Vittal, V. Optimal Generation Dispatch with High Penetration of Photovoltaic Generation. IEEE Trans. Sustain. Energy 2015, 6, 1013–1020. [Google Scholar] [CrossRef]
- Tafti, H.D.; Maswood, A.I.; Konstantinou, G.; Pou, J.; Blaabjerg, F. A General Constant Power Generation Algorithm for Photovoltaic Systems. IEEE Trans. Power Electr. 2018, 33, 4088–4101. [Google Scholar] [CrossRef]
- Kudo, M.; Takeuchi, A.; Nozaki, Y.; Endo, H.; Sumita, J. Forecasting electric power generation in a photovoltaic power system for an energy network. Electr. Energ. Jpn. 2009, 167, 16–23. [Google Scholar] [CrossRef]
- Gupta, M.K.; Kaushik, S.C.; Ranjan, K.R.; Panwar, N.L.; Reddy, V.S.; Tyagi, S.K. Thermodynamic performance evaluation of solar and other thermal power generation systems: A review. Renew. Sustain. Energy Rev. 2015, 50, 567–582. [Google Scholar] [CrossRef]
- McTigue, J.D.; Castro, J.; Mungas, G.; Kramer, N.; King, J.; Turchi, C.; Zhu, G. Hybridizing a geothermal power plant with concentrating solar power and thermal storage to increase power generation and dispatchability. Appl. Energy 2018, 228, 1837–1852. [Google Scholar] [CrossRef]
- Montes, M.J.; Abánades, A.; Martínez-Val, J.M. Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple. Sol. Energy 2009, 83, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Karthick, K.; Suresh, S.; Joy, G.C.; Dhanuskodi, R. Experimental investigation of solar reversible power generation in Thermoelectric Generator (TEG) using thermal energy storage. Energy Sustain. Dev. 2019, 48, 107–114. [Google Scholar] [CrossRef]
- Sioshansi, R.; Denholm, P. The Value of Concentrating Solar Power and Thermal Energy Storage. IEEE Trans. Sustain. Energy 2010, 1, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.L.; Zhang, Z.C.; Wei, X.X. Modelling and control of solar thermal power generation network in smart grid. Therm. Sci. 2021, 25, 2861–2870. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Ghorbani, B.; Moradi, M. A novel MCFC hybrid power generation process using solar parabolic dish thermal energy. Int. J. Hydrog. Energy 2019, 44, 8548–8565. [Google Scholar] [CrossRef]
- Wang, Z.F.; Yuan, G.F. Analysis of distributed concentrating solar power technology and industry development. Bull. Chin. Acad. Sci. 2016, 31, 182–190. [Google Scholar]
- Qiu, T.; Miao, X.L.; Song, W.J.; Lou, D.; Zhang, S.F. Research progress on materials for perovskites solar cells. J. Mater. Eng. 2018, 46, 142–150. [Google Scholar]
- He, J. Application of molten salt and heat conducting oil thermal storage technology in photothermal power generation. Energy Conserv. Environ. Prot. 2019, 19, 100–101. [Google Scholar]
- Qin, C. Analysis and research on application of molten salt and heat transfer oil in solar power plant. Low Carbon World 2018, 12, 34–35. [Google Scholar]
- Wu, Y.T.; Ren, N.; Ma, C.F. Research and application of molten salts for sensible heat storage. Energy Storage Sci. Technol. 2013, 2, 586–592. [Google Scholar]
- Steinmann, W.D.; Tamme, R. Latent heat storage for solar steam systems. J. Sol. Eng. 2008, 130, 011004-1–011004-5. [Google Scholar] [CrossRef]
- Peng, Q.; Ding, J.; Wei, X.L.; Yang, J.P.; Yang, X.X. Research progress in application of molten nitrate salt in energy utilization. Mod. Chem. Ind. 2009, 29, 17–24. [Google Scholar]
