The Convergence of Energy Use from Renewable Sources in the European Countries: Spatio-Temporal Approach
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Spatial Structure of the Processes
3.2. β-Convergence Approach
4. Data
5. Empirical Results
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable: | |||||||||
---|---|---|---|---|---|---|---|---|---|
Year | Trend | Trend | Trend | ||||||
W Matrix | D Matrix | W Matrix | D Matrix | W Matrix | D Matrix | ||||
1995 | 2 | −0.1897 | −0.2954 | 2 | −0.0196 | −0.0012 | - | −0.0167 | −0.3435 |
1996 | 2 | −0.1760 | −0.2807 | 2 | −0.0542 | −0.0137 | - | −0.0241 | −0.3699 |
1997 | 2 | −0.1934 | −0.3015 | 2 | −0.0962 | −0.0205 | - | −0.0783 | −0.3894 |
1998 | 2 | −0.2429 | −0.3109 | 2 | −0.1235 | −0.0001 | - | −0.0650 | −0.3960 |
1999 | 2 | −0.2080 | −0.2431 | 2 | −0.1409 | 0.0069 | 1 | −0.0937 | −0.3602 |
2000 | 2 | −0.2101 | −0.2650 | 2 | −0.1409 | −0.0028 | 1 | −0.0876 | −0.3600 |
2001 | 2 | −0.1465 | −0.2562 | 2 | −0.1657 | −0.0056 | 1 | −0.0915 | −0.3421 |
2002 | 2 | −0.1711 | −0.2072 | 2 | −0.1838 | −0.0200 | 1 | −0.1076 | −0.3204 |
2003 | 2 | −0.1989 | −0.2342 | 2 | −0.1994 | −0.0311 | 1 | −0.1245 | −0.3387 |
2004 | 2 | −0.1588 | −0.2337 | 2 | −0.2063 | −0.0457 | 1 | −0.1365 | −0.3365 |
2005 | 2 | −0.1358 | −0.2005 | 2 | −0.2120 | −0.0589 | 1 | −0.1575 | −0.3376 |
2006 | 2 | −0.1600 | −0.1596 | 2 | −0.2172 | −0.0556 | - | −0.1510 | −0.3120 |
2007 | 2 | −0.0990 | −0.1861 | 2 | −0.2166 | −0.0432 | - | −0.2103 | −0.3735 |
2008 | 2 | −0.0666 | −0.1458 | 2 | −0.2421 | −0.0470 | - | −0.2074 | −0.3668 |
2009 | 2 | −0.0263 | −0.0485 | 2 | −0.2348 | −0.0179 | - | −0.1794 | −0.3326 |
2010 | 2 | −0.0283 | −0.0213 | 2 | −0.2097 | −0.0461 | 1 | −0.1674 | −0.3544 |
2011 | 2 | −0.0127 | −0.0130 | 2 | −0.1661 | −0.0447 | - | −0.1709 | −0.3823 |
2012 | 2 | −0.0102 | −0.0394 | 2 | −0.1371 | −0.0537 | - | −0.1744 | −0.3754 |
2013 | 2 | −0.0512 | −0.0832 | 2 | −0.1205 | −0.0424 | 1 | −0.1723 | −0.3904 |
2014 | 2 | −0.0068 | −0.1257 | 2 | −0.1286 | −0.0112 | 1 | −0.1802 | −0.4046 |
2015 | 2 | −0.0741 | −0.0768 | 2 | −0.1429 | 0.0128 | - | −0.1783 | −0.3775 |
2016 | 2 | −0.0864 | −0.0714 | 2 | −0.1471 | 0.0165 | 1 | −0.1978 | −0.4039 |
2017 | 2 | −0.0322 | −0.0214 | 2 | −0.1719 | 0.0061 | - | −0.1865 | −0.4071 |
2018 | 2 | −0.0935 | −0.0570 | 2 | −0.1861 | 0.0092 | - | −0.1705 | −0.3549 |
2019 | 2 | −0.0680 | −0.0704 | 2 | −0.1896 | −0.0068 | - | −0.1188 | −0.2768 |
References
- Farhani, S.; Ben Rejeb, J. Link between economic growth and energy consumption in over 90 countries. Interdiscip. J. Contemp. Res. Bus. 2012, 3, 282–297. [Google Scholar]
- Kahouli, B. Does static and dynamic relationship between economic growth and energy consumption exist in OECD countries? Energy Rep. 2019, 5, 104–116. [Google Scholar] [CrossRef]
- Ouyang, Y.; Li, P. On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach. Energy Econ. 2018, 71, 238–252. [Google Scholar] [CrossRef]
- Shahbaz, M.; Shahzad, S.J.H.; Alam, S.; Apergis, N. Globalisation, economic growth and energy consumption in the BRICS region: The importance of asymmetries. J. Int. Trade Econ. Dev. 2018, 27, 985–1009. [Google Scholar] [CrossRef] [Green Version]
