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Abstract: HITEC salt (NaNO2-NaO3-KNO3) and solar salt (NaO3-KNO3) are typical molten salts
used in concentrated solar power. Adding nanoparticles is an effective method to improve the
thermo-physical properties of pure salt. It is indispensable to experimentally study the rheological
behaviours of salt seeded with nanoparticles, which can increase the specific heat capacity of pure
salt. In this work, the viscosities of HITEC salt were measured with different shear rates in the
temperature range of 200 ◦C to 450 ◦C firstly, while those of solar salt were measured in the
temperature range of 250 ◦C to 500 ◦C. The experimental data showed reasonable agreement with the
literature correlations, which verify the Newtonian behaviours of pure salts. The evolutions of the
viscosities of nanocomposites in the same temperature range were measured and analysed, where
the nanocomposites were synthesized with 1 wt.% or 2 wt.% Al2O3 nanopowder and graphene,
respectively. Results showed that the addition of Al2O3 nanopowder had relatively little effect
on viscosity, and the variations were about −35.4%~8.1% for the HITEC salt nanocomposites and
−9.2%~68.1% for the solar salt nanocomposites. While graphene would apparently increase the
viscosities of HITEC salt and solar salt, HITEC salt with the addition of graphene showed slight
non-Newtonian fluid behaviour.

Keywords: molten salt; aluminium oxide nanopowder; graphene; rheological behaviour

1. Introduction

Nowadays fossil fuel energy resources are severely reduced, which is causing an increasing
demand for the development and application of suitable alternative energies, especially solar energy,
which is a renewable energy [1]. Concentrated solar thermal power (CSP) is one of the main
technologies for solar energy utilization [2–5], while the suitability of a solar collector should be
chosen according to the testing conditions specified in the existing standards [6]. A CSP system always
uses heat transfer fluid (HTF) to send the intense heat to a thermal power plant which is able to provide
power at night-time with the amount of stored thermal energy. Thus, a CSP system combined with a
thermal energy storage system becomes the first choice to provide flexible and consistent power [7,8].
The development of reliable thermal storage system is vital for the sustainable and efficient utilization
of solar energy resource.

Because of their large specific heat capacity, low viscosity, wide temperature range, and good
compatibility with containers, molten salts have been widely used as latent thermal storage media
in solar power fields [9,10]. Molten salts are also used as HTFs to store sensible heat, and they are
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considered as an alternative to oils because of their low cost and harmlessness to the environment [11].
There are many studies conducted about molten salts, including their thermo-physical properties
and system performances [12–14]. Siegel et al. [13] measured the thermo-physical properties of
several molten salt mixtures, such as ternary eutectic salt (Na-K-Li, Na-K-Ca), quaternary eutectic
salt (Na-K-Li-Ca), solar salt (Na-K), and HITEC salt. They found that all the data presented including
density, viscosity, heat capacity, and thermal conductivity were dependent on temperature. The
viscosity showed an Arrhenius relationship with temperature for the salt without calcium nitrate,
while the Vogel-Fulcher-Tammann-Heese equation could possibly be a better fit for the viscosity of
the salt with calcium nitrate. Ni et al. [14] used a molecular dynamics simulation method to study the
characteristics of solar salt with the addition of 5–25 mol.% Ca2+. They pointed out that the viscosities
of the mixtures increased and the self-diffusion coefficients of all the ions decreased, which was due to
the formation of network restricting the motion of all the ions. However, the intrinsic limitations of the
thermo-physical properties of pure salts hinder their widespread applications.