- Yang, Z.; Garimella, S.V. Thermal analysis of solar thermal energy storage in a molten-salt thermocline. Sol. Energy 2010, 84, 974–985. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Steven Tay, N.H.; Bell, S.; Belusko, M.; Jacob, R.; Will, G.; Saman, W.; Bruno, F. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew. Sustain. Energy Rev. 2016, 53, 1411–1432. [Google Scholar] [CrossRef]
- Kearney, D.; Herrmann, U.; Nava, P.; Kelly, B.; Mahoney, R.; Pacheco, J.; Cable, R.; Potrovitza, N.; Blake, D.; Price, H. Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J. Sol. Energy Eng. Trans. ASME. 2002, 125, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Myers, P.D.; Goswami, D.Y. Thermal energy storage using chloride salts and their eutectics. Appl. Therm. Eng. 2016, 109, 889–900. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Song, M.; Wang, W.; Ding, J.; Yang, J. Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage. Appl. Energy 2015, 156, 306–310. [Google Scholar] [CrossRef]
- Araki, N.; Matsuura, M.; Makino, A.; Hirata, T.; Kato, Y. Measurement of thermophysical properties of molten salts: Mixture of alkaline carbonate Salts. Int. J. Thermophys. 1988, 9, 1071–1080. [Google Scholar] [CrossRef]
- Shin, B.C.; Sang, D.K.; Park, W.H. Ternary carbonate eutectic (lithium, sodium and potassium carbonates) for latent heat storage medium. Sol. Energy Mater. 1990, 21, 81–90. [Google Scholar] [CrossRef]
- Xing, Y.M.; Xu, X.; Yuan, X.G.; Cui, H.T.; Zhang, Y.H. Numerical simulation of high-temperature phase change heat storage system. Heat Transf.-Asian Res. 2002, 33, 32–41. [Google Scholar] [CrossRef]
- Jacobson, D.L.; Ponnappan, R. Performance of a cylindrical phase-change thermal energy storage unit. AIAA J. 1982, 21, 774–780. [Google Scholar]
- Ren, D.M.; Li, Z.S.; Hao, P.P. Chemistry of Carbon Nanotubes; Chemical Industry Press: Beijing, China, 2013. [Google Scholar]
- Zhang, Z.T.; Lin, Y.H.; Tang, Z.L.; Zhang, J.Y. Nanometer materials & nanotechology and their application prospect. J. Mater. Eng. 2000, 3, 42–48. [Google Scholar]
- Yao, S.W.; Zou, Y.; Zhang, W.G. Research progress of the properties, preparation and application of Au nanoparticles. Chem. Ind. Eng. Prog. 2007, 26, 310–314. [Google Scholar]
- Peng, H.; Liu, Y.; Zhang, J.S.; Zhang, J.S.; Zheng, H.L.; Ruan, R.S. Progress in utilization of silver nanoparticle material. Chem. Ind. Eng. Prog. 2017, 36, 2525–2532. [Google Scholar]
- Zhai, X.J.; Zhang, N. Research development of nanometer metal materials. Mater. Rev. 1999, 13, 22–24. [Google Scholar]
- Zhang, S.Q.; Wang, J.Y.; Wang, D.H.; Hou, X.G.; Zhang, M.; Huang, X. Recent progress on nano metallic materials. Mater. Rev. 2011, 1, 5–9. [Google Scholar]
- Zhong, Q.D.; Li, Y.G.; Zhou, S.Z.; Zhou, G.D. Development and status quo of nano-oxide research in the recent decade. J. Shanghai Univ. Electr. Power 2003, 19, 1–7. [Google Scholar]
- Jia, X.D. Synthesis and Application of Oxide Nanoparticles and Their Composites. Ph.D. Thesis, Nanjing University, Nanjing, China, 2011. [Google Scholar]
- WU, J. Thermodynamics of Metal Oxide Micro-Nanostructures. Ph.D. Thesis, Northwestern Polytechnical University, Xi’an, China, 2011. [Google Scholar]
- Trong Tam, N.; Viet Phuong, N.; Hong Khoi, P.; Ngoc Minh, P.; Afrand, M.; Van Trinh, P.; Hung Thang, B.; Żyła, G.; Estellé, P. Carbon Nanomaterial-Based Nanofluids for Direct Thermal Solar Absorption. Nanomaterials 2020, 10, 1199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Huang, Q.Y. Novel progress on application of Carbon materials as counter electrode in dye-sensitized solar cells and perovskite solar cells. J. Mater. Eng. 2018, 46, 56–63. [Google Scholar]
