Extended Calibration of Charge Mode Accelerometers to Improve the Accuracy of Energy Systems
Abstract
1. Introduction
2. Materials and Methods
3. Parametric Identification of the Accelerometer Mathematical Model
4. Extended Calibration of the Charge Mode Accelerometer
5. Results of Extended Calibration
6. Conclusions
- –
- Analysis of other dynamic error criteria;
- –
- Analysis of additional limitations regarding the simulation signal exciting the accelerometer;
- –
- Testing of other types of accelerometers, e.g., eddy current accelerometer.
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, T.; You, D.; Gao, H.; Lian, P.; Ma, W.; Zhou, X.; Wang, C.; Luo, J.; Zhang, H.; Tan, H. Research Status and Development Trend of Piezoelectric Accelerometer. Crystals 2023, 13, 1363. [Google Scholar] [CrossRef]
- Correa, J.C.; Guzman, A.A. Mechanical Vibration and Condition Monitoring; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128203903. [Google Scholar]
- Romanssini, M.; Aguirre, P.C.; Compassi-Severo, L.; Girard, A.G. A Review on Vibration Monitoring Techniques for Predictive Maintenance of Rotating Machinery. Eng 2023, 4, 1797–1817. [Google Scholar] [CrossRef]
- Falekas, G.; Karlis, A. Digital Twin in Electrical Machine Control and Predictive Maintenance: State-of-the-Art and Future Prospects. Energies 2021, 14, 5933. [Google Scholar] [CrossRef]
- Chiena, F.; Huang, L.; Zhao, W. The Influence of Sustainable Energy Demands on Energy Efficiency: Evidence from China. J. Innov. Knowl. 2023, 8, 100298. [Google Scholar] [CrossRef]
- Kaygusuz, K. Energy Efficiency and Renewable Energy Sources for Industrial Sector. Energy Convers. Manag. 2021, 213–238. [Google Scholar] [CrossRef]
- Smolarz, A.; Lezhniuk, P.; Kudrya, S.; Komar, V.; Lysiak, V.; Hunko, I.; Amirgaliyeva, S.; Smailova, S.; Orazbekov, Z. Increasing Technical Efficiency of Renewable Energy Sources in Power Systems. Energies 2023, 16, 2828. [Google Scholar] [CrossRef]
- Lu, C.; Lyu, J.; Zhang, L.; Gong, A.; Fan, Y.; Yan, J.; Li, X. Nuclear Power Plants with Artificial Intelligence in Industry 4.0 Era: Top-Level Design and Current Applications—A Systemic Review. IEEE Access 2020, 8, 194315–194332. [Google Scholar] [CrossRef]
- Jung, D.; Shin, J.; Lee, C.; Kwon, K.; Seo, J.T. Cyber Security Controls in Nuclear Power Plant by Technical Assessment Methodology. IEEE Access 2023, 11, 15229–15241. [Google Scholar] [CrossRef]
- Zhang, D.; Jing, J.; Qin, L.; Liu, J.; Li, M.; Liu, J. Analytical Mathematical Model of Piezoelectric 6-D Accelerometer About Amplitude–Frequency Characteristics. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Acar, C.; Shkel, A.M. Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers. J. Micromech. Microeng. 2003, 13, 633–645. [Google Scholar] [CrossRef]
- Zhang, T.; Xia, R.; Zhao, J.; Wu, J.; Fu, S.; Chen, Y.; Sun, Y. Low-Coherence Measurement Methods for Industrial Parts with Large Surface Reflectance Variations. IEEE Trans. Instrum. Meas. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Diamond, D.H.; Heyns, P.S.; Oberholster, A.J. Accuracy Evaluation of Sub-pixel Structural Vibration Measurements through Optical Flow Analysis of a Video Sequence. Measurement 2017, 95, 166–172. [Google Scholar] [CrossRef]
- Layer, E.; Gawedzki, W. Theoretical Principles for Dynamic Errors Measurement. Measurement 1990, 8, 45–48. [Google Scholar] [CrossRef]
- Layer, E.; Tomczyk, K. Signal Transforms in Dynamic Measurements; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-319-13209-9. [Google Scholar]
- Tomczyk, K.; Ostrowska, K. Procedure for the Extended Calibration of Temperature Sensors. Measurement 2022, 196, 111239. [Google Scholar] [CrossRef]
- Link, A.; Täbner, A.; Wabinski, W.; Bruns, T.; Elster, C. Modelling Accelerometers for Transient Signals Using Calibration Measurement upon Sinusoidal Excitation. Measurement 2007, 40, 928–935. [Google Scholar] [CrossRef]
- Austerlitz, H. Data Acquisition Techniques Using PCs; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar] [CrossRef]
- Kehtarnavaz, N.; Kim, N. Digital Signal Processing System-Level Design Using LabVIEW; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 9780080477244. [Google Scholar]
- Xia, H.; Chen, F. Filtering-Based Parameter Identification Methods for Multivariable Stochastic Systems. Mathematics 2020, 8, 2254. [Google Scholar] [CrossRef]
- Tomczyk, K. Problems in Modelling of Charge Output Accelerometers. Metrol. Meas. Syst. 2016, 23, 645–659. [Google Scholar] [CrossRef]
