Improved Control Strategy for Zero-Crossing Distortion Elimination in Totem-Pole PFC Converter with Coupled Inductor
Abstract
:1. Introduction
2. Coupled-Inductor-Based Interleaving Totem-Pole PFC Converter
2.1. Working Principle
- The coupling of common mode can restrain the circulating current between phases to decrease the switching loss and conduction loss;
- Mutual inductance benefits the current balance, so no extra sampling and control circuits are needed;
- The close-coupled inductor and input AC filter inductor are made by different materials and integrated together, which can make full use of the magnetic cores to decrease the weight, volume, and loss of magnetic components.
- All switches are ideal;
- The equivalent input resistance of the inductors is r, inductance value L1 = L2 = L, output capacity is Co, load resistance is RL;
- The output filter capacitor is large enough to keep the output voltage stable;
- The converter works in CCM.
2.2. Current Ripple and Circulation Current
3. Zero-Crossing Distortion Inhibitory Strategy
3.1. Mechanism of Zero-Crossing Distortion
3.2. Improved Control Strategy
4. Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kazemtarghi, A.; Chandwani, A.; Ishraq, N.; Mallik, A. Active Compensation-based Harmonic Reduction Technique to Mitigate Power Quality Impacts of EV Charging Systems. IEEE Trans. Transp. Electrif. 2022. [Google Scholar] [CrossRef]
- Kim, Y.; Sung, W.; Lee, B. Comparative Performance Analysis of High Density and Efficiency PFC Topologies. IEEE Trans. Power Electron. 2014, 29, 2666–2679. [Google Scholar] [CrossRef]
- Neto, R.M.F.; Tofoli, F.L.; DeFreitas, L.C. A High-Power-Factor Half-Bridge Doubler Boost Converter Without Commutation Losses. IEEE Trans. Ind. Electron. 2005, 52, 1278–1285. [Google Scholar] [CrossRef]
- Kim, D.; Jeong, Y.; Lim, C.; Kang, B.; Moon, G. Bidirectional Bridgeless PFC with Reduced Input Current Distortion and Switching Loss Using Gate Skipping Technique. In Proceedings of the 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Busan, Korea, 1–4 June 2016; pp. 579–583. [Google Scholar]
- Huber, L.; Irving, B.T.; Jovanovic, M.M. Open-Loop Control Methods for Interleaved DCM/CCM Boundary Boost PFC Converters. IEEE Trans. Power Electron. 2008, 23, 1649–1657. [Google Scholar] [CrossRef]
- Wu, M.; Li, S.; Tan, S.; Hui, S.Y. Optimal Design of Integrated Magnetics for Differential Rectifiers and Inverters. IEEE Trans. Power Electron. 2018, 33, 4616–4626. [Google Scholar] [CrossRef]
- Barry, B.C.; Hayes, J.G.; Rylko, M.S.; Stala, R.; Penczek, A.; Mondzik, A.; Ryan, R.T. Small-Signal Model of the Two-Phase Interleaved Coupled-Inductor Boost Converter. IEEE Trans. Power Electron. 2018, 33, 8052–8064. [Google Scholar] [CrossRef]
- Khan, A.A.; Cha, H.; Kim, H. Magnetic Integration of Discrete-Coupled Inductors in Single-Phase Direct PWM AC–AC Converters. IEEE Trans. Power Electron. 2016, 31, 2129–2138. [Google Scholar] [CrossRef]
- Zhu, K.; O’Grady, M.; Dodge, J.; Bendel, J.; Hostetler, J.L. 1.5 kW single phase CCM totem-pole PFC using 650V SiC cascodes. In Proceedings of the 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Fayetteville, AR, USA, 7–9 November 2016. [Google Scholar]
- Amiri, P.; Eberle, W.; Gautam, D.; Botting, C. An Adaptive Method for DC Current Reduction in Totem Pole Power Factor Correction Converters. IEEE Trans. Power Electron. 2021, 36, 11900–11909. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Z.; Lee, F.C.; Li, Q. Digital-Based Interleaving Control for GaN-Based MHz CRM Totem-Pole PFC. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 808–814. [Google Scholar] [CrossRef]