- Gao, X.J.; Guo, Q.G.; Liu, L.; Song, J.R. The study progress on carbon materials with high thermal conductivity. Funct. Mater. 2006, 37, 173–177. [Google Scholar]
- Chen, Y.H. Manufacturing methods and application characters of carbon nano-materials. Carbon Tech. 2008, 27, 28–32. [Google Scholar]
- Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902. [Google Scholar] [CrossRef]
- He, P.; Geng, H.Y. Research Progress of Advanced Thermal Management Materials. J. Mater. Eng. 2018, 46, 1–11. [Google Scholar]
- Yan, C.; Liang, J.; Zhong, X.; Li, C.; Chen, D.; Wang, Z.; Li, S.; Xu, J.; Wang, H.; Li, Y.; et al. BN white graphene well-dispersed solar salt nanofluids with significant improved thermal properties for concentrated solar power plants. Sol. Energy Mater. Sol. Cells 2022, 245, 111875. [Google Scholar] [CrossRef]
- Xiao, J.; Huang, J.; Zhu, P.; Wang, C.; Li, X. Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material. Thermochim. Acta 2014, 587, 52–58. [Google Scholar] [CrossRef]
- Saranprabhu, M.K.; Chandini, D.; Bharathidasan, P.; Devaraj, S.; Rajan, K.S. Lowered total solidification time and increased discharge rate of reduced graphene oxide-solar salt composites: Potential for deployment in latent heat thermal energy storage system. Sol. Energy. 2020, 204, 466–475. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Li, J.L.; Wang, M.; Wang, H.Y.; Zhong, Y.; Zhao, Y.J.; Wei, M.; Li, Y. Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP. RSC Adv. 2018, 8, 1925–1926. [Google Scholar] [CrossRef] [Green Version]
- Hamdy, E.; Saad, L.; Abulfotuh, F.; Soliman, M.; Ebrahim, S. Enhancement of Molten Nitrate Thermal Properties by Reduced Graphene Oxide and Graphene Quantum Dots. ACS Omega 2020, 5, 21345–21354. [Google Scholar] [CrossRef]
- Yuan, F.; He, Y.; Li, M.; Li, X. Study on the theoretical calculation method for the effective thermal conductivity of carbon nanotube composite molten salt for solar energy application. Sol. Energy Mater. Sol. Cells 2022, 238, 111631. [Google Scholar] [CrossRef]
- Ueki, Y.; Fujita, N.; Kawai, M.; Shibahara, M. Molten salt thermal conductivity enhancement by mixing nanoparticles. Fus. Eng. Des. 2018, 136, 1295–1299. [Google Scholar] [CrossRef]
- El-Sayed, W.G.; Attia, N.F.; Ismail, I.; El-Khayat, M.; Nogami, M.; Abdel-Mottaleb, M.S.A. Innovative and cost-effective nanodiamond based molten salt nanocomposite as efficient heat transfer fluid and thermal energy storage media. Renew. Energy 2021, 177, 596–602. [Google Scholar] [CrossRef]
- Lyu, H.; Feng, D.; Feng, Y.; Zhang, X. Enhanced thermal energy storage of sodium nitrate by graphene nanosheets: Experimental study and mechanisms. J. Energy Storage 2022, 54, 105294. [Google Scholar] [CrossRef]
- Vaka, M.; Walvekar, R.; Khalid, M.; Jagadish, P.; Mubarak, N.M.; Panchal, H. Synthesis of Hybrid Graphene/TiO2 Nanoparticles Based High-Temperature Quinary Salt Mixture for Energy Storage Application. J. Energy Storage 2020, 31, 101540. [Google Scholar] [CrossRef]
- Vaka, M.; Walvekar, R.; Khalid, M.; Jagadish, P.; Low, J.H. Corrosion, rheology, and thermal ageing behaviour of the eutectic salt-based graphene hybrid nanofluid for high-temperature TES applications. J. Mol. Liq. 2021, 334, 116156. [Google Scholar] [CrossRef]