- Xu, P. Improving the Weighted Least Squares Estimation of Parameters in Errors-In-Variables Models. J. Frankl. Inst. 2019, 356, 8785–8802. [Google Scholar] [CrossRef]
- Kantar, Y.M. Estimating Variances in Weighted Least-Squares Estimation of Distributional Parameters. Math. Comput. Appl. 2016, 21, 7. [Google Scholar] [CrossRef]
- Rutland, N.K. The Principle of Matching: Practical Conditions for Systems with Inputs Restricted in Magnitude and Rate of Change. IEEE Trans. Autom. Control. 1994, 39, 550–553. [Google Scholar] [CrossRef]
- Uppal, A.A.; Azam, M.R.; Iqbal, J. Sliding Mode Control in Dynamic Systems. Electronics 2023, 12, 2970. [Google Scholar] [CrossRef]
- Franses, P.H. A Note on the Mean Absolute Scaled Error. Int. J. Forecast. 2016, 32, 20–22. [Google Scholar] [CrossRef]
- Martincorena-Arraiza, M.; De La Cruz-Blas, C.A.; Lopez-Martin, A.; Carlosena, A. Micropower Class AB Low-Pass Analog Filter Based on the Super-Source Follower. IEEE Trans. Circuits Syst. II Express Br. 2022, 69, 3684–3688. [Google Scholar] [CrossRef]
- Simancas-García, J.; Meléndez-Pertuz, F.; Vélez-Zapata, J. Analog Filtering in Instrumentation Using Posicast. IEEE Lat. Am. Trans. 2019, 17, 280–287. [Google Scholar] [CrossRef]
- Data Sheet for 357b21 Accelerometer. Available online: https://www.pcb.com/products?m=357b21 (accessed on 25 September 2023).
- Honig, M.L.; Steiglitz, K. Maximizing the Output Energy of a Linear Channel with a Time and Amplitude Limited Input. IEEE T. Inform. Theory 1992, 38, 1041–1052. [Google Scholar] [CrossRef][Green Version]
- Sun, B.; Liu, H.; Zhou, S.; Li, W. Evaluating the Performance of Polynomial Regression Method with Different Parameters during Color Characterization. Math. Probl. Eng. 2014, 2014, 418651. [Google Scholar] [CrossRef]
- Tomczyk, K. Application of Genetic Algorithm to Measurement System Calibration Intended for Dynamic Measurement. Metrol. Meas. Syst. 2006, 13, 93–103. [Google Scholar]
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
15 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
[pC/g] | 32.07 | 32.07 | 32.06 | 32.05 | 32.06 | 32.03 | 31.98 | 31.92 | 31.85 | 31.80 |
No. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
125 | 150 | 175 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | |
[pC/g] | 31.71 | 31.69 | 31.65 | 31.63 | 31.50 | 31.45 | 31.40 | 31.39 | 31.34 | 31.33 |
No. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
900 | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | |
[pC/g] | 31.32 | 31.31 | 31.67 | 32.35 | 32.69 | 33.16 | 34.14 | 35.49 | 37.25 | 38.61 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
15 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
[deg.] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.1 | −0.1 | −0.1 | −0.1 | −0.1 |
No. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
125 | 150 | 175 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | |
[deg.] | −0.1 | −0.1 | −0.1 | −0.1 | −0.1 | −0.1 | −0.1 | −0.2 | −0.2 | −0.2 |
No. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
900 | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | |
[deg.] | −0.3 | −0.3 | −0.4 | −0.6 | −0.7 | −1.1 | −2.0 | −2.8 | −4.2 | −5.8 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
15 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
3.174 | 3.174 | 3.173 | 3.172 | 3.173 | 3.170 | 3.165 | 3.159 | 3.152 | 3.147 | |
No. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
125 | 150 | 175 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | |
3.138 | 3.136 | 3.132 | 3.130 | 3.117 | 3.112 | 3.107 | 3.106 | 3.101 | 3.101 | |
No. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
900 | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | |
3.100 | 3.099 | 3.134 | 3.201 | 3.235 | 3.282 | 3.379 | 3.512 | 3.686 | 3.821 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczyk, K. Extended Calibration of Charge Mode Accelerometers to Improve the Accuracy of Energy Systems. Energies 2023, 16, 7619. https://doi.org/10.3390/en16227619
Tomczyk K. Extended Calibration of Charge Mode Accelerometers to Improve the Accuracy of Energy Systems. Energies. 2023; 16(22):7619. https://doi.org/10.3390/en16227619
Chicago/Turabian StyleTomczyk, Krzysztof. 2023. "Extended Calibration of Charge Mode Accelerometers to Improve the Accuracy of Energy Systems" Energies 16, no. 22: 7619. https://doi.org/10.3390/en16227619
APA StyleTomczyk, K. (2023). Extended Calibration of Charge Mode Accelerometers to Improve the Accuracy of Energy Systems. Energies, 16(22), 7619. https://doi.org/10.3390/en16227619