- Park, M.; Baek, J.; Jeong, Y.; Moon, G. An Interleaved Totem-Pole Bridgeless Boost PFC Converter with Soft-Switching Capability Adopting Phase-Shifting Control. IEEE Trans. Power Electron. 2019, 34, 10610–10618. [Google Scholar] [CrossRef]
- Sun, J.; Gui, H.; Li, J.; Huang, X.; Strain, N.; Costinett, D.J.; Tolbert, L.M. Mitigation of Current Distortion for GaN-Based CRM Totem-Pole PFC Rectifier With ZVS Control. IEEE Open J. Power Electron. 2021, 2, 290–303. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Z.; Li, Q.; Lee, F.C. Microcontroller-Based MHz Totem-Pole PFC with Critical Mode Control. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–8. [Google Scholar]
- Liu, Z.; Lee, F.C.; Qiang, L.; Yang, Y. Design of GaN-Based MHz Totem-Pole PFC Rectifier. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 799–807. [Google Scholar] [CrossRef]
- Chen, T.; Cheng, H.; Wang, C.; Chen, W.; Zhao, Z. Open-Circuit Fault-Tolerant Design of the Cascaded H-Bridge Rectifier Incorporating Reactive Power Compensation. Electronics 2020, 9, 1490. [Google Scholar] [CrossRef]
- Marcos-Pastor, A.; Vidal-Idiarte, E.; Cid-Pastor, A.; Martinez-Salamero, L. Loss-Free Resistor-Based Power Factor Correction Using a Semi-Bridgeless Boost Rectifier in Sliding-Mode Control. IEEE Trans. Power Electron. 2015, 30, 5842–5853. [Google Scholar] [CrossRef] [Green Version]
- Fiorio, L.V.; Dezuo, T.; Novaes, Y. Switched Control Applied to a Totem-Pole Bridgeless Rectifier for Power Factor Correction. Electr. Eng. Syst. Sci. 2021, 1–6. [Google Scholar]
- Fischer, G.D.S.; Rech, C.; de Novaes, Y.R. Extensions of Leading-Edge Modulated One-Cycle Control for Totem-Pole Bridgeless Rectifiers. IEEE Trans. Power Electron. 2020, 35, 5447–5460. [Google Scholar] [CrossRef]
- Qiqi, L.I.; Liu, B.; Duan, S. Predictive Control Algorithm Considering the Soft Saturation Nature of the Inductors for Totem-pole PFC Converter. Proc. CSEE 2019, 39, 6365–6373. [Google Scholar]
- Fan, J.W.; Yeung, R.S.; Chung, H.S. Optimized Hybrid PWM Scheme for Mitigating Zero-Crossing Distortion in Totem-Pole Bridgeless PFC. IEEE Trans. Power Electron. 2019, 34, 928–942. [Google Scholar] [CrossRef]
Mode | ||
---|---|---|
M00 | ||
M01 | ||
M10 | ||
M11 |
vac Value | Mode | Δiac | Δi1 |
---|---|---|---|
<0.5vo | 00 | ||
01 | |||
00 | |||
10 | |||
=0.5vo | 01 | 0 | |
10 | 0 | ||
>0.5vo | 11 | ||
10 | |||
11 | |||
01 |
Component | Parameter | Value | Parameter | Value |
---|---|---|---|---|
Circuit | Vac | 220 V rms | Vo | 390 V DC |
Iac | 35 A rms | Po | 7.7 kW | |
fs | 50 kHz | Co | 3120 μF | |
AC Filter Inductor | Lac (0A) | 176 μH | Lac (49.5A) | 67.2 μH |
Core Type | High Flux 58083 | N1 | 33 | |
N2 | 33 | Wire | 0.1 × 300 | |
Couple Inductor | L2 | 698 μH | M | 697.5 μH |
Core Type | NCD LP9 PQ40/40 | N3 | 20 | |
N4 | 20 | Wire | 0.1 × 300 | |
Vac | 220 V rms | Vo | 390 V DC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, H.; Duan, S.; Li, Y.; Li, Q. Improved Control Strategy for Zero-Crossing Distortion Elimination in Totem-Pole PFC Converter with Coupled Inductor. Energies 2022, 15, 5437. https://doi.org/10.3390/en15155437
Fu H, Duan S, Li Y, Li Q. Improved Control Strategy for Zero-Crossing Distortion Elimination in Totem-Pole PFC Converter with Coupled Inductor. Energies. 2022; 15(15):5437. https://doi.org/10.3390/en15155437
Chicago/Turabian StyleFu, Han, Shanxu Duan, Yong Li, and Qiqi Li. 2022. "Improved Control Strategy for Zero-Crossing Distortion Elimination in Totem-Pole PFC Converter with Coupled Inductor" Energies 15, no. 15: 5437. https://doi.org/10.3390/en15155437
APA StyleFu, H., Duan, S., Li, Y., & Li, Q. (2022). Improved Control Strategy for Zero-Crossing Distortion Elimination in Totem-Pole PFC Converter with Coupled Inductor. Energies, 15(15), 5437. https://doi.org/10.3390/en15155437