Nanoparticles have been used to enhance the thermo-physical properties of pure salt [15], and
the nanocomposites fabricated by salt and nanoparticles were extensively investigated both in their
thermo-physical properties [16–18] and system performances [19,20]. The most important result is
that the addition of nanoparticles can increase the specific heat capacities of pure salts [21]. It is also
indispensable to understand and characterize the viscosities of nanocomposites, which would provide
basic information for the experimental and numerical researches on how nanoparticles affect the flow
of liquid salt fluid. The viscosities of the nanocomposites in a fluid state can be affected by many
parameters, such as volume fraction, temperature, nanoparticle size and shape, aggregation and type
of base liquid [22–24]. Jin [25] measured the viscosities of ternary nitrates using the viscometer based
on the rotating cylinder method, and it was found that the addition of lithium nitrate to eutectic salt
affected the viscosity slightly, while calcium nitrate would increase the viscosity of eutectic salt to some
extent, e.g., the viscosity of solar salt adding calcium nitrate increased by about 53.2% at 550 K. Chen
et al. [26] experimentally and theoretically studied the rheological behaviours of TiO2 seeded ethylene
glycol nanofluids, and pointed out that the concentration and structure of nanoparticles would greatly
influence the viscosities of the nanofluids. Lasfargues et al. [27] measured the viscosities of solar
salt and salt doped with 0.1% CuO, and it was found that the viscosities of the nanofluids increased
by about 5.0~18.0% in the temperature range of 250~500 ◦C. Munoz-Sanchez et al. [28] measured
the viscosities of solar salt seeded with alumina and silica nanoparticles at various conditions, and
found out the influences of salt purity, concentration of nanoparticles, and measuring configuration
of rheometer on the viscosities of solar salt. The results indicated the Newtonian behaviour of the
nanofluids in spite of different rheometer configurations, and the Arrhenius model was suitable to
explain the relationship between the viscosity and temperature. Jo and Banerjee [29] performed
the viscosity measurements of nanofluids, which was fabricated with Li2CO3:K2CO3 (62:38) and
1 wt.%, 2 wt.% or 5 wt.% multi-walled carbon nanotubes (MWCNTs). It was found that the viscosity
increased by about 93.0% with the addition of 2 wt.% MWCNT, which showed good agreement with
the Krieger-Dougherty model considering the effect of nanoparticle agglomeration.

Besides the common nanoparticles, graphene has drawn researchers’ attention recently and has
been studied extensively [30–36]. Liu et al. [34] prepared and characterized two types of reduced
graphene oxide (GO) combined with alkane, alcohol and carboxylic acid phase change materials
(PCMs), and the thermal conductivity of the rGO/stearic acid composite could be increased to
3.21 (W/m·K). Kant et al. [35] pointed out that emulsifying graphene nanoparticles in PCM resulted
in a relative increase of the dynamic viscosity, and significantly degraded its natural convection heat
transfer performance. Furthermore, the corrosion of carbon steel with the contact of molten nitrate salt
is always an important issue, and it was found that graphite could form a protective carbonate layer
to improve the resistance of carbon steel [36]. Thus, adding graphene into the salt should positively
affect the corrosion of container in the CSP system.
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However, it can be seen that the influence of graphene on the rheological behaviour of pure
salt received little attention and was seldom experimentally reported, which is an essential property
affecting the flow and heat transfer characteristics of the CSP system. Moreover, the effects of the shear
rates on the rheological behaviour have not been clarified and are relatively inadequate, and the data
with different mass fractions of nanoparticles are still insufficient. Thus, it becomes an increasingly
critical task to study the viscosities of the nanocomposites seeded with graphene and to discuss
the side effects of viscosity change, which is related to the pump power of the CSP system as the
nanocomposites work as HTFs. HITEC salt and solar salt were used as pure materials in the present
study, aluminium oxide (Al2O3) nanopowder and graphene were considered as the nanoadditives.
The nanocomposites were synthesized with the liquid dissolution method and were characterized
with a scanning electron microscope (SEM) so as to check the combination of the nanocomposites.
Then the viscosities of HITEC salt and its nanocomposites were measured using a rheometer in the
temperature range of 200 ◦C to 450 ◦C, while those of solar salt were in the temperature range of 250 ◦C
to 500 ◦C. The experimental results were verified with the correlations from the literature, and finally
the influence of nanoparticles on flow characteristics were discussed according to the rheological
behavioural results.