- Umurzakov, U.; Mirzaev, B.; Salahodjaev, R.; Isaeva, A.; Tosheva, S. Energy consumption and economic growth: Evidence from post-communist countries. Int. J. Energy Econ. Policy 2020, 10, 59–65. [Google Scholar] [CrossRef]
- Negro, S.O.; Alkemade, F.; Hekkert, M.P. Why does renewable energy diffuse so slowly? A review of innovation system problems. Renew. Sustain. Energy Rev. 2012, 16, 3836–3846. [Google Scholar] [CrossRef] [Green Version]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Bilgili, F.; Koçak, E.; Bulut, Ü. The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach. Renew. Sustain. Energy Rev. 2016, 54, 838–845. [Google Scholar] [CrossRef]
- Gill, A.R.; Viswanathan, K.K.; Hassan, S. A test of environmental Kuznets curve (EKC) for carbon emission and potential of renewable energy to reduce green house gases (GHG) in Malaysia. Environ. Dev. Sustain. 2018, 20, 1103–1114. [Google Scholar] [CrossRef]
- Jankiewicz, M.; Szulc, E. Analysis of Spatial Effects in the Relationship between CO2 Emissions and Renewable Energy Consumption in the Context of Economic Growth. Energies 2021, 14, 5829. [Google Scholar] [CrossRef]
- Jebli, M.B.; Youssef, S.B. The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia. Renew. Sustain. Energy Rev. 2015, 47, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.; Shahbaz, M.; Balsalobre, D. Exploring the relationship between energy usage segregation and environmental degradation in N-11 countries. J. Clean. Prod. 2017, 168, 1217–1229. [Google Scholar] [CrossRef] [Green Version]
- Zambrano-Monserrate, M.A.; Valverde-Bajaña, I.; Aguilar-Bohórquez, J.; Mendoza-Jiménez, M. Relationship between economic growth and environmental degradation: Is there an environmental evidence of kuznets curve for Brazil? Int. J. Energy Econ. Policy 2016, 6, 208–216. [Google Scholar]
- Dasgupta, P. Measuring Sustainable Development: Theory and Application. Asian Dev. Rev. 2007, 24, 1–10. [Google Scholar]
- Ozturk, I. The dynamic relationship between agricultural sustainability and food-energy-water poverty in a panel of selected Sub-Saharan African Countries. Energy Policy 2017, 107, 289–299. [Google Scholar] [CrossRef]
- Lucchi, E.; Lopez, C.P.; Franco, G. A conceptual framework on the integration of solar energy systems in heritage sites and buildings. In IOP Conference Series: Materials Science and Engineering, Proceedings of the International Conference Florence Heri-Tech: The Future of Heritage Science and Technologies, Online, 14–16 October 2020; IOP Publishing: Bristol, UK, 2020; Volume 949, p. 012113. [Google Scholar]
- Bluszcz, A. European economies in terms of energy dependence. Qual. Quant. 2017, 51, 1531–1548. [Google Scholar] [CrossRef] [Green Version]
- Paillard, C.A. Russia and Europe’s mutual energy dependence. J. Int. Aff. 2010, 63, 65–84. [Google Scholar]
- Chen, J.; Yu, J.; Ai, B.; Song, M.; Hou, W. Determinants of global natural gas consumption and import–export flows. Energy Econ. 2019, 83, 588–602. [Google Scholar] [CrossRef]
- Siddi, M. The role of power in EU–Russia energy relations: The interplay between markets and geopolitics. Eur. Asia Stud. 2018, 70, 1552–1571. [Google Scholar] [CrossRef]
- Bouwmeester, M.C.; Oosterhaven, J. Economic impacts of natural gas flow disruptions between Russia and the EU. Energy Policy 2017, 106, 288–297. [Google Scholar] [CrossRef]
