The Approach to Finding Locations for Wind Farms Using GIS and MCDA: Case Study Based on Podlaskie Voivodeship, Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- Surface forms of nature protection in Poland managed by the General Directorate for Environmental Protection (GDOŚ) [46];
- The land cover classification gridded map managed by the European Space Agency and Copernicus Services (the Earth observation component of the European Union’s space programme) [47];
- The land cover table used for the land cover classification gridded map [48];
- Maps of mean wind speed and power density of air at 100 m managed by Global Wind Atlas [51];
- Locations of currently built wind farms in the region from OpenStreetMap [52].
2.2. Methods
- A set of options from which the best one is chosen;
- A set of decision criteria;
- The set of weights assigned to the decision criteria;
- A decision matrix containing the values obtained by the variants in light of each criterion.
2.2.1. The AHP Method
- The principle of “constructing a hierarchy”;
- The “prioritisation” principle;
- The principle of “logical” consistency [60].
- The construction of a hierarchical model, including decomposition into components and determining the hierarchy of criteria.
- A pairwise comparison evaluation involves creating quadratic matrices for each hierarchy level. These matrices, known as preference matrices, exhibit pairwise consistency (1):
- When (i) = (j), then = 1 is assumed;
- When (i) ≠ (j), then = 1/ is taken;
- When there is no evaluation, then = is taken.
- 3.
- Global and local preferences are determined by the components of the eigenvector (w) of the comparison matrix, P, which is associated with the maximum eigenvalue, . The determination of preferences from the pairwise comparison matrix is performed by various methods, including the following:
- The column averaging method of the evaluation matrix (the so-called Saaty method);
- The power method;
- The right-hand eigenmatrix method.
- 4.
- Verify the rating consistency from pairwise comparisons and calculate the consistency index (CI) to assess the quality of subjective assessments (3). The (CI) determines transitivity in dominance assessment. The consistency ratio (CR) is then computed by dividing the (CI) by the (RI) value (4):
- 5.
- Decision options are classified by calculating the aggregate utility function value for each option, resulting in a final ranking.
2.2.2. The Borda Method
2.2.3. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
- Create a decision matrix with alternatives and criteria. It is an m x n matrix, where m is the alternatives and n is the criteria, showing each alternative’s performance on specific criteria.
- Normalise the decision matrix to equalise criteria weights. This step eliminates scale differences between criteria. Normalise each element using Equation (8), as specified:
- 3.
- Determine the weighted normalised decision matrix by assigning weights to criteria based on their relative importance (summing up to 1). Multiply each element of the normalised decision matrix by its corresponding weight to obtain the weighted normalised decision matrix (9):
- 4.
- Calculate the ideal and negative–Ideal solutions to represent the best and worst performances on each criterion. Identify the maximum and minimum values among all alternatives for each criterion. Ideal solution (10):
- 5.
- Calculate the Euclidean distances between each alternative and the ideal and negative–ideal solutions. This measures the similarity between an alternative and the ideal or negative–ideal solutions. Ideal solution (12):
- 6.
- Calculate the relative closeness to the ideal solution by finding the ratio of the Euclidean distance from the negative–ideal solution to the sum of the distances from both the ideal and negative–ideal solutions for each alternative (14):
- 7.
- Rank the alternatives based on their relative closeness values. The alternative with the highest relative closeness is considered the best choice.
3. Results
3.1. Area of Potential Investments
3.2. Mathematical Modelling
3.2.1. AHP Method Results
3.2.2. Borda Method Results
3.2.3. TOPSIS Method Results
3.3. Spatial Analysis
- Roughness class from 1 to 2;
- Slope from 0° to 3°;
- Power grid with 200 m buffer;
- Roads with 100 m buffer;
- Mean wind speed from 7 to 8 m/s;
- Power density of air from 450 to 500 W/m2.
4. Discussion
5. Conclusions
- The selected area, constituting approximately 0.16% of the region, offers significant opportunities for international and Polish investors and renewable energy developers. These opportunities align with the current market strategies and may result in the establishment of new wind farms or individual wind turbines.
- By adding 32.50 km2 of selected areas, the power capacity could increase by 62%, reaching 131.5 MW. Additionally, adding 21.53 km2 of selected areas in three districts could increase the power capacity by 41%, amounting to 87.2 MW. These estimates are based on averaged data and may be improved in future assessments.
- The study used Geographic Information Systems (GIS) and multicriteria decision analysis (MCDA) methods to comprehensively assess criteria such as wind resource potential, land availability, environmental restrictions, and grid integration for wind farm site selection.