2. Materials and Method

2.1. Preparation of Samples

Sodium nitrite (NaNO2; Alfa Aesar, UK; Purity: 98.0%), sodium nitrate (NaNO3; Honeywell
Fluka, UK; Purity: 99.0%) and potassium nitrate (KNO3; Acros Organics, UK; Purity: 99.0%) were
used as the base PCMs, and Al2O3 nanopowder (40–80 nm APS, Nanostructured & Amorphous
Materials Inc., US) and graphene (the synthesis method mentioned in the previous investigation [37])
were considered as the nanoadditives. Firstly, NaNO2, NaNO3 and KNO3 with mass ratios of 40:7:53
named HITEC salt were prepared with the mass balance (KERN, ABT 220-5DM), then deionized water
was added into the beaker filled with the salt. The mixture was then stirred for 20 min to form the
solution, which was sonicated for 1 h with an ultrasonicator at the frequency of 40 kHz to ensure good
dispersion, as shown in Figure 1. Secondly, Al2O3 nanopowder and graphene with a mass fraction of
1% or 2% were added into the former solution without a dispersing agent, and the mixture was stirred
and sonicated for 1 h with the ultrasonicator again. Finally, the solution after sonication was heated in
a muffle furnace at the temperature of 200 ◦C to evaporate the water and melt the mixture to ensure the
homogeneities of the samples. A method similar was used for the solar salt nanocomposites, except
NaNO3 and KNO3 with a mass ratio of 60:40 and a heating temperature of 250 ◦C were used. The
melting characteristics of HITEC salt and solar salt were verified with different scanning calorimeter
(DSC) tests, and the DSC results of the salts seeded with nanoparticles also proved that the liquid
dissolution method did not change the composition of the salts [37,38].
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Figure 1. Synthesis of nanocomposite with liquid dissolution method. A HITEC salt/nanoparticle
nanocomposite was synthesized under the heating temperature of 200 ◦C, while a solar
salt/nanoparticle nanocomposite was heated at 250 ◦C.

2.2. Characterization of Nanocomposites and Nanoparticles

The morphologies of the samples were characterized by SEM (Tabletop Microscope, Model
TM3030Plus, Hitachi High-Technology, Japan), while BSE (Backscattered Electrons) and EDX (Energy
Dispersive X-ray Spectrometer) mode were used. In the present study, the distributions of the
nanoparticle sizes were measured with a Malvern Nanosizer (Malvern Instruments Limited, Malvern,
UK), which was based on dynamic light scatting (DLS) method according to the hydrodynamic
diameter of nanoparticles. The method of the preparation of nanofluids was the same as that of Award
et al. [39], Al2O3 nanopowder and graphene were dispersed in distilled water with a concentration
of about 0.1%, then the nanofluids without any surfactant for stability were sonicated for about 2 h.
The number of nanoparticles of each diameter were determined subsequently after the measurements.
The modal distribution named intensity of nanoparticles were obtained as the measurements were
repeated three times for each sample.

2.3. Measurement of Viscosity

The measurements of viscosity were conducted with an Anton Paar viscometer (Physica Modular
Compact Rheometer (MCR) 502, Anton Paar, St Albans, UK), which was fitted with a convection oven
and a temperature controller (TC30). The temperature controller can stabilize the sample temperature
from 0 ◦C to 1000 ◦C with an accuracy of 0.1 ◦C. The chamber selected was a convection temperature
device (CTD1000) assembly, and the measuring shaft was with parallel plate (PP35). Both PT100 sensor
and heater cable were included in the measuring system. In addition, two removable connectors
for air/nitrogen supply were mounted on the side surfaces of the chamber, and air hoses with the
diameter of 6 mm were used to supply air or gas. An MCR 502 with PP35 is suitable for high viscous
samples and samples with small particles and can conduct the measurements with high shear rate
range, where temperature equilibration can be quickly obtained. However, different shear rates within
the gap and sample drying effects are the disadvantages of this parallel plate system.