- Kitzing, L.; Mitchell, C.; Morthorst, P.E. Renewable energy policies in Europe: Converging or diverging? Energy Policy 2012, 51, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Meng, M.; Payne, J.E.; Lee, J. Convergence in per capita energy use among OECD countries. Energy Econ. 2013, 36, 536–545. [Google Scholar] [CrossRef]
- Csereklyei, Z.; Stern, D.I. Global energy use: Decoupling or convergence? Energy Econ. 2015, 51, 633–641. [Google Scholar] [CrossRef]
- Fallahi, F.; Voia, M.C. Convergence and persistence in per capita energy use among OECD countries: Revisited using confidence intervals. Energy Econ. 2015, 52, 246–253. [Google Scholar] [CrossRef]
- Kim, Y.S. Electricity consumption and economic development: Are countries converging to a common trend? Energy Econ. 2015, 49, 192–202. [Google Scholar] [CrossRef]
- Strunz, S.; Gawel, E.; Lehmann, P.; Söderholm, P. Policy convergence as a multifaceted concept: The case of renewable energy policies in the European Union. J. Public Policy 2018, 38, 361–387. [Google Scholar] [CrossRef]
- Grafström, J. Divergence of renewable energy invention efforts in Europe: An econometric analysis based on patent counts. Environ. Econ. Policy Stud. 2018, 20, 829–859. [Google Scholar] [CrossRef] [Green Version]
- Kasman, A.; Kasman, S. Convergence of renewable energy consumption in the EU-15: Evidence from stochastic and club convergence tests. Environ. Sci. Pollut. Res. 2020, 27, 5901–5911. [Google Scholar] [CrossRef]
- Butnaru, G.I.; Haller, A.P.; Clipa, R.I.; Ștefănică, M.; Ifrim, M. The Nexus Between Convergence of Conventional and Renewable Energy Consumption in the Present European Union States. Explorative Study on Parametric and Semi-Parametric Methods. Energies 2020, 13, 5272. [Google Scholar] [CrossRef]
- Payne, J.E.; Vizek, M.; Lee, J. Is there convergence in per capita renewable energy consumption across US States? Evidence from LM and RALS-LM unit root tests with breaks. Renew. Sustain. Energy Rev. 2017, 70, 715–728. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, W.; Xu, M. Total factor efficiency and convergence analysis of renewable energy in Latin American countries. Renew. Energy 2021, 170, 785–795. [Google Scholar] [CrossRef]
- Reboredo, J.C. Renewable energy contribution to the energy supply: Is there convergence across countries? Renew. Sustain. Energy Rev. 2015, 45, 290–295. [Google Scholar] [CrossRef]
- Solarin, S.A.; Gil-Alana, L.A.; Al-Mulali, U. Stochastic convergence of renewable energy consumption in OECD countries: A fractional integration approach. Environ. Sci. Pollut. Res. 2018, 25, 17289–17299. [Google Scholar] [CrossRef]
- Dong, F.; Pan, Y. Evolution of renewable energy in BRI countries: A combined econometric and decomposition approach. Int. J. Environ. Res. Public Health 2020, 17, 8668. [Google Scholar] [CrossRef] [PubMed]
- Presno, M.J.; Landajo, M. EU-28’s progress toward the 2020 renewable energy share: A club convergence analysis. Environ. Sci. Pollut. Res. 2021, 28, 66830–66844. [Google Scholar] [CrossRef]
- Berk, I.; Kasman, A.; Kılınç, D. Towards a common renewable future: The System-GMM approach to assess the convergence in renewable energy consumption of EU countries. Energy Econ. 2020, 87, 103922. [Google Scholar] [CrossRef]