- The Analytic Hierarchy Process (AHP) is the most commonly used wind farm site selection method due to its simplicity and effectiveness in structuring mathematical models. The Borda method is mentioned as providing impartial comparisons of criteria. The TOPSIS method, in combination with other methods, like AHP, is highlighted as effective for complex analyses.
- The article suggests that combining various methods, such as AHP, TOPSIS, Borda, VIKOR, ANP, DEMATEL, ELECTRE, and PROMETHEE, can enhance the accuracy of mathematical modelling and geospatial analysis.
- Accurate spatial data sources, such as the BDOT10k database, digital elevation models, nature protection databases, and flood risk maps, are crucial for making informed decisions in wind farm site selection.
- Seasonal wind variability is acknowledged as a critical factor in wind farm construction, and future research will focus on analysing it on a smaller scale.
- Large companies’ investment planning departments consider wind turbine cost, wind speed, and wind stability to evaluate wind farm economic efficiency.
- Wind turbines with varying specifications are highlighted to reduce greenhouse gas emissions compared to traditional coal plants, contributing to sustainable energy sources.
- Strategic site selection based on rigorous analysis and stakeholder engagement is crucial for successful wind park development, especially when considering the increasing demand for clean energy.
- Sensitivity analysis results for the AHP method indicate stability, with Variant 6 consistently being the best option. However, other variants are sensitive, and choosing an option better than Variant 6 may lead to non-compliance with Polish regulations for wind farm construction.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaurasiya, P.K.; Patidar, H.; Shende, V.; Rajak, U.; Verma, T.N.; Dwivedi, G. Evaluation of the Reduction in Greenhouse Gas Emissions Attributable to Wind Energy: A Retrospective Evaluation of Indian Offshore and Coastal Site. Ocean Eng. 2023, 281, 114665. [Google Scholar] [CrossRef]
- EU Wind Installations up by a Third Despite Challenging Year for Supply Chain. Available online: https://windeurope.org/newsroom/press-releases/eu-wind-installations-up-by-a-third-despite-challenging-year-for-supply-chain/ (accessed on 18 July 2023).
- Wind Industry Predicts Bounceback and Rapid Growth in 2023. Available online: https://www.nbcnews.com/science/environment/wind-industry-predicts-bounceback-rapid-growth-2023-rcna76795 (accessed on 18 July 2023).
- More Than 38,000 Offshore Wind Turbines Are to Be Installed by 2036. Available online: https://www.linkedin.com/pulse/more-than-38000-offshore-wind-turbines-installed-2036 (accessed on 18 July 2023).
- Azizi, A.; Malekmohammadi, B.; Jafari, H.R.; Nasiri, H.; Amini Parsa, V. Land Suitability Assessment for Wind Power Plant Site Selection Using ANP-DEMATEL in a GIS Environment: Case Study of Ardabil Province, Iran. Environ. Monit. Assess. 2014, 186, 6695–6709. [Google Scholar] [CrossRef]
- Resak, M.; Rogosz, B.; Szczepiński, J.; Dziamara, M. Legal Conditions for Investments in Renewable Energy in the Overburden Disposal Areas in Poland. Sustainability 2022, 14, 1065. [Google Scholar] [CrossRef]
- Baban, S.M.J.; Parry, T. Developing and Applying a GIS-Assisted Approach to Locating Wind Farms in the UK. Renew. Energy 2001, 24, 59–71. [Google Scholar] [CrossRef]
- Sotiropoulou, K.F.; Vavatsikos, A.P. Onshore Wind Farms GIS-Assisted Suitability Analysis Using PROMETHEE II. Energy Policy 2021, 158, 112531. [Google Scholar] [CrossRef]
- Nitsch, F.; Turkovska, O.; Schmidt, J. Observation-Based Estimates of Land Availability for Wind Power: A Case Study for Czechia. Energy Sustain. Soc. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Katsaprakakis, D. Al A Review of the Environmental and Human Impacts from Wind Parks. A Case Study for the Prefecture of Lasithi, Crete. Renew. Sustain. Energy Rev. 2012, 16, 2850–2863. [Google Scholar] [CrossRef]