The parallel plate rheometer of two parallel disks was employed in the measurements, as shown
in Figure 2a,b. The stainless-steel disk had a diameter of 35.0 mm and no angle, and the concentric
cylinder partnered was about 40.0 mm. Once the parallel plate was fitted, the motor was warmed up
for a period of about 1 h at 17,000 s–1 prior to any measurement been made. Then the motor adjustment
and calibration were carried out to ensure the following measurements and yield reliable data. Once
the motor had been stabilized, the shaft was moved into its measuring position of 1.0 mm and the
experiment was started.
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(a) (b) (c) 

 

Parallel plate 

Figure 2. Rheometer used in the measurement. (a) MCR 502, (b) geometry of the rheometer, parallel
plate, (c) schematic of loaded sample.

All experiments were conducted under a shear-rate-controlled mode. A small and similar amount
(2.0 g) of sample size was placed between the parallel disks, where the controlled amount was required
so as not to alter the contact area, as shown in Figure 2c. The excess sample was removed at a trim
position when the shaft was moved into its measuring position. Furthermore, it was indispensable to
ensure the cleanliness of both geometries before and after each measurement. The measurements for
the samples were conducted under various shear rates between 1 s−1 and 250 s−1, and the setting loop
was 30 points with natural logarithm decrease in shear rate. The measuring temperatures were 200 ◦C,
250 ◦C, 300 ◦C, 350 ◦C, 400 ◦C and 450 ◦C for HITEC salt and its nanocomposites, 250 ◦C, 300 ◦C,
350 ◦C, 400 ◦C, 450 ◦C and 500 ◦C for solar salt and its nanocomposites, which are listed in Table 1.

Table 1. Viscosity measurements of salts and nanocomposites in the present study.

Material Type Nanoparticle (Al2O3 Nanopowder, Graphene) Temperature (◦C)

HITEC salt 0% 1 wt.% 2 wt.% 200, 250, 300, 350, 400, 450
solar salt 0% 1 wt.% 2 wt.% 250, 300, 350, 400, 450, 500

3. Results and Discussion

3.1. Characterization of Nanocomposites

Figure 3 shows the SEM pictures of the nanocomposites. It can be seen from Figure 3a,b that Al2O3

nanopowder can generate structural interaction with salt molecules, as it is difficult to distinguish the
nanoparticle from salt. The rugged surface is caused by the shrinkage of salt during freezing, due to
the density difference of salt in solid and liquid states. The salt is generally compatible with graphene,
while several graphene are agglomerated on the surface of the samples, as shown in Figure 3c,d.
The good combination and dispersion are of great importance as only a small amount was used in
the measurements.
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Figure 3. SEM images of nanocomposites. (a) HITEC salt/2 wt.% Al2O3 nanopowder, (b) solar
salt/2 wt.% Al2O3 nanopowder, (c) HITEC salt/2 wt.% graphene, (d) solar salt/2 wt.% graphene.

3.2. Rheological Behaviour of Pure Salt

In the present study, the rheological behaviours of HITEC salt and solar salt at both high and
low shear rates were measured. The viscosities and shear stresses against the shear rates of 25 s−1 to
250 s−1 are shown in Figure 4a,b. It can be seen that the viscosities are almost constant with various
shear rates, while the viscosities slightly increase when the shear rate exceeds 100 s−1 due to the
uncertainty of the measurements caused by the residual force. The shear stresses and shear rates are
almost linear dependent, which proves the Newtonian behaviour of HITEC salt. Figure 4c,d show the
viscosities and shear stresses against the shear rates below 25 s−1. Large fluctuation can be found both
for the viscosities and shear stresses, and the Newtonian behaviour is not obvious in the period due to
low torque resolution, where the same phenomenon can be seen in the literature [27,28]. Thus, the
values below 25 s−1 were discarded, and only the shear rates between 25 s−1 and 250 s−1 were taken
into account in the following discussion.
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Figure 4. Viscosities and shear stresses against different shear rates for HITEC salt. (a) viscosity (25 s−1

to 100 s−1), (b) shear stress (25 s−1 to 100 s−1), (c) viscosity (1 s−1 to 25 s−1), (d) shear stress (1 s−1 to
25 s−1).