- Li, Z.; Wen, B.; Chen, H.Z.; Li, B.R.; Du, X.Z. Research status and progress of high-temperature molten salt-based nanofluids. Proc. CSEE 2021, 41, 2168–2186. [Google Scholar]
- Tian, H.Q.; Zhou, J.J.; Guo, C.X. Progress of specific heat enhancement of molten salt thermal energy storage materials. Chem. Ind. Eng. Prog. 2020, 39, 584–595. [Google Scholar]
- Huang, Y.; Cheng, X.; Li, Y.; Yu, G.; Xu, K.; Li, G. Effect of in-situ synthesized nano-MgO on thermal properties of NaNO3 -KNO3. Sol. Energy 2018, 160, 208–215. [Google Scholar] [CrossRef]
- Nassar, M.Y.; Mohamed, T.Y.; Ahmed, I.S.; Samir, I. MgO nanostructure via a sol-gel combustion synthesis method using different fuels: An efficient nano-adsorbent for the removal of some anionic textile dyes. J. Mol. Liq. 2017, 225, 730–740. [Google Scholar] [CrossRef]
- Jo, B.; Banerjee, D. Effect of Dispersion Homogeneity on Specific Heat Capacity Enhancement of Molten Salt Nanomaterials Using Carbon Nanotubes. Int. J. Sol. Energy Eng. 2015, 137, 011011. [Google Scholar] [CrossRef]
- Jo, B.; Banerjee, D. Viscosity measurements of multi-walled carbon nanotubes-based high temperature nanofluids. Mater. Lett. 2014, 122, 212–215. [Google Scholar] [CrossRef]
- Jo, B.; Banerjee, D. Effect of solvent on specific heat capacity enhancement of binary molten salt-based carbon nanotube nanomaterials for thermal energy storage. Int. J. Therm. Sci. 2015, 98, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Wang, W.; Ding, J.; Wei, X.; Huang, C. Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials. Sol. Energy Mater. Sol. Cells 2016, 149, 187–194. [Google Scholar] [CrossRef]
- Xie, Q.Z.; Zhu, Q.Z.; Li, Y. Thermal Storage Properties of Molten Nitrate Salt-Based Nanofluids with Graphene Nanoplatelets. Nanoscale Res. Lett. 2016, 11, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Q.Z.; Zhu, Q.Z. Effect of doped graphene nanosheets on the specific heat capacity of molten salts of nitrate. J. Shanghai Electr. Power. 2017, 33, 285–288. [Google Scholar]
- Wu, D.; Liu, S. Effects of Multi-Walled Carbon Nanotubes on Enhancing the Thermodynamics Characteristic of Alkali Nitrate and Chlorate Salt for Concentration Solar Plants. Adv. Mater. Res. 2013, 805–806, 63–69. [Google Scholar] [CrossRef]
- Wang, Y. Experimental Study of the Physical Strengthening and Corrosion Characteristics of Mixed Molten Salts. Master’s Thesis, North China Electric Power University, Beijing, China, 2020. [Google Scholar]
- Kim, H.; Jo, B. Anomalous Increase in Specific Heat of Binary Molten Salt-Based Graphite Nanofluids for Thermal Energy Storage. Appl. Sci. 2018, 8, 1305. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.; Jo, B. Investigation of high temperature nanofluids for solar thermal power conversion and storage applications. Int. J. Heat Transfer. 2010, 7, 583–591. [Google Scholar]
- Hamdy, E.; Ebrahim, S.; Abulfotuh, F.; Soliman, M. Effect of multi-walled carbon nanotubes on thermal properties of nitrate molten salts. In Proceedings of the 2016 International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 14–17 November 2016; pp. 317–320. [Google Scholar]
- Yuan, F.; Li, M.; Qiu, Y.; Ma, Z.; Li, M. Specific heat capacity improvement of molten salt for solar energy applications using charged single-walled carbon nanotubes. Appl. Energy 2019, 250, 1481–1490. [Google Scholar] [CrossRef]