- Witkowska-Dabrowska, M.; Świdyńska, N.; Świdyńska, S.; Napiórkowska-Baryła, A.; Zakeri, B.; Marks-Bielska, R. Attitudes of Communities in Rural Areas towards the Development of Wind Energy. Energies 2021, 14, 8052. [Google Scholar] [CrossRef]
- Horzela, I.; Gromadzki, S.; Gryz, J.; Kownacki, T.; Nowakowska-Krystman, A.; Piotrowska-Trybull, M.; Wisniewski, R. Energy Portfolio of the Eastern Poland Macroregion in the European Union. Energies 2021, 14, 8426. [Google Scholar] [CrossRef]
- Szurek, M.; Blachowski, J.; Nowacka, A. GIS-Based Method for Wind Farm Location Multi-Criteria Analysis. Min. Sci. 2014, 21, 65–81. [Google Scholar] [CrossRef]
- Sliz-Szkliniarz, B.; Vogt, J. GIS-Based Approach for the Evaluation of Wind Energy Potential: A Case Study for the Kujawsko–Pomorskie Voivodeship. Renew. Sustain. Energy Rev. 2011, 15, 1696–1707. [Google Scholar] [CrossRef]
- Łaska, G. Wind Energy and Multicriteria Analysis in Making Decisions on the Location of Wind Farms: A Case Study in the North-Eastern of Poland. In Modeling, Simulation and Optimization of Wind Farms and Hybrid Systems; Maalawi, K., Ed.; IntechOpen: London, UK, 2020; pp. 1–18. [Google Scholar]
- Santos-Alamillos, F.J.; Pozo-Vázquez, D.; Ruiz-Arias, J.A.; Lara-Fanego, V.; Tovar-Pescador, J. A Methodology for Evaluating the Spatial Variability of Wind Energy Resources: Application to Assess the Potential Contribution of Wind Energy to Baseload Power. Renew. Energy 2014, 69, 147–156. [Google Scholar] [CrossRef]
- Li, M.; Xu, Y.; Guo, J.; Li, Y.; Li, W. Application of a GIS-Based Fuzzy Multi-Criteria Evaluation Approach for Wind Farm Site Selection in China. Energies 2020, 13, 2426. [Google Scholar] [CrossRef]
- Konstantinos, I.; Georgios, T.; Garyfalos, A. A Decision Support System Methodology for Selecting Wind Farm Installation Locations Using AHP and TOPSIS: Case Study in Eastern Macedonia and Thrace Region, Greece. Energy Policy 2019, 132, 232–246. [Google Scholar] [CrossRef]
- Standar, A.; Kozera, A.; Satoła, Ł. The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland. Energies 2021, 14, 450. [Google Scholar] [CrossRef]
- Wind Turbines as an Opportunity for Polish Local Communities. Available online: https://trendywenergetyce.pl/en/wind-turbines-as-an-opportunity-for-polish-local-communities (accessed on 18 July 2023).
- Ligus, M. Evaluation of Economic, Social and Environmental Effects of Low-Emission Energy Technologies Development in Poland: A Multi-Criteria Analysis with Application of a Fuzzy Analytic Hierarchy Process (FAHP). Energies 2017, 10, 1550. [Google Scholar] [CrossRef]
- Badora, K. Farmy Wiatrowe Jako Elementy Determinujące Strukturę i Funkcjonowanie Krajobrazu Wiejskiego. Archit. Krajobrazu 2013, 2, 58–77. [Google Scholar]
- Nõ Lvak, H.; Truu, J.; Limane, B.; Truu, M.; Cepurnieks, G.; Bartkevičs, V.; Juhanson, J.; Muter, O. Visual Impact Assessment of Wind Turbines and Their Farms on Landscape of Kretinga Region (Lithuania) and Grobina Townscape (Latvia). J. Environ. Eng. Landsc. Manag. 2015, 23, 39–49. [Google Scholar] [CrossRef]
- Jensen, C.U.; Panduro, T.E.; Lundhede, T.H.; Sofie, A.; Nielsen, E.; Dalsgaard, M.; Thorsen, B.J. The Impact of On-Shore and Off-Shore Wind Turbine Farms on Property Prices. Energy Policy 2018, 116, 50–59. [Google Scholar] [CrossRef]
- Vyn, R.J.; Mccullough, R.M. The Effects of Wind Turbines on Property Values in Ontario: Does Public Perception Match Empirical Evidence? Can. J. Agric. Econ./Rev. Can. d’Agroeconomie 2014, 62, 365–392. [Google Scholar] [CrossRef]
- Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej z Dnia 1 Grudnia 2022 r. w Sprawie Ogłoszenia Jednolitego Tekstu Ustawy—Prawo Ochrony Środowiska. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20220002556 (accessed on 9 August 2023).