- Bigerna, S.; Bollino, C.A.; Polinori, P. Convergence in renewable energy sources diffusion worldwide. J. Environ. Manag. 2021, 292, 112784. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, J.; Li, L.; Gu, X. Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces. Energy Econ. 2020, 86, 104702. [Google Scholar] [CrossRef]
- Han, L.; Han, B.; Shi, X.; Su, B.; Lv, X.; Lei, X. Energy efficiency convergence across countries in the context of China’s Belt and Road initiative. Appl. Energy 2018, 213, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Yu, Y.; Ma, C. Energy efficiency convergence in China: Catch-up, lock-in and regulatory uniformity. Environ. Resour. Econ. 2018, 70, 107–130. [Google Scholar] [CrossRef]
- Liddle, B.; Sadorsky, P. Energy efficiency in OECD and non-OECD countries: Estimates and convergence. Energy Effic. 2021, 14, 72. [Google Scholar] [CrossRef]
- Demir, C.; Cergibozan, R. Does alternative energy usage converge across Oecd countries? Renew. Energy 2020, 146, 559–567. [Google Scholar] [CrossRef]
- Herrerias, M.J. World energy intensity convergence revisited: A weighted distribution dynamics approach. Energy Policy 2012, 49, 383–399. [Google Scholar] [CrossRef]
- Bulut, U.; Durusu-Ciftci, D. Revisiting energy intensity convergence: New evidence from OECD countries. Environ. Sci. Pollut. Res. 2018, 25, 12391–12397. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, D.; Liu, T. Can China’s underdeveloped regions catch up with green economy? A convergence analysis from the perspective of environmental total factor productivity. J. Clean. Prod. 2020, 255, 120216. [Google Scholar] [CrossRef]
- Bai, C.; Feng, C.; Du, K.; Wang, Y.; Gong, Y. Understanding spatial-temporal evolution of renewable energy technology innovation in China: Evidence from convergence analysis. Energy Policy 2020, 143, 111570. [Google Scholar] [CrossRef]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.; Mücher, C.A.; Watkins, J.W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 2005, 14, 549–563. [Google Scholar] [CrossRef]
- Monfort, M.; Cuestas, J.C.; Ordonez, J. Real convergence in Europe: A cluster analysis. Econ. Model. 2013, 33, 689–694. [Google Scholar] [CrossRef] [Green Version]
- Pecher, C.; Tasser, E.; Walde, J.; Tappeiner, U. Typology of Alpine region using spatial-pattern indicators. Ecol. Indic. 2013, 24, 37–47. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, Y.; Zhang, Y.; Terzija, V. Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data. Appl. Energy 2018, 216, 172–182. [Google Scholar] [CrossRef]
- Fontanella, L.; Ippoliti, L.; Sarra, A.; Valentini, P. Spatial Growth Regressions for the convergence analysis of renewable energy consumption in Europe. Statistica 2013, 73, 39–53. [Google Scholar]
- Hille, E.; Lambernd, B. Has Korean growth become greener? Spatial econometric evidence for energy use and renewable energy. Ann. Oper. Res. 2021, 1–34. [Google Scholar] [CrossRef]
- Cressie, N. Statistics for Spatial Data; John Wiley & Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Schabenberger, O.; Gotway, C.A. Statistical Methods for Spatial Data Analysis; Champion & Hall/CRC: Boca Raton, FL, USA, 2005. [Google Scholar]