- Derbenev, I.N.; Filippov, A.V.; Stace, A.J.; Besley, E. Electrostatic interactions between charged dielectric particles in an electrolyte solution: Constant potential boundary conditions. Soft Matter 2018, 14, 5480–5487. [Google Scholar] [CrossRef]
- Derbenev, I.N.; Filippov, A.V.; Stace, A.J.; Besley, E. Electrostatic interactions between spheroidal dielectric particles. J. Chem. Phys. 2020, 152, 024121. [Google Scholar] [CrossRef]
- Siryk, S.V.; Rocchia, W. Arbitrary-Shape Dielectric Particles Interacting in the Linearized Poisson-Boltzmann Framework: An Analytical Treatment. J. Phys. Chem. B 2022, 126, 10400–10426. [Google Scholar] [CrossRef]
- Obolensky, O.I.; Doerr, T.P.; Yu, Y.-K. Rigorous treatment of pairwise and many-body electrostatic interactions among dielectric spheres at the Debye-Huckel level. Eur. Phys. J. E 2021, 44, 129. [Google Scholar] [CrossRef]
- Denton, A.R. Effective electrostatic interactions in colloid-nanoparticle mixtures. Phys. Rev. E 2017, 96, 062610. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Zhang, G.; Ding, Y.; Wen, D. Rheological Characteristics of Molten Salt Seeded with Al2O3 Nanopowder and Graphene for Concentrated Solar Power. Energies 2019, 12, 467. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Jo, B. Thermal energy storage characteristics of binary molten salt nanofluids: Specific heat and latent heat. Int. J. Energy Res. 2021, 45, 3231–3241. [Google Scholar] [CrossRef]
- Rizvi, S.M.M.; Shin, D. Mechanism of heat capacity enhancement in molten salt nanofluids. Int. J. Heat Mass Tranf. 2020, 161, 120260. [Google Scholar] [CrossRef]
- Tao, Y.B.; Lin, C.H.; He, Y.L. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material. Energy Convers. Manag. 2015, 97, 103–110. [Google Scholar] [CrossRef]
- Yuan, F.; He, Y.L.; Ma, Z.; Li, M.J. Study on the compressed ion layer and the specific heat of the phase change materials doping charged single-walled carbon nanotubes. Energy Procedia 2019, 158, 4909–4914. [Google Scholar] [CrossRef]
- Jo, B.; Banerjee, D. Enhanced specific heat capacity of molten salt-based nanomaterials: Effects of nanoparticle dispersion and solvent material. Acta Mater. 2014, 75, 80–91. [Google Scholar] [CrossRef]
- Tariq; Chen, X.M.; Li, Y.Y.; Huang, Y. Effect of carbon nanotubes and alumina nanoparticles on the thermal storage properties of nitrate phase change materials. Energy Storage Sci. Technol. 2018, 7, 47–53. [Google Scholar]
- Liu, S.; Wu, D.; Liu, J.; Nian, Y.; Qiu, P.G. Development of a novel molten-salt filled with nanoparticles for concentration solar plants. Int. Energy Technol. 2013, 623, 1–4. [Google Scholar] [CrossRef]
- Hu, Y.; He, Y.; Zhang, Z.; Wen, D. Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications. Energy Convers. Manag. 2017, 142, 366–373. [Google Scholar] [CrossRef]
- Jung, J.; Koo, J.; Kang, Y.T. Model for predicting the critical size of aggregates in nanofluids. J. Mech. Sci. Technol. 2013, 27, 1165–1169. [Google Scholar] [CrossRef]
- Shukla, K.N.; Koller, T.M.; Rausch, M.H.; Fröba, A.P. Effective thermal conductivity of nanofluids-A new model taking into consideration Brownian motion. Int. J. Heat Mass Transf. 2016, 99, 532–540. [Google Scholar] [CrossRef]
- Vatani, A.; Woodfield, P.L.; Dao, D.V. A survey of practical equations for prediction of effective thermal conductivity of spherical-particle nanofluids. J. Mol. Liq. 2015, 211, 712–733. [Google Scholar] [CrossRef]
