Extended Calibration of Charge Mode Accelerometers to Improve the Accuracy of Energy Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Parametric Identification of the Accelerometer Mathematical Model
4. Extended Calibration of the Charge Mode Accelerometer
5. Results of Extended Calibration
6. Conclusions
- –
- Analysis of other dynamic error criteria;
- –
- Analysis of additional limitations regarding the simulation signal exciting the accelerometer;
- –
- Testing of other types of accelerometers, e.g., eddy current accelerometer.
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, T.; You, D.; Gao, H.; Lian, P.; Ma, W.; Zhou, X.; Wang, C.; Luo, J.; Zhang, H.; Tan, H. Research Status and Development Trend of Piezoelectric Accelerometer. Crystals 2023, 13, 1363. [Google Scholar] [CrossRef]
- Correa, J.C.; Guzman, A.A. Mechanical Vibration and Condition Monitoring; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128203903. [Google Scholar]
- Romanssini, M.; Aguirre, P.C.; Compassi-Severo, L.; Girard, A.G. A Review on Vibration Monitoring Techniques for Predictive Maintenance of Rotating Machinery. Eng 2023, 4, 1797–1817. [Google Scholar] [CrossRef]
- Falekas, G.; Karlis, A. Digital Twin in Electrical Machine Control and Predictive Maintenance: State-of-the-Art and Future Prospects. Energies 2021, 14, 5933. [Google Scholar] [CrossRef]
- Chiena, F.; Huang, L.; Zhao, W. The Influence of Sustainable Energy Demands on Energy Efficiency: Evidence from China. J. Innov. Knowl. 2023, 8, 100298. [Google Scholar] [CrossRef]
- Kaygusuz, K. Energy Efficiency and Renewable Energy Sources for Industrial Sector. Energy Convers. Manag. 2021, 213–238. [Google Scholar] [CrossRef]
- Smolarz, A.; Lezhniuk, P.; Kudrya, S.; Komar, V.; Lysiak, V.; Hunko, I.; Amirgaliyeva, S.; Smailova, S.; Orazbekov, Z. Increasing Technical Efficiency of Renewable Energy Sources in Power Systems. Energies 2023, 16, 2828. [Google Scholar] [CrossRef]
- Lu, C.; Lyu, J.; Zhang, L.; Gong, A.; Fan, Y.; Yan, J.; Li, X. Nuclear Power Plants with Artificial Intelligence in Industry 4.0 Era: Top-Level Design and Current Applications—A Systemic Review. IEEE Access 2020, 8, 194315–194332. [Google Scholar] [CrossRef]
- Jung, D.; Shin, J.; Lee, C.; Kwon, K.; Seo, J.T. Cyber Security Controls in Nuclear Power Plant by Technical Assessment Methodology. IEEE Access 2023, 11, 15229–15241. [Google Scholar] [CrossRef]
- Zhang, D.; Jing, J.; Qin, L.; Liu, J.; Li, M.; Liu, J. Analytical Mathematical Model of Piezoelectric 6-D Accelerometer About Amplitude–Frequency Characteristics. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Acar, C.; Shkel, A.M. Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers. J. Micromech. Microeng. 2003, 13, 633–645. [Google Scholar] [CrossRef]
- Zhang, T.; Xia, R.; Zhao, J.; Wu, J.; Fu, S.; Chen, Y.; Sun, Y. Low-Coherence Measurement Methods for Industrial Parts with Large Surface Reflectance Variations. IEEE Trans. Instrum. Meas. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Diamond, D.H.; Heyns, P.S.; Oberholster, A.J. Accuracy Evaluation of Sub-pixel Structural Vibration Measurements through Optical Flow Analysis of a Video Sequence. Measurement 2017, 95, 166–172. [Google Scholar] [CrossRef]
- Layer, E.; Gawedzki, W. Theoretical Principles for Dynamic Errors Measurement. Measurement 1990, 8, 45–48. [Google Scholar] [CrossRef]
- Layer, E.; Tomczyk, K. Signal Transforms in Dynamic Measurements; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-319-13209-9. [Google Scholar]
- Tomczyk, K.; Ostrowska, K. Procedure for the Extended Calibration of Temperature Sensors. Measurement 2022, 196, 111239. [Google Scholar] [CrossRef]
- Link, A.; Täbner, A.; Wabinski, W.; Bruns, T.; Elster, C. Modelling Accelerometers for Transient Signals Using Calibration Measurement upon Sinusoidal Excitation. Measurement 2007, 40, 928–935. [Google Scholar] [CrossRef]
- Austerlitz, H. Data Acquisition Techniques Using PCs; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar] [CrossRef]
- Kehtarnavaz, N.; Kim, N. Digital Signal Processing System-Level Design Using LabVIEW; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 9780080477244. [Google Scholar]
- Xia, H.; Chen, F. Filtering-Based Parameter Identification Methods for Multivariable Stochastic Systems. Mathematics 2020, 8, 2254. [Google Scholar] [CrossRef]
- Tomczyk, K. Problems in Modelling of Charge Output Accelerometers. Metrol. Meas. Syst. 2016, 23, 645–659. [Google Scholar] [CrossRef]