The viscosities and shear stresses for solar salt against the shear rates of 25 s−1 to 250 s−1 are
shown in Figure 5a,b. Similarly, the viscosities are almost constant with various shear rates, while
the viscosities slightly increase when the shear rate exceeds 100 s−1 due to the same reason of the
residual force. The shear stresses and shear rates are almost linear dependent, which also proves
the Newtonian behaviour of solar salt. Figure 5c,d show the viscosities and shear stresses against
the shear rates below 25 s−1. The fluctuation is better than those of HITEC salt but still exist for
various viscosities and shear stresses, and the Newtonian behaviour is not completely provable. The
whole characteristics are the same as the nanofluids studied by Munoz-Sanchez et al. [28], where the
viscosities were nearly constant at shear rates of 100~250 s−1 both with coaxial cylinder rheometer and
parallel plate rheometer. Thus, being the same as HITEC salt, only the shear rates between 25 s−1 and
250 s−1 were taken into account in the following discussion. The reduction of the fluctuation can be
attributed to the binary melting characteristics of solar salt, which will be described subsequently.
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Figure 5. Viscosities and shear stresses against different shear rates for solar salt. (a) viscosity (25 s−1

to 100 s−1), (b) shear stress (25 s−1 to 100 s−1), (c) viscosity (1 s−1 to 25 s−1), (d) shear stress (1 s−1 to
25 s−1).

Comparison with Literature Correlations

Table 2 lists all the correlations obtained from the literature, which are for the viscosities of HITEC
salt and solar salt varying with temperatures. The present results of the viscosities were compared with
the correlations in Table 2, as shown in Figure 6a,b. The curves in Figure 6 based on the correlations
from the literature [25,27,40–48] were obtained from seven temperature points, including the minimum
and maximum temperatures of the temperature range in Table 2, five temperature points among the
range. It can be seen that the viscosities in the present study are larger than those in the literature to
some extent, especially under the low temperature. The discrepancy can be attributed to the following
reason. On one hand, the salts used in the present study might slightly differ from those in the
literature, such as purity and amount. On the other hand, PP35 as flat parallel plate used in the
measurements caused residual force during the rotation. As a result, it increased the uncertainty of the
measurements and induced the deviation. The same discrepancy was reported in the experimental
investigations of Munoz-Sanchez et al. [28], and their results were also much higher than those from
the literature, due to the amount of solid particles in the salt.
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Table 2. Viscosities of salts varying with temperatures by fitting the following literature correlations
[25,27,40–48].

Material
Type Fitting Curves Measure Methods Temperature Range Reference

HITEC salt

µ = T−2.104 × 105.7374 Rotating method 150~500 ◦C [40]

µ = 1.149 · exp
[
−810.896/(T + 273) + 7.806 × 105/(T + 273)2

] Rotational coaxial
cylinder method 147~422 ◦C [25]

µ = 67.57 × 10−3 · exp[2247.11/(T + 273)] Ostwald rheometer 182~507 ◦C [41]

µ = 0.5631 · exp
[
−146.9794(T + 273)−1 + 57.4265 × 104(T + 273)−2

] Oscillating
rheometer 184~482 ◦C [42]

µ = 0.75484 · exp[6418/R(T + 273)]
Oscillation cup

method 250~450 ◦C [43]

µ = 1000 · exp(−4.343−2.0143 ln T − 5.011)
Oscillation cup

method 247~500 ◦C [44]

solar salt

µ = 79786 · (T + 273)−1.773 Rotational coaxial
cylinder method 250~550 ◦C [27]

µ = 5.103 · exp
[
−2.575 × 103/(T + 273) + 1.305 × 106/(T + 273)2

] Rotational coaxial
cylinder method

(commercial)
243~447 ◦C [25]

µ = 2.551 · exp
[
−1.65 × 103/(T + 273) + 1.022 × 106/(T + 273)2

] Rotational coaxial
cylinder method 233~440 ◦C [25]

µ = exp[2210/(T + 273)− 2.48]
Rheometric ARES

rheometer 222~547 ◦C [45]

µ = 22.174 − 0.12 · T + 2.281 × 10−4 · T2 − 1.474 × 10−7 · T3 Oscillation cup
method 275~600 ◦C [46,47]

µ = 0.4384 · exp
[
−9.2163/(T + 273) + 6.52 × 105/(T + 273)2

] Oscillating sphere
method 250~450 ◦C [48]
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Figure 6. Comparison of present experimental results of viscosities with experimental data reported in
the literature [25,27,40–48]. (a) HITEC salt; (b) solar salt.