- Wolniewicz, K.; Zagubień, A.; Wesołowski, M. Energy and Acoustic Environmental Effective Approach for a Wind Farm Location. Energies 2021, 14, 7290. [Google Scholar] [CrossRef]
- Ruggiero, A.; Quartieri, J.; Guarnaccia, C.; Hloch, S. Noise Pollution Analysis of Wind Turbines in Rural Areas. Int. J. Environ. Res. 2015, 9, 1277–1286. [Google Scholar] [CrossRef]
- Po Drugiej Stronie Ustawy Odległościowej. Available online: https://www.teraz-srodowisko.pl/aktualnosci/po-drugiej-stronie-ustawy-odleglosciowej-13555.html#ntrack=c3BlY2lhbGV8NjM%3D[MzY0NDA0] (accessed on 21 June 2023).
- Najwięksi Inwestorzy w Energetyce Wiatrowej w Polsce. Available online: https://cleanerenergy.pl/2022/02/14/najwieksi-inwestorzy-w-energetyce-wiatrowej-w-polsce-liderem-jest-grupa-pge/ (accessed on 21 June 2023).
- Sprawozdania—BIP—Urząd Regulacji Energetyki. Available online: https://bip.ure.gov.pl/bip/o-urzedzie/zadania-prezesa-ure/sprawozdania/800,Sprawozdania.html (accessed on 21 June 2023).
- Moc Zainstalowana Farm Wiatrowych w Polsce. Available online: https://www.rynekelektryczny.pl/moc-zainstalowana-farm-wiatrowych-w-polsce/ (accessed on 21 June 2023).
- Ustawa z Dnia 9 Marca 2023, r. o Zmianie Ustawy o Inwestycjach w Zakresie Elektrowni Wiatrowych Oraz Niektórych Innych Ustaw. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20230000553 (accessed on 19 July 2023).
- Poland Onshore Wind Energy 10H Distance Rule Liberalized. Available online: https://www.trade.gov/market-intelligence/poland-onshore-wind-energy-10h-distance-rule-liberalized (accessed on 21 June 2023).
- Nowe Odległości Farm Wiatrowych Od Domów—Ustawa Wiatrakowa Obowiązuje. Available online: https://www.muratorplus.pl/biznes/prawo/nowe-odleglosci-farm-wiatrowych-od-domow-ustawa-wiatrakowa-obowiazuje-aa-3pnA-gW7q-uxk4.html (accessed on 27 June 2023).
- Gao, C.K.; Na, H.M.; Song, K.H.; Dyer, N.; Tian, F.; Xu, Q.J.; Xing, Y.H. Environmental Impact Analysis of Power Generation from Biomass and Wind Farms in Different Locations. Renew. Sustain. Energy Rev. 2019, 102, 307–317. [Google Scholar] [CrossRef]
- Dai, K.; Bergot, A.; Liang, C.; Xiang, W.N.; Huang, Z. Environmental Issues Associated with Wind Energy—A Review. Renew. Energy 2015, 75, 911–921. [Google Scholar] [CrossRef]
- Shaahid, S.M.; Al-Hadhrami, L.M.; Rahman, M.K. Economic Feasibility of Development of Wind Power Plants in Coastal Locations of Saudi Arabia—A Review. Renew. Sustain. Energy Rev. 2013, 19, 589–597. [Google Scholar] [CrossRef]
- Enevoldsen, P.; Sovacool, B.K. Examining the Social Acceptance of Wind Energy: Practical Guidelines for Onshore Wind Project Development in France. Renew. Sustain. Energy Rev. 2016, 53, 178–184. [Google Scholar] [CrossRef]
- Wind Power’s Explosive Growth Is Blowing Past Green Energy Goals. Available online: https://reasonstobecheerful.world/texas-wind-power-renewables-future/ (accessed on 15 September 2023).
- Baza Danych Obiektów Topograficznych-BDOT10k. Available online: https://dane.gov.pl/pl/dataset/2030,dane-obiektow-topograficznych-o-szczegolowosci-zap (accessed on 28 June 2023).
- Topographic Objects Database (BDOT10k). Available online: https://www.geoportal.gov.pl/dane/baza-danych-obiektow-topograficznych-bdot (accessed on 28 June 2023).
- Geoportal.Gov.Pl. Available online: https://mapy.geoportal.gov.pl/imap/Imgp_2.html (accessed on 28 June 2023).