- Shende, R.; Sundara, R. Nitrogen doped hybrid carbon based composite dispersed nanofluids as working fluid for low-temperature direct absorption solar collectors. Sol. Energy Mater. Sol. Cells 2015, 140, 9–16. [Google Scholar] [CrossRef]
- Ibrahim, H.A. Experimental measurements of viscosity and thermal conductivity of single layer graphene based di-water nanofluid. J. Eng. 2017, 23, 142–161. [Google Scholar]
- Ahammed, N.; Asirvatham, L.G.; Titus, J.; Bose, J.R. Measurement of thermal conductivity of graphene-water nanofluid at below and above ambient temperatures. Int. Commun. Heat Mass Transf. 2016, 70, 66–74. [Google Scholar] [CrossRef]
- Ghozatloo, A.; Shariaty-Niasar, M.; Rashidi, A.M. Preparation of nanofluids from functionalized Graphene by new alkaline method and study on the thermal conductivity and stability. Int. Commun. Heat Mass 2013, 42, 89–94. [Google Scholar] [CrossRef]
- Estelle, P.; Halefadl, S.; Mare, T. Thermal conductivity of CNT based nanofluids: Experimental trends and models overview. Therm. Eng. 2015, 1, 381–390. [Google Scholar] [CrossRef]
- Hajjar, Z.; Rashidi, A.M.; Ghozatloo, A. Enhanced thermal conductivities of graphene oxide nanofluids. Int. Commun. Heat Mass 2014, 57, 128–131. [Google Scholar] [CrossRef]
- Zhang, J.Y. Experimental and Mechanistic Study of the Thermal Conductivity of Nanocomposites (MWCNTs-Solar Salts). Master’s Thesis, North China Electric Power University, Beijing, China, 2020. [Google Scholar]
- Gorji, T.B.; Ranjbar, A.A.; Mirzababaei, S.N. Optical properties of carboxyl functionalized carbon nanotube aqueous nanofluids as direct solar thermal energy absorbers. Sol. Energy 2015, 119, 332–342. [Google Scholar] [CrossRef]
- Omrani, A.N.; Esmaeilzadeh, E.; Jafari, M.; Behzadmehr, A. Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diam. Relat. Mater. 2019, 93, 96–104. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Zeng, L.; Ji, L.; Zhang, D. Research on the thermal conductivities of graphene and graphene based composite materials. Dev. Appl. Mater. 2010, 25, 94–100. [Google Scholar]
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Dudda, B.; Shin, D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications. Int. J. Therm. Sci. 2013, 69, 37–42. [Google Scholar] [CrossRef]
- Keblinski, P.; Phillpot, S.R.; Choi, S.U.S.; Eastman, J.A. Mechanisms of heat flow in suspensions of nanosized particles (nanofluids). Int. J. Heat Mass Transf. 2002, 45, 855–863. [Google Scholar] [CrossRef]
- Murshed, S.M.S.; Leong, K.C.; Yang, C. Investigations of thermal conductivity and viscosity of nanofluids. Int. J. Therm. Sci. 2008, 47, 560–568. [Google Scholar] [CrossRef]
- Ghosh, M.M.; Ghosh, S.; Pabi, S.K. Effects of Particle Shape and Fluid Temperature on Heat-Transfer Characteristics of Nanofluids. J. Mater. Eng. Perform. 2013, 22, 1525–1529. [Google Scholar] [CrossRef]
- Ghosh, M.M.; Roy, S.; Pabi, S.K.; Ghosh, S. A Molecular Dynamics-Stochastic Model for Thermal Conductivity of Nanofluids and Its Experimental Validation. J. Nanosci. Nanotechnol. 2011, 11, 2196–2207. [Google Scholar] [CrossRef]
- Timofeeva, E.; Routbort, J.; Singh, D. Particle shape effects on thermophysical properties of alumina nanofluids. Appl. Phys. 2009, 106, 014304. [Google Scholar] [CrossRef]
- Maheshwary, P.B.; Handa, C.C.; Nemade, K.R. A comprehensive study of effect of concentration, particle size and particle shape on thermal conductivity of titania/water based nanofluid. Appl. Therm. Eng. 2017, 119, 79–88. [Google Scholar] [CrossRef]