- Szulc, E. Ekonometryczna Analiza Wielowymiarowych Procesów Gospodarczych; Wydawnictwo Uniwersytetu Mikołaja Kopernika: Toruń, Poland, 2007. [Google Scholar]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Levin, A.; Lin, C.F.; Chu, C.S.J. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Solow, R.M. A contribution to the theory of economic growth. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- Baumol, W.J. Productivity growth, convergence, and welfare: What the long-run data show. Am. Econ. Rev. 1986, 76, 1072–1085. [Google Scholar]
- Islam, N. What have we learnt from the convergence debate? J. Econ. Surv. 2003, 17, 309–362. [Google Scholar] [CrossRef] [Green Version]
- Abreu, M.; De Groot, H.L.; Florax, R.J. A meta-analysis of β-convergence: The legendary 2%. J. Econ. Surv. 2005, 19, 389–420. [Google Scholar] [CrossRef]
- Jankiewicz, M. The Convergence of Food Expenditures in the European Union Countries—A Spatio-Temporal Approach. Acta Univ. Lodz. Folia Oeconomica 2019, 1, 91–106. [Google Scholar] [CrossRef]
- Kuc, M. Social convergence in Nordic countries at regional level. Equilibrium. Q. J. Econ. Econ. Policy 2017, 12, 25–41. [Google Scholar]
- Barro, R.J.; Sala-i-Martin, X. Convergence. J. Political Econ. 1992, 100, 223–251. [Google Scholar] [CrossRef]
- Chen, P.Y.; Chen, S.T.; Hsu, C.S.; Chen, C.C. Modeling the global relationships among economic growth, energy consumption and CO2 emissions. Renew. Sustain. Energy Rev. 2016, 65, 420–431. [Google Scholar] [CrossRef]
- Chontanawat, J. Relationship between energy consumption, CO2 emission and economic growth in ASEAN: Cointegration and causality model. Energy Rep. 2020, 6, 660–665. [Google Scholar] [CrossRef]
- Munir, Q.; Lean, H.H.; Smyth, R. CO2 emissions, energy consumption and economic growth in the ASEAN-5 countries: A cross-sectional dependence approach. Energy Econ. 2020, 85, 104571. [Google Scholar] [CrossRef]
- Odugbesan, J.A.; Rjoub, H. Relationship among economic growth, energy consumption, CO2 emission, and urbanization: Evidence from MINT countries. Sage Open 2020, 10, 2158244020914648. [Google Scholar] [CrossRef] [Green Version]
- Saboori, B.; Sapri, M.; bin Baba, M. Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development)’s transport sector: A fully modified bi-directional relationship approach. Energy 2014, 66, 150–161. [Google Scholar] [CrossRef]
- Sadorsky, P. Renewable energy consumption and income in emerging economies. Energy Policy 2009, 37, 4021–4028. [Google Scholar] [CrossRef]
- Anselin, L.; Florax, R.; Rey, S.J. Advances in Spatial Econometrics: Methodology, Tools and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Arbia, G. Spatial Econometrics: Statistical Foundations and Applications to Regional Convergence; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
Parameter | ||||||
---|---|---|---|---|---|---|
Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | |
49.6688 | 0.0000 | 16.5668 | 0.0000 | 1.5354 | 0.0000 | |
0.2172 | 0.0000 | 0.0116 | 0.0000 | −0.0095 | 0.0000 | |
−1.7600 | 0.0000 | −0.3242 | 0.0000 | 0.0145 | 0.0000 | |
0.0645 | 0.0000 | 0.1063 | 0.0000 | −0.0104 | 0.0000 | |
−0.0040 | 0.0000 | −0.0036 | 0.0000 | - | - | |
−0.0035 | 0.0000 | - | - | - | - | |
0.0180 | 0.0000 | 0.0037 | 0.0000 | - | - | |