3.3. Rheological Behaviour of Nanocomposite

3.3.1. Size of Nanoparticles

The sizes of Al2O3 nanopowder and graphene were measured with the DLS method in the present
study. Figure 7 shows the size distributions of the two nanofluids. The tests were repeated, and the
average sizes of Al2O3 nanopowder and graphene were about 222.6 nm and 356.4 nm, respectively. It
can be seen that the size of Al2O3 nanopowder was significantly larger than the parameter from the
manufacturer, which was about 40~80 nm. The possible reason for the larger nanoparticle size is that
the nanoparticles would suffer from agglomeration as no surfactant was used to stabilize the nanofluid.
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Figure 7. Sizes for different nanoparticles with DLS device. (a) Al2O3 nanopowder nanofluid;
(b) graphene nanofluid.

3.3.2. Viscosity of Nanocomposites

Figure 8 shows the viscosities of the HITEC salt nanocomposites against different shear rates,
where both Al2O3 nanopowder and graphene were included. The viscosities of the salt seeded with
Al2O3 nanopowder were generally constant at different shear rates in the range between 25 s−1 and
250 s−1, and the viscosities decreased with the increase of temperatures regularly, as shown in Figure 8a.
However, the viscosities slightly increased with the increase of shear rates when the shear rates were
larger than 100 s−1. The variation is attributed to the following reasons. On one hand, the shear
rates might affect the interactions among nanoparticles, inducing the agglomeration. On the other
hand, the uncertainty of the device may cause the deviation of the results, as the concentration of
Al2O3 nanopowder larger than those in the literature [27] affects the flow of liquid salt significantly.
Furthermore, the viscosities of the nanocomposites with the addition of 2 wt.% Al2O3 nanopowder
were generally larger than those with 1 wt.% Al2O3 nanopowder no matter what the shear rate was,
especially at high temperature.
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Figure 8. Viscosities of nanocomposites against different shear rates. (a) HITEC salt seeded with Al2O3

nanopowder, (b) HITEC salt seeded with graphene. The addition of Al2O3 nanopowder and graphene
is with mass weight percentage.

The rheological behaviour of HITEC salt seeded with graphene was different from the
nanocomposite seeded with Al2O3 nanopowder to some extent, as shown in Figure 8b. The viscosities
slightly decreased with the increase of shear rates, and the fluctuation was obvious especially at the
temperatures of 400 ◦C and 450 ◦C. The possible reason is that graphene with a slice structure might
be separated at higher shear rate, which decreases the viscosity accordingly. The viscosities decrease
with the increase of the temperature regularly when the temperature is higher than 350 ◦C, but it is
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irregular when the temperature is under 350 ◦C, i.e., the largest viscosity of HITEC salt seeded with
graphene happens at 300~350 ◦C with the addition of 2 wt.% graphene. The phenomenon can be
attributed to the following reasons: On one hand, the measurement includes great uncertainty at low
temperature as slice graphene greatly affects the flow of liquid salt. On the other hand, the addition of
graphene into HITEC salt slightly induces the non-Newtonian behaviours of the nanocomposites, and
the ternary melting characteristics of HITEC salt might be slightly changed with graphene. Similarly,
the viscosities of the nanocomposites with the addition of 2 wt.% graphene are generally larger than
those with 1 wt.% graphene.

