# Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Strategy of Proposed Model

#### 2.1. Input Selection

#### 2.2. Pre-Processing Using Wavelet Transform

#### 2.2.1. Conventional Wavelet Transform (WT)

#### 2.2.2. Wavelet Packet Based Decomposition (WPD)

#### 2.3. Linear Neural Network with Time Delay

- Step 1: From raw MCV data, an input time series vector has been formed, on the basis of ACF 17, time-lag data was chosen as the input variable for standalone NN models.
- Step 2: edcomposition of the original MCV time series into approximated (A1–A6) and detailed (D1–D6) subseries using $db10$.
- Step 3: The fourth level approximated and detailed MCV subseries with a 17 MCV time lag has been selected as an input variable for conventional WT-based models. The structure of the LNNTD model is shown in Figure 6 and the schematic flow diagram for the conventional WT-based MCV forecasting model is shown in Figure 8.
- Step 4: For the WPD-based model, a third-level decomposition is used [35,36,37,38,39] in which eight different high- and low-frequency component-based series are obtained. Two types of input selection criteria are adopted first, eight WPD-based decomposed series are used with 17 ACF-based time-lag series similar to that of the conventional WT-based model. In the second (proposed model), each WPD-based series has been forecasted individually, the schematic flow diagram is shown in Figure 9 and the TL’s are selected on the basis of ACF which are presented in Table 2.
- Step 5: For the forecasting, one-year MCV data was trained and tested for the next month, a similar process is continuously repeated up to the next 12 months, with a one-month moving window as shown in Figure 6. The epochs and performance goals have been chosen to be equal to 10,000 and 0.001, respectively.

#### 2.4. Accuracy Metrics

#### 2.5. Effect of Pre-Processing on the Performance of the Model

#### 2.5.1. Effect of Conventional WT

#### 2.5.2. Effect of WPD

## 3. Simulation Results

#### 3.1. Accuracy Analysis

- The performance in terms of accuracy of LNNTD is the best among all NN models.
- WT-based NN model accuracy is higher compared to the NN models.
- The accuracy level of the proposed model is found to be better amongst all others.
- In spite of that, FFNN is one of the toughest benchmarks to beat.