- | - | −0.0021 | 0.0000 | - | - | |
0.5893 | 0.8104 | 0.1884 | ||||
Moran’s test (W) | −0.0991 (0.0010) | 0.0892 (0.0022) | 0.0481 (0.0595) | |||
Moran’s test (D) | −0.1869 (0.0000) | 0.1503 (0.0000) | −0.3184 (0.0000) |
Levin–Lin–Chu | |||
---|---|---|---|
test statistics | −9.0939 | −6.3491 | −3.1566 |
p-value | 0.0000 | 0.0000 | 0.0008 |
Parameter | Absolute | Conditional | ||
---|---|---|---|---|
Estimate | p-Value | Estimate | p-Value | |
−0.0069 | 0.3040 | −0.0066 | 0.3268 | |
0.9525 | 0.0000 | 0.9500 | 0.0000 | |
- | - | 0.0334 | 0.0246 | |
0.9708 | 0.9709 | |||
Moran’s test | W matrix | D matrix | W matrix | D matrix |
0.4778 (0.0000) | 0.1097 (0.0004) | 0.4743 (0.0000) | 0.0992 (0.0013) | |
tests | ||||
230.8334 (0.0000) | 11.4558 (0.0007) | 227.4654 (0.0000) | 9.3701 (0.0022) | |
7.8218 (0.0052) | 0.7861 (0.3752) | 6.2027 (0.0128) | 0.1682 (0.6817) | |
223.9022 (0.0000) | 10.6980 (0.0011) | 222.838 (0.0000) | 9.2693 (0.0023) | |
0.8907 (0.3453) | 0.0284 (0.3453) | 1.5754 (0.2094) | 0.0674 (0.7952) | |
Convergence characteristics | ||||
0.0487 | 0.0513 | |||
14.2432 | 13.5226 |
Parameter | Model | |||||
---|---|---|---|---|---|---|
SAR_W | SE_W | SE_D | ||||
Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | |
−0.0083 | 0.2157 | −0.0078 | 0.4835 | −0.0074 | 0.3297 | |
0.9555 | 0.0000 | 0.9567 | 0.0000 | 0.9520 | 0.0000 | |
0.0284 | 0.0050 | - | - | - | - | |
- | - | 0.5375 | 0.0000 | 0.1200 | 0.0014 | |
pseudo- | 0.9711 | 0.9810 | 0.9713 | |||
203.5137 | 318.3293 | 204.6790 | ||||
−399.0300 | −628.6600 | −401.3600 | ||||
Moran’s test | 0.4617 (0.0000) | −0.0068 (0.4331) | −0.0144 (0.3480) | |||
Convergence characteristics | ||||||
0.0455 | 0.0443 | 0.0492 | ||||
15.2262 | 15.6636 | 14.0815 |
Parameter | Model | |||||
---|---|---|---|---|---|---|
SAR_W | SE_W | SE_D | ||||
Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | |
−0.0079 | 0.2390 | −0.0077 | 0.4854 | −0.0073 | 0.3310 | |
0.9531 | 0.0000 | 0.9558 | 0.0000 | 0.9503 | 0.0000 | |
0.0278 | 0.0620 | 0.0203 | 0.0800 | 0.0276 | 0.0625 | |
0.0255 | 0.0123 | - | - | - | - | |
- | - | 0.5366 | 0.0000 | 0.1111 | 0.0035 | |
pseudo- | 0.9712 | 0.9810 | 0.9714 | |||
205.2443 | 319.8583 | 206.3818 | ||||
−400.4900 | −629.7200 | −402.7600 | ||||
Moran’s test | 0.4603 (0.0000) | −0.0064 (0.4374) | −0.0144 (0.3629) | |||
Convergence characteristics | ||||||
0.0480 | 0.0452 | 0.0510 | ||||
14.4376 | 15.3331 | 13.5973 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankiewicz, M. The Convergence of Energy Use from Renewable Sources in the European Countries: Spatio-Temporal Approach. Energies 2021, 14, 8378. https://doi.org/10.3390/en14248378
Jankiewicz M. The Convergence of Energy Use from Renewable Sources in the European Countries: Spatio-Temporal Approach. Energies. 2021; 14(24):8378. https://doi.org/10.3390/en14248378
Chicago/Turabian StyleJankiewicz, Mateusz. 2021. "The Convergence of Energy Use from Renewable Sources in the European Countries: Spatio-Temporal Approach" Energies 14, no. 24: 8378. https://doi.org/10.3390/en14248378
APA StyleJankiewicz, M. (2021). The Convergence of Energy Use from Renewable Sources in the European Countries: Spatio-Temporal Approach. Energies, 14(24), 8378. https://doi.org/10.3390/en14248378