- Numeryczny Model Terenu o Interwale Siatki Co Najmniej 100 m. Available online: https://dane.gov.pl/pl/dataset/792,numeryczny-model-terenu-o-interwale-siatki-co-najmniej-100-m (accessed on 28 June 2023).
- Digital Elevation Model (DEM). Available online: https://www.geoportal.gov.pl/dane/numeryczny-model-terenu (accessed on 28 June 2023).
- Dostęp Do Danych Geoprzestrzennych—Generalna Dyrekcja Ochrony Środowiska. Available online: https://www.gov.pl/web/gdos/dostep-do-danych-geoprzestrzennych (accessed on 28 June 2023).
- ESA/CCI Viewer. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download.php (accessed on 29 June 2023).
- Floors, R.; Badger, M.; Troen, I.; Grogan, K.; Permien, F.H. Satellite-Based Estimation of Roughness Lengths and Displacement Heights for Wind Resource Modelling. Wind Energy Sci. 2021, 6, 1379–1400. [Google Scholar] [CrossRef]
- INSPIRE. Available online: https://isok.gov.pl/inspire.html (accessed on 28 June 2023).
- METEOIMGW-PIB. Available online: https://meteo.imgw.pl/ (accessed on 28 June 2023).
- Global Wind Atlas. Available online: https://globalwindatlas.info/en/ (accessed on 1 July 2023).
- Poland Wind Power Plants. Available online: https://openinframap.org/stats/area/Poland/plants?source=wind (accessed on 29 June 2023).
- Kobryń, A. Wielokryterialne Wspomaganie Decyzji w Gospodarowaniu Przestrzenią; Difin: Warszawa, Poland, 2014; ISBN 9788379304691. [Google Scholar]
- Findeisen, W.; Szymanowski, J. Teoria i Metody Obliczeniowe Optymalizacji, 2nd ed.; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1980. [Google Scholar]
- Lindfors, A. Developing a Multi-Criteria Method for Sustainability Assessment of Socio-Technical Systems. Ph.D. Thesis, Linköping University, Linköping, Sweden, 2022. [Google Scholar]
- Calixto Figueiroa, A.; de Souza de Lima, A.; Eymael Garcia Scherer, M.; Bonetti, J. How to Choose the Best Category for a Protected Area? A Multicriteria Analysis Method Based on Ecosystem Services Conservation. Environ. Monit. Assess. 2020, 192, 1–14. [Google Scholar] [CrossRef]
- Marques, M.; Reynolds, K.M.; Marto, M.; Lakicevic, M.; Caldas, C.; Murphy, P.J.; Borges, J.G. Multicriteria Decision Analysis and Group Decision-Making to Select Stand-Level Forest Management Models and Support Landscape-Level Collaborative Planning. Forests 2021, 12, 399. [Google Scholar] [CrossRef]
- Trzaskalik, T. Multiple Criteria Decision Making ’05; The Karol Adamiecki University of Economics: Katowice, Poland, 2006; ISBN 8372468435. [Google Scholar]
- Goodwin, P.; Wright, G. Analiza Decyzji; Wydawnictwo Nieoczywiste: Siedliska, Poland, 2016; ISBN 9788363391065. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process; International Series in Operations Research & Management Science; Springer: Boston, MA, USA, 2001; Volume 34, ISBN 978-1-4613-5667-7. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; Golden, B.L., Wasil, E.A., Harker, P.T., Eds.; Springer: Berlin/Heidelberg, Germany, 1989; ISBN 978-3-642-50246-0. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980; Volume 9, ISBN 9780070543713. [Google Scholar]
- Erdamar, B.; Luis Garcia-Lapresta, J.; Pérez-Roman, D. Measuring Consensus in a Preference-Approval Context. Inf. Fusion 2012, 17, 2012–2023. [Google Scholar] [CrossRef]
- Bouyssou, D.; Marchant, T.; Pirlot, M.; Tsoukiàs, A.; Vincke, P. Evaluation and Decision Models with Multiple Criteria, 1st ed.; Springer: New York, NY, USA, 2006; Volume 86. [Google Scholar]
- Zimmermann, H.-J.; Gutsche, L. Einführung in Die Allgemeine Entscheidungs-Theorie. In Heidelberger Lehrtexte Wirtschaftswissenschaften; Springer: Berlin, Germany, 1991; pp. 2–10. [Google Scholar]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making, 1st ed.; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin, Germany, 1981; Volume 186, ISBN 978-3-540-10558-9. [Google Scholar]
- Hwang, C.L.; Lai, Y.J.; Liu, T.Y. A New Approach for Multiple Objective Decision Making. Comput. Oper. Res. 1993, 20, 889–899. [Google Scholar] [CrossRef]
- Rozporządzenie Rady Ministrów z Dnia 13 Stycznia 2017 r. w Sprawie Szczegółowego Przebiegu Linii Podstawowej, Zewnętrznej Granicy Morza Terytorialnego Oraz Zewnętrznej Granicy Strefy Przyległej Rzeczypospolitej Polskiej. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170000183 (accessed on 9 August 2023).