- Xu, P. Improving the Weighted Least Squares Estimation of Parameters in Errors-In-Variables Models. J. Frankl. Inst. 2019, 356, 8785–8802. [Google Scholar] [CrossRef]
- Kantar, Y.M. Estimating Variances in Weighted Least-Squares Estimation of Distributional Parameters. Math. Comput. Appl. 2016, 21, 7. [Google Scholar] [CrossRef]
- Rutland, N.K. The Principle of Matching: Practical Conditions for Systems with Inputs Restricted in Magnitude and Rate of Change. IEEE Trans. Autom. Control. 1994, 39, 550–553. [Google Scholar] [CrossRef]
- Uppal, A.A.; Azam, M.R.; Iqbal, J. Sliding Mode Control in Dynamic Systems. Electronics 2023, 12, 2970. [Google Scholar] [CrossRef]
- Franses, P.H. A Note on the Mean Absolute Scaled Error. Int. J. Forecast. 2016, 32, 20–22. [Google Scholar] [CrossRef]
- Martincorena-Arraiza, M.; De La Cruz-Blas, C.A.; Lopez-Martin, A.; Carlosena, A. Micropower Class AB Low-Pass Analog Filter Based on the Super-Source Follower. IEEE Trans. Circuits Syst. II Express Br. 2022, 69, 3684–3688. [Google Scholar] [CrossRef]
- Simancas-García, J.; Meléndez-Pertuz, F.; Vélez-Zapata, J. Analog Filtering in Instrumentation Using Posicast. IEEE Lat. Am. Trans. 2019, 17, 280–287. [Google Scholar] [CrossRef]
- Data Sheet for 357b21 Accelerometer. Available online: https://www.pcb.com/products?m=357b21 (accessed on 25 September 2023).
- Honig, M.L.; Steiglitz, K. Maximizing the Output Energy of a Linear Channel with a Time and Amplitude Limited Input. IEEE T. Inform. Theory 1992, 38, 1041–1052. [Google Scholar] [CrossRef]
- Sun, B.; Liu, H.; Zhou, S.; Li, W. Evaluating the Performance of Polynomial Regression Method with Different Parameters during Color Characterization. Math. Probl. Eng. 2014, 2014, 418651. [Google Scholar] [CrossRef]
- Tomczyk, K. Application of Genetic Algorithm to Measurement System Calibration Intended for Dynamic Measurement. Metrol. Meas. Syst. 2006, 13, 93–103. [Google Scholar]
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
15 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
[pC/g] | 32.07 | 32.07 | 32.06 | 32.05 | 32.06 | 32.03 | 31.98 | 31.92 | 31.85 | 31.80 |
No. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
125 | 150 | 175 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | |
[pC/g] | 31.71 | 31.69 | 31.65 | 31.63 | 31.50 | 31.45 | 31.40 | 31.39 | 31.34 | 31.33 |
No. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
900 | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | |
[pC/g] | 31.32 | 31.31 | 31.67 | 32.35 | 32.69 | 33.16 | 34.14 | 35.49 | 37.25 | 38.61 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
15 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
[deg.] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.1 | −0.1 | −0.1 | −0.1 | −0.1 |
No. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
125 | 150 | 175 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | |
[deg.] | −0.1 | −0.1 | −0.1 | −0.1 | −0.1 | −0.1 | −0.1 | −0.2 | −0.2 | −0.2 |
No. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
900 | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | |
[deg.] | −0.3 | −0.3 | −0.4 | −0.6 | −0.7 | −1.1 | −2.0 | −2.8 | −4.2 | −5.8 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
15 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
3.174 | 3.174 | 3.173 | 3.172 | 3.173 | 3.170 | 3.165 | 3.159 | 3.152 | 3.147 | |
No. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
125 | 150 | 175 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | |
3.138 | 3.136 | 3.132 | 3.130 | 3.117 | 3.112 | 3.107 | 3.106 | 3.101 | 3.101 | |
No. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
900 | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | |
3.100 | 3.099 | 3.134 | 3.201 | 3.235 | 3.282 | 3.379 | 3.512 | 3.686 | 3.821 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczyk, K. Extended Calibration of Charge Mode Accelerometers to Improve the Accuracy of Energy Systems. Energies 2023, 16, 7619. https://doi.org/10.3390/en16227619
Tomczyk K. Extended Calibration of Charge Mode Accelerometers to Improve the Accuracy of Energy Systems. Energies. 2023; 16(22):7619. https://doi.org/10.3390/en16227619
Chicago/Turabian StyleTomczyk, Krzysztof. 2023. "Extended Calibration of Charge Mode Accelerometers to Improve the Accuracy of Energy Systems" Energies 16, no. 22: 7619. https://doi.org/10.3390/en16227619
APA StyleTomczyk, K. (2023). Extended Calibration of Charge Mode Accelerometers to Improve the Accuracy of Energy Systems. Energies, 16(22), 7619. https://doi.org/10.3390/en16227619