Figure 9 shows the viscosities of the solar salt nanocomposites against different shear rates, where
both Al2O3 nanopowder and graphene are also included. Comparing Figure 8a with Figure 9a, it
is found that the viscosities of solar salt seeded with Al2O3 nanopowder were generally constant at
different shear rates similarly, and the viscosities slightly increased with the increase of shear rates
when the shear rates were larger than 100 s−1. The possible reasons should be similar to those of
HITEC salt, including the agglomeration of nanoparticles and the uncertainty of the measurement.
Figure 9b shows that the rheological behaviours of solar salt seeded with graphene were different
from those of HITEC salt seeded with graphene shown in Figure 8b. The plateau region in the curve
represents that the viscosities of solar salt seeded with graphene were generally constant at different
shear rates, which indicates that the binary melting characteristics of solar salt can be kept well. No
matter which nanoparticle it is, the viscosities of the nanocomposites decreased with the increase of
temperatures regularly.
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Figure 9. Viscosities of nanocomposites against different shear rates. (a) solar salt seeded with Al2O3

nanopowder, (b) solar salt seeded with graphene. The addition of Al2O3 nanopowder and graphene is
with mass weight percentage.

Figure 10 and Table 3 present the comparisons of the viscosities of the salts and nanocomposites,
both for HITEC salt and solar salt. Because the formation of a vortex structure near the surface of the
nanoparticle promotes a rotational movement [26], the addition of nanoparticles into the salts lead
to an increase in viscosity. The increase is noticeable at low temperature below 400 ◦C, but that is
unobvious at high temperature of 400~500 ◦C for solar salt. The possible reason is that the Brownian
motion of nanoparticles may be enhanced at high temperature.
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Figure 10. Viscosities of salt and nanocomposites against different temperatures. (a) HITEC salt and its
nanocomposites, (b) solar salt and its nanocomposites.

Table 3. Average dynamic viscosities of salts and nanocomposites in the present study.

Material Type Viscosities (mPa·s)

200 ◦C 250 ◦C 300 ◦C 350 ◦C 400 ◦C 450 ◦C 500 ◦C

HITEC salt 19.41 14.08 7.80 5.90 5.30 4.97 -
HITEC salt/1 wt.% Al2O3 nanopowder 18.67 9.09 5.48 5.68 5.08 4.32 -
HITEC salt/2 wt.% Al2O3 nanopowder 18.22 10.01 6.73 5.44 5.74 4.84 -

HITEC salt/1 wt.% Graphene 20.12 21.00 21.39 56.37 42.35 30.62 -
HITEC salt/2 wt.% Graphene 34.36 46.82 66.41 64.18 33.32 32.30 -

solar salt - 11.46 7.69 6.13 5.33 4.60 3.42
solar salt/1 wt.% Al2O3 nanopowder - 14.43 9.05 6.36 5.57 5.13 4.50
solar salt/2 wt.% Al2O3 nanopowder - 19.26 9.87 6.22 5.46 4.47 3.11

solar salt/1 wt.% Graphene - 21.38 15.88 6.26 4.06 4.24 3.96
solar salt/2 wt.% Graphene - 17.25 26.76 16.98 7.41 4.75 3.60

It can be seen from Figure 10 and Table 3 that the addition of Al2O3 nanopowder leads to
slight changes in the viscosities of pure salt, e.g., the viscosities can be changed with the range of
−35.4~8.1% for the HITEC salt nanocomposites and with the range of −9.2~68.1% for the solar salt
nanocomposites. The decrease of viscosities was mainly due to the uncertainty of the measurement.
Similarly, the addition of 0.1 wt.% copper oxide into solar salt led to an increase of 4.7~18.3% in
viscosity with the temperature range of 250~450 ◦C, as shown in the literature [27]. While in the
research of Munoz-Sanchez et al. [28], the refined grade solar salt (RSS) nanofluid containing 1.5 wt.%
alumina nanoparticles had a variation of −14.71~0.63% in viscosity with the temperature range of
300~400 ◦C. On the contrary, the RSS nanofluid containing 1.5 wt.% Silica nanoparticles had an increase
of 3.49~21.75% in viscosity with the temperature range of 300~400 ◦C.