- Powierzchnia i Ludność w Przekroju Terytorialnym w 2022 Roku. Available online: https://stat.gov.pl/obszary-tematyczne/ludnosc/ludnosc/powierzchnia-i-ludnosc-w-przekroju-terytorialnym-w-2022-roku,7,19.html (accessed on 21 June 2023).
- Ludność. Stan i Struktura Ludności Oraz Ruch Naturalny w Przekroju Terytorialnym. Available online: https://stat.gov.pl/obszary-tematyczne/ludnosc/ludnosc/ludnosc-stan-i-struktura-ludnosci-oraz-ruch-naturalny-w-przekroju-terytorialnym-stan-w-dniu-31-grudnia,6,34.html (accessed on 21 June 2023).
- Lista Województw w Polsce (Spis Województw, Mapa Województw, Liczba Ludności, Powierzchnia, Stopa Urbanizacji). Available online: https://www.polskawliczbach.pl/Wojewodztwa (accessed on 23 June 2023).
- Amsharuk, A.; Łaska, G. A Review: Existing Methods for Solving Spatial Planning Problems for Wind Turbines in Poland. Energies 2022, 15, 8957. [Google Scholar] [CrossRef]
- CRFOP. Available online: https://crfop.gdos.gov.pl/CRFOP/search.jsf (accessed on 9 August 2023).
- Díaz, H.; Soares, C.G. A Multi-Criteria Approach to Evaluate Floating Offshore Wind Farms Siting in the Canary Islands (Spain). Energies 2021, 14, 865. [Google Scholar] [CrossRef]
- Lozano-Minguez, E.; Kolios, A.J.; Brennan, F.P. Multi-Criteria Assessment of Offshore Wind Turbine Support Structures. Renew. Energy 2011, 36, 2831–2837. [Google Scholar] [CrossRef]
- Watróbski, J.; Ziemba, P.; Jankowski, J.; Ziolo, M. Green Energy for a Green City-A Multi-Perspective Model Approach. Sustainability 2016, 8, 702. [Google Scholar] [CrossRef]
- Aras, H.; Erdoǧmuş, Ş.; Koç, E. Multi-Criteria Selection for a Wind Observation Station Location Using Analytic Hierarchy Process. Renew. Energy 2004, 29, 1383–1392. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Kechagia, K. A GIS-Based Multi-Criteria Evaluation for Wind Farm Site Selection. A Regional Scale Application in Greece. Renew. Energy 2015, 78, 550–560. [Google Scholar] [CrossRef]
- Łaska, G. Wind Energy and Multi-Criteria Analysis in Making Decisions on the Location of Wind Farms. Procedia Eng. 2017, 182, 418–424. [Google Scholar] [CrossRef]
- Ławniczak, R.; Kubiak, J. Geometric Accuracy of Topographical Objects at Polish Topographic Maps. Geod. Cartogr. 2016, 65, 55–66. [Google Scholar] [CrossRef]
- Mierzwiak, M.; Calka, B. Multi-Criteria Analysis for Solar Farm Location Suitability. Rep. Geod. Geoinform. 2017, 104, 20–32. [Google Scholar] [CrossRef]
- Kozłowska, A. Floodplain Delineation Based on Analysis of Digital Elevation Model, Soil Maps and Occurrence of Quaternary Formations. Arch. Fotogrametrii Kartografii Teledetekcji 2019, 31, 29–47. [Google Scholar] [CrossRef]
- Murcia, J.P.; Koivisto, M.J.; Luzia, G.; Olsen, B.T.; Hahmann, A.N.; Sørensen, P.E.; Als, M. Validation of European-Scale Simulated Wind Speed and Wind Generation Time Series. Appl. Energy 2022, 305, 117794. [Google Scholar] [CrossRef]
- Weber, J.; Wohland, J.; Reyers, M.; Moemken, J.; Hoppe, C.; Pinto, J.G.; Witthaut, D. Impact of Climate Change on Backup Energy and Storage Needs in Wind-Dominated Power Systems in Europe. PLoS ONE 2018, 13, 0201457. [Google Scholar] [CrossRef]
- Kuczyński, W.; Wolniewicz, K.; Charun, H. Analysis of the Wind Turbine Selection for the Given Wind Conditions. Energies 2021, 14, 7740. [Google Scholar] [CrossRef]