- Murshed, S.M.S.; Leong, K.C.; Yang, C. Enhanced thermal conductivity of TiO2—Water based nanofluids. Int. J. Therm. Sci. 2005, 44, 367–373. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.H.; Lee, J.H.; Jang, S. Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids. Energy 2015, 90, 1290–1297. [Google Scholar] [CrossRef]
- Simpson, S.; Schelfhout, A.; Golden, C.; Vafaei, S. Nanofluid Thermal Conductivity and Effective Parameters. Appl. Sci. 2019, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.P.; Choi, S.U.S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 2004, 84, 4316–4318. [Google Scholar] [CrossRef]
- Evans, W. Role of Brownian motion hydrodynamics on nanofluid thermal con-ductivity. Appl. Phys. Lett. 2006, 88, 219–482. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Yu, Q.; Wei, G.; Du, X. Mechanisms for thermal conduction in molten salt-based nanofluid. Int. J. Heat Mass Tranf. 2022, 188, 122648. [Google Scholar] [CrossRef]
- Eastman, J.A.; Phillpot, S.R.; Choi, S.U.S.; Keblinski, P. Thermal transport in nanofluids. Annu. Rev. Mater. Res. 2004, 34, 219–246. [Google Scholar] [CrossRef]
- Yu, W.; Choi, S.U.S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. J. Nanopart. Res. 2003, 5, 167–171. [Google Scholar] [CrossRef]
- Xue, Q. Model for effective thermal conductivity of nanofluids. Phys. Lett. A 2003, 307, 313–317. [Google Scholar] [CrossRef]
- Teng, K.L.; Hsiao, P.Y.; Hung, S.W.; Chieng, C.C.; Liu, M.S.; Lu, M.C. Enhanced thermal conductivity of nanofluids diagnosis by molecular dynamics simulation. J. Nanosci. Nanotechnol. 2008, 8, 3710–3718. [Google Scholar] [CrossRef]
- Prasher, R.; Phelan, P.E.; Bhattacharya, P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions(nanofluid). Nano Lett. 2006, 6, 1529–1534. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.X.; Song, C.Y.; Yao, C.H.; Wang, H.H.; Wang, H.X.; Hu, Z.L.; Wu, Y.T.; Ding, Y.L. A review of nanofluid stability studies. Integr. Intell. Energy 2021, 43, 68–74. [Google Scholar]
- Cakmak, N.K. The impact of surfactants on the stability and thermal conductivity of graphene oxide de-ionized water nanofluids. J. Therm. Anal. Calorim. 2020, 139, 1895–1902. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.; Li, T.; Zeng, M.; Sundén, B. Effect of various surfactants on stability and thermophysical properties of nanofluids. J. Therm. Anal. Calorim. 2020, 143, 4057–4070. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.S.; Chaturvedi, K.R.; Iglauer, S.; Sharma, T. Impact of anionic surfactant on stability, viscoelastic moduli, and oil recovery of silica nanofluid in saline environment. J. Pet. Sci. Eng. 2020, 195, 107634. [Google Scholar] [CrossRef]
- Wang, L.H.; Xiang, J.; Li, J.X. Study on stability of nanofluid. Mater. Rep. 2011, 25, 17–20. [Google Scholar]
- Ding, J.; Wang, P.; Zhang, B.G.; Dong, S. Stability and heat transfer characteristics in automotive radiators of mixed-based nanofluids. Sci. Technol. Eng. 2019, 19, 196–206. [Google Scholar]
- Teng, T.; Fang, Y.; Hsu, Y.; Lin, L. Evaluating Stability of Aqueous Multiwalled Carbon Nanotube Nanofluids by Using Different Stabilizers. J. Nanomater. 2014, 2014, 203. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Gupta, S.M.; Sharma, S.K. Synthesis, characterization and dispersion stability of water-based Cu–CNT hybrid nanofluid without surfactant. Microfluid. Nanofluid. 2021, 25, 1–14. [Google Scholar] [CrossRef]
- Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M. Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp. Therm. Fluid. Sci. 2012, 38, 54–60. [Google Scholar] [CrossRef]
- Batmunkh, M.; Tanshen, M.R.; Nine, M.J.; Myekhlai, M.; Choi, H.; Chung, H.; Jeong, H. Thermal Conductivity of TiO2 Nanoparticles Based Aqueous Nanofluids with an Addition of a Modified Silver Particle. Ind. Eng. Chem. Res. 2014, 53, 8445–8451. [Google Scholar] [CrossRef]
- Sundar, L.S.; Singh, M.K.; Sousa, A.C.M. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass Transf. 2014, 52, 73–83. [Google Scholar] [CrossRef]
- Ali, N.; Bahman, A.M.; Aljuwayhel, N.F.; Ebrahim, S.A.; Mukherjee, S.; Alsayegh, A. Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications—A Review. Nanomaterials 2021, 11, 1628. [Google Scholar] [CrossRef] [PubMed]
Sample | Specific Heat/ (J/(g·K)) | Thermal Conductivity/ (W/(m·K)) | Carbon Nanomaterial | Doping Amount/% | Specific Heat/% | Thermal Conductivity/% | Reference |
---|---|---|---|---|---|---|---|
Solar salt | 1.495 | 0.52 | BNNSs | 1.5 | 29.8 | 148% | [46] |
Graphite foam | 2 | 110 | 94.97% | [47] | |||
Graphene oxide | 0.5 | 6 | 17 | [48] | |||
MWCNTs | 0.3 | 16.6 | 293 | [49] | |||
Graphene oxide | 1.5 | 7.5 | 52.1 | [50] | |||
Li2CO3 + K2CO3 | 1.469 | 0.69 | MWCNTs | 1.75 | 23.5 | 50.72 | [51] |
Hitec | 1.56 | 0.57 | SiC | 0.6 | 146 | [52] | |
NaNO3 + KNO3 | 1.50 | 0.53 | ND | 3 | 23 | 93 | [53] |
NaNO3 | 1.82 | 0.6 | GNS | 3 | 245 | [54] | |
NaNO3-KNO3-LiNO3-CaNO3-CsNO3 | 1.342 | Graphene-TiO2 | 0.05 | 19.6 | [55,56] |
Sample | Carbon Nanomaterial | Doping Amount/% | Specific Heat/% | Reference |
---|---|---|---|---|
Solar salt | Graphene | 1 | 16.7 | [65,66] |
Hitec | Graphene | 1 | 7.5 | |
Solar salt | BNNSs | 1.5 | 29.8 | [46] |
Solar salt | Graphite foam | 2 | 110 | |
KCL + MgCl2 | MWCNTs | 1 | ≈100 | [67] |
KCL + MgCl2 | MWCNTs | 1 | 9.2 | [68] |
Li2CO3 + K2CO3 | Graphite | 1 | ≈200 | [69] |
Li2CO3 + K2CO3 | MWCNTs | 1 | 17 | [70] |
Li2CO3 + K2CO3 | Graphite | 1 | 23.5 | [51] |
NaNO3-KNO3-LiNO3-CaNO3-CsNO3 | Graphene-TiO2 | 0.05 | 19.6 | [55,56] |
Sample | Carbon Nanomaterial | Doping Amount/% | Thermal Conductivity/% | Reference |
---|---|---|---|---|
Solar salt | MWCNTs | 0.5 | 49.1 | [96] |
Solar salt | Graphite foam | 2 | 215 | [78] |
Solar salt | Graphene oxide | 0.5 | 17 | [48] |
Solar salt | MWCNTs | 0.3 | 293 | [49] |
Solar salt | Graphene oxide | 1.5 | 52.1 | [50] |
Li2CO3 + K2CO3 | MWCNTs | 1.75 | 50.72 | [51] |
Hitec | SiC | 0.6 | 146 | [52] |
NaNO3 + KNO3 | ND | 3 | 93 | [53] |
NaNO3 | GNS | 3 | 245 | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhang, M.; Wu, Y.; Ma, C. Advances in High-Temperature Molten Salt-Based Carbon Nanofluid Research. Energies 2023, 16, 2178. https://doi.org/10.3390/en16052178
Chen X, Zhang M, Wu Y, Ma C. Advances in High-Temperature Molten Salt-Based Carbon Nanofluid Research. Energies. 2023; 16(5):2178. https://doi.org/10.3390/en16052178
Chicago/Turabian StyleChen, Xia, Mingxuan Zhang, Yuting Wu, and Chongfang Ma. 2023. "Advances in High-Temperature Molten Salt-Based Carbon Nanofluid Research" Energies 16, no. 5: 2178. https://doi.org/10.3390/en16052178
APA StyleChen, X., Zhang, M., Wu, Y., & Ma, C. (2023). Advances in High-Temperature Molten Salt-Based Carbon Nanofluid Research. Energies, 16(5), 2178. https://doi.org/10.3390/en16052178