In a preliminary DSC tests, no obvious change of heat flow was found from the melting phase
change temperature to 500 ◦C, indicating that there was no chemical reaction between graphene and
salt. But the addition of graphene leads to a remarkable increase of viscosities, e.g., the addition of
2 wt.% graphene into HITEC salt causes an increase of 77.0%, 232.5%, 751.4%, 987.3%, 528.2% and
550.2% for 200 ◦C, 250 ◦C, 300 ◦C, 350 ◦C, 400 ◦C and 450 ◦C, respectively, while the addition of
2 wt.% graphene into solar salt causes an increase of 50.5%, 247.9%, 176.8%, 39.1%, 3.2% and 5.1% for
250 ◦C, 300 ◦C, 350 ◦C, 400 ◦C, 450 ◦C and 500 ◦C, respectively. The difference can be attributed to
different sizes and shapes of the nanoparticles. It was found that the average size of graphene was
larger than that of Al2O3 nanopowder, as mentioned previously in Section 3.3.1. The larger size of the
nanoparticle would restrict the flow of liquid salt and increase the viscosity correspondingly. Besides
the difference of the nanoparticle size, the different structural characteristics between graphene and
Al2O3 nanopowder shown in the literature [37,38] also affect the viscosity of the nanocomposites. In
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accordance with Figures 8b and 9b, the large increment in viscosity indicates that HITEC salt seeded
with graphene shows non-Newtonian behaviour slightly.

In all, the viscosity of the salt worked as the HTF in a CSP system is related to the pump power in
the plant, the addition of the nanoparticles induce large viscosities and are likely to raise the cost of
the pump power. The suitable ratio of addition of nanoparticles into the PCMs should be considered
in the real applications although nanocomposites are with good thermo-physical properties.

4. Conclusions

In the present study, HITEC salt and solar salt were used as pure materials, and the
nanocomposites were synthesized with the salt and 1 wt. % or 2 wt.% Al2O3 nanopowder and
graphene by liquid dissolution method. The evolutions of the viscosities of HITEC salt and its
nanocomposites in the temperature ranges from 200 ◦C to 450 ◦C, solar salt and its nanocomposites
in the temperature ranges from 250 ◦C to 500 ◦C were measured with the rheometer and analysed
subsequently. The following conclusions can be drawn:

(1) The viscosities of pure HITEC salt and solar salt regularly decrease with the increase of
temperatures and demonstrate the Newtonian behaviour at different temperature ranges. The
present results show reasonable agreement with the calculation results from the literature
correlations to some extent, while the deviation was mainly caused by parallel plate and purity
of salt.

(2) Both Al2O3 nanopowder and graphene are compatible with molten salt and can generate
structural interaction with salt molecules. Agglomeration of graphene happens on the surface of
the salts seeded with graphene. A better method to synthetize the nanocomposites seeded with
graphene should be investigated in the future.

(3) The viscosities of all the nanocomposites show temperature dependence. The addition of Al2O3

nanopowder into the salt has relatively little effect on the viscosity of the salt, e.g., the viscosities
vary with the range of −35.4~8.1% for the HITEC salt nanocomposites and with the range of
−9.2~68.1% for the solar salt nanocomposites. Whereas graphene leads to a remarkable increase
in viscosities, especially at low temperature below 400 ◦C, which should be due to the larger size
and different structural characteristics of graphene.

(4) Experimental results reveal that the addition of graphene into HITEC salt induces the
non-Newtonian behaviours of the nanocomposites, and the ternary melting characteristics of
HITEC salt might be changed with graphene. While solar salt seeded with graphene shows
Newtonian behaviour at different shear rates and temperatures, indicating that the binary melting
characteristics of solar salt can be kept well.

Because graphene can provide a positive effect on the issue of corrosion in addition to the
improvement of thermo-physical properties, it is important to investigate the system performance of
the salts seeded with graphene. A systematic test rig to study the flow and heat transfer characteristics
of salts seeded with graphene working as HTFs is essential, so as to promote the utilization of the
nanocomposites in the real applications.
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Nomenclature

T temperature, ◦C
R ideal gas constant, J/(K·mol)
Greek letters
µ dynamic viscosity, mPa·s
Acronyms
BSE backscattered electrons
CSP concentrated solar power
CTD convection temperature device
DLS dynamic light scatting
EDX energy dispersive X-ray spectrometer
HTF heat transfer fluid
MWCNT multi-walled carbon nanotubes
PP parallel plate
SEM scanning electron microscope
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