- Gnatowska, R.; Was, A. Wind Energy in Poland—Economic Analysis of Wind Farm. E3S Web Conf. 2017, 14, 01013. [Google Scholar] [CrossRef]
- Kuo, Y.-M.; Fukushima, Y. Photovoltaic and Wind Power Introduction Considering Interactions among Technologies in Taiwan. J. Air Waste Manag. Assoc. 2012, 59, 360–372. [Google Scholar] [CrossRef] [PubMed]
Name of the Category | Xcode | Class’s Name | Xcode | Description |
---|---|---|---|---|
Water network | SWRS | Rivers and springs | SWRS01 | Rivers |
SWRS02 | Springs | |||
SWKN | Channels | SWKN01 | Channels | |
SWRM | Drainage ditch | SWRM01 | Collective drainage ditch | |
OIMK | Wetland | OIMK01 | Swamp | |
OIMK02 | Wetland | |||
PTWP | Surface water | PTWP02 | Running water | |
PTWP03 | Standing water | |||
Urban area | PTZB | Buildings | PTZB01 | Multifamily housing |
PTZB02 | Single-family housing | |||
PTZB04 | Commercial and service buildings | |||
BUBD | Buildings | BUBD01 | Single-family housing | |
BUBD02 | Two-flat buildings | |||
BUBD03 | Buildings of three or more flats | |||
BUBD04 | Collective residence buildings | |||
BUBD05 | Hotels | |||
BUBD06 | Tourist accommodation buildings, others | |||
BUBD07 | offices | |||
BUBD08 | Commercial and service buildings | |||
Power grid | SULN | Overhead power lines | SULN01 | Extra-high-voltage power line |
SULN02 | High-voltage power line | |||
SULN03 | Medium-voltage power line | |||
Roads | SKDR | Type of road | SKDR02 | Expressway |
SKDR03 | Accelerated main road | |||
SKDR04 | Main road | |||
SKDR05 | Collector road | |||
SKDR06 | Local road | |||
SKDR07 | Access road | |||
SKDR08 | Other roads | |||
Forests | PTLZ | Forest | PTLZ01 | Forest |
Permanent crops | PTUT | Type of permanent crops | PTUT01 | Allotment garden |
PTUT02 | Plantation | |||
PTUT03 | Garden | |||
PTUT04 | forest nursery | |||
PTUT05 | plant nursery | |||
Land use complexes | KUSC | Sacral complex and cemetery | KUSC01 | cemetery |
KUSC02 | sacral or monastic complex | |||
KUZA | Historic and historical complexes | KUZA01 | national memorial | |
KUZA02 | museum | |||
KUZA03 | fortress or stronghold | |||
KUZA04 | Museum complex | |||
KUZA05 | Palace complex | |||
KUZA06 | Castle complex | |||
Territorial divisions | ADMS | City | ADMS01 | City |
ADMS02 | Part of city | |||
Land cover | PTWZ | Excavations and heaps | PTWZ01 | Open pit |
PTWZ02 | Heap |
Criteria | Variant 1 | Variant 2 | Variant 3 | Variant 4 | Variant 5 | Variant 6 |
---|---|---|---|---|---|---|
Protected nature areas, m | 1000 | 1000 | 1250 | 1500 | 1750 | 2000 |
Protected monuments of nature, m | 100 | 600 | 500 | 400 | 300 | 200 |
Distance from urban areas, m | 1000 | 900 | 800 | 700 | 700 | 700 |
Distance from power grid, m | 100 | 750 | 500 | 400 | 300 | 200 |
Distance from roads, m | 50 | 500 | 400 | 300 | 200 | 100 |
Distance from forests, m | 50 | 500 | 400 | 300 | 200 | 100 |
Distance from water network, m | 50 | 500 | 400 | 300 | 200 | 100 |
Slope, ° | 10 | 10 | 7.5–10 | 5–7.5 | 2.5–5 | 0–3 |
Roughness class | 3 | 3 | 3 | 2 | 2 | 2 |
Mean wind speed, m/s | 5 | 5 | 6 | 7 | 8 | 8 |
Power density of air, W/m2 | 200 | 300 | 350 | 400 | 450 | 500 |
Criteria | Weights | λ |
---|---|---|
Protected nature areas | 0.148 | 11.23 |
Protected monuments of nature | 0.026 | 11.25 |
Distance from urban areas | 0.148 | 11.23 |
Distance from power grid | 0.053 | 11.18 |
Distance from roads | 0.053 | 11.18 |
Distance from forests | 0.053 | 11.18 |
Distance from water network | 0.053 | 11.18 |
Slope | 0.066 | 11.18 |
Roughness class | 0.071 | 11.20 |
Mean wind speed | 0.149 | 11.26 |
Power density of air | 0.182 | 11.51 |
Variants | Variant 1 | Variant 2 | Variant 3 | Variant 4 | Variant 5 | Variant 6 |
---|---|---|---|---|---|---|
Final scores | 350.26 | 477.80 | 476.29 | 482.53 | 503.60 | 524.65 |
Rank | 6 | 5 | 4 | 3 | 2 | 1 |
Variants | Variant 1 | Variant 2 | Variant 3 | Variant 4 | Variant 5 | Variant 6 |
---|---|---|---|---|---|---|
The Borda number | 55 | 66 | 77 | 88 | 99 | 110 |
The weighted SAR summation index | 0.455 | 0.547 | 0.638 | 0.729 | 0.820 | 0.911 |
Variants | Variant 1 | Variant 2 | Variant 3 | Variant 4 | Variant 5 | Variant 6 |
---|---|---|---|---|---|---|
The distances from each variant to the ideal solutions, | 0.101 | 0.064 | 0.052 | 0.052 | 0.058 | 0.069 |
The distances from each variant to the non-ideal solutions, | 0.039 | 0.077 | 0.065 | 0.061 | 0.068 | 0.077 |
The relative closeness values, | 0.278 | 0.547 | 0.553 | 0.542 | 0.537 | 0.528 |
Rank | 6 | 2 | 1 | 3 | 4 | 5 |
GIS Layers | Buffer, m | Area, km2 | Share of All Areas, % |
---|---|---|---|
Protected nature areas with monuments of nature | |||
Monuments of nature | 200 | 3867 | 19.16 |
Ecological sites | 200 | ||
Reserves | 500 | ||
Landscape parks | 0 * | ||
National parks | 2000 | ||
Protected landscape areas | 200 | ||
Natural landscape complexes | 200 | ||
Documentation posts | 200 | ||
Natura 2000 (birds) | 2000 | ||
Natura 2000 (habitats) | 2000 | ||
Ecological corridors | |||
Ecological corridors | 0 * | 10,009 | 49.60 |
Forests | |||
Forest | 100 | 11,749 | 58.22 |
Water network | |||
Surface water | 100 | 5021 | 24.88 |
Rivers and streams | 100 | ||
Channels | 100 | ||
Collective drainage ditches | 100 | ||
Swamps and wetlands | 100 | ||
Flood hazard areas | 0 * | ||
Permanent crops | |||
Permanent crops | 25 | 136 | 0.67 |
Urban areas | |||
Buildings | 700 | 14,422 | 71.47 |
Power grid | |||
Power grid | 10 | 278 | 1.38 |
Roads | |||
Roads | 50 | 6296 | 31.20 |
Areas around already-built wind turbines | |||
Areas around wind turbines | 500 | 63.20 | 0.31 |
Total | 19,911 | 98.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amsharuk, A.; Łaska, G. The Approach to Finding Locations for Wind Farms Using GIS and MCDA: Case Study Based on Podlaskie Voivodeship, Poland. Energies 2023, 16, 7107. https://doi.org/10.3390/en16207107
Amsharuk A, Łaska G. The Approach to Finding Locations for Wind Farms Using GIS and MCDA: Case Study Based on Podlaskie Voivodeship, Poland. Energies. 2023; 16(20):7107. https://doi.org/10.3390/en16207107
Chicago/Turabian StyleAmsharuk, Artur, and Grażyna Łaska. 2023. "The Approach to Finding Locations for Wind Farms Using GIS and MCDA: Case Study Based on Podlaskie Voivodeship, Poland" Energies 16, no. 20: 7107. https://doi.org/10.3390/en16207107
APA StyleAmsharuk, A., & Łaska, G. (2023). The Approach to Finding Locations for Wind Farms Using GIS and MCDA: Case Study Based on Podlaskie Voivodeship, Poland. Energies, 16(20), 7107. https://doi.org/10.3390/en16207107