#### 3.2. Coefficient of Regression ${R}^{2}$ Analysis

## 4. Disscusion

#### 4.1. Validation of the Model Using Tracking Signals (TS’s)

#### 4.2. Multiple Steps-Ahead Forecasting

#### 4.3. Percentage of Improvement in Accuracy

## 5. Conclusions

## Author Contributions

## Funding

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

ACF | Auto-correlation function |

ACO | Ant colony optimization |

AI | Artificial intelligence |

ANFIS | Adaptive neuro fuzzy inference system |

BP | Back propagation algorithm |

CEEMDAN | Complete ensemble empirical mode decomposition with adaptive noise |

CNN | Convolution neural network |

CWT | Continuous wavelet transform |

db10 | Daubechies wavelet |

DWT | Discrete wavelet transform |

ECPSO | Embedded chaotic particle swarm optimization |

ERNN | Elman recurrent neural network |

FFNN | Feed forward neural network |

FIR | Finite impulse response |

FNCI | Fuzzy neural network based on Choquet integral |

GA | Genetic algorithm |

GANN | Genetic algorithm based on neural network |

GMDH | Group method of data handling |

GSO | Gram-Shmidt orthogonalization |

IEX | Indian electricity exchange |

IMF | Intrinsic modes function |

LM | Levenberg marquardt algorithm |

LNN | Linear neural network |

LNNTD | Linear neural network with tapped delay |

LSTM | Long short-term memory network |

MAD | Mean absolute deviation |

MAE | Mean absolute error |

MAPE | Mean absolute percentage error |

MCV | Market clearing volume |

MLP | Multi layer perceptron |

NFN | Neural fuzzy network |

NN | Neural network |

PACF | Partial auto-correlation function |

PSO | Particle swarm optimization |

RBFNN | Radial basis function neural network |

SOM | Self organising map network |

TS | Tracking signal |

WFNN | Wavelet fuzzy neural network |

WPD | Wavelet packet-based decomposition |

WT | Wavelet transform |

VMD | Variational mode decomposition |

## References

- Hippert, H.S.; Pedreira, C.E.; Souza, R.C. Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Syst.
**2001**, 16, 44–55. [Google Scholar] [CrossRef] - Felice, M.D.; Yao, X. Short-term load forecasting with neural network ensembles: A comparative study. IEEE Comput. Intell. Mag.
**2011**, 6, 47–56. [Google Scholar] [CrossRef] - Vaghefi, A.; Jafari, M.A.; Bisse, E.; Lu, Y.; Brouwer, J. Modeling and forecasting of cooling and electricity load demand. Appl. Energy
**2014**, 136, 186–196. [Google Scholar] [CrossRef] [Green Version] - Saroha, S.; Verma, R. Cross-border Power Trading Model for South Asian Regional Power Pool. Electr. Power Energy Syst.
**2013**, 44, 146–152. [Google Scholar] [CrossRef] - Hahn, H.; Meyer-Nieberg, S.; Pickl, S. Electric load forecasting methods: Tools for decision making. Eur. J. Oper. Res.
**2009**, 199, 902–907. [Google Scholar] [CrossRef] - Aggarwal, S.K.; Saini, L.M.; Kumar, A. Electricity price forecasting in deregulated markets: A review and evaluation. Int. J. Electr. Power Energy Syst.
**2009**, 31, 13–22. [Google Scholar] [CrossRef] - Saroha, S.; Aggarwal, S.K. A Review and Evaluation of Current Wind Power Prediction Technologies. WSEAS Trans. Power Syst.
**2015**, 10, 1–12. Available online: http://www.wseas.org/multimedia/journals/power/2015/a025716-278.pdf (accessed on 10 May 2021). - Babu, K.V.N.; Edla, D.R. New Algebraic Activation Function for Multi-Layered Feed Forward Neural Networks. IETE J. Res.
**2017**, 63, 71–79. [Google Scholar] [CrossRef] - Khotanzad, A.; Zhou, E.; Elragal, H. A neuro-fuzzy approach to short-term load forecasting in a price-sensitive environment. IEEE Trans. Power Syst.
**2002**, 17, 1273–1282. [Google Scholar] [CrossRef] - Ling, S.H.; Leung, F.H.F.; Lam, H.K.; Tam, P.K.S. Short-Term Electric Load Forecasting Based on a Neural Fuzzy Network. IEEE Trans. Ind. Electron.
**2003**, 50, 1305–1316. [Google Scholar] [CrossRef] - Kebriaei, H.; Araabi, B.N.; Rahimi-Kian, A. Short-term load forecasting with a new nonsymmetric penalty function. IEEE Trans. Power Syst.
**2011**, 26, 1817–1825. [Google Scholar] [CrossRef] - Bashir, Z.A.; El-Hawary, M.E. Applying wavelets to short-term load forecasting using PSO-based neural networks. IEEE Trans. Power Syst.
**2009**, 24, 20–27. [Google Scholar] [CrossRef] - Wu, Q. A hybrid forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization. Expert Syst. Appl.
**2010**, 37, 2388–2394. [Google Scholar] [CrossRef] - Yang, X.; Yuan, J.; Yuan, J.; Mao, H. An improved WM method based on PSO for electric load forecasting. Expert Syst. Appl.
**2010**, 37, 8036–8041. [Google Scholar] [CrossRef] - Niu, D.; Wang, Y.; Wu, D.D. Power load forecasting using support vector machine and ant colony optimization. Expert Syst. Appl.
**2010**, 37, 2531–2539. [Google Scholar] [CrossRef] - Zhang, B.L.; Dong:, Z.Y. An adaptive neural wavelet model for short term load forecasting. Electr. Power Syst. Res.
**2001**, 59, 121–129. [Google Scholar] [CrossRef] - Reis, A.J.R.; da Silva, A.P.A. Feature extraction via multiresolution analysis for short-term load forecasting. IEEE Trans. Power Syst.
**2005**, 20, 189–198. [Google Scholar] [CrossRef] - Chen, Y.; Luh, P.B.; Guan, C.; Zhao, Y.; Michel, L.D.; Coolbeth, M.A.; Friedland, P.B.; Rourke, S.J. Short-term load forecasting: Similar day-based wavelet neural networks. IEEE Trans. Power Syst.
**2010**, 25, 322–330. [Google Scholar] [CrossRef] - Hanmandlu, M.; Chauhan, B.K. Load forecasting using hybrid models. IEEE Trans. Power Syst.
**2011**, 26, 20–29. [Google Scholar] [CrossRef] - Santana, Á.L.; Conde, G.B.; Rego, L.P.; Rocha, C.A.; Cardoso, D.L.; Costa, J.C.; Bezerra, U.H.; Francês, C.R. PREDICT—Decision support system for load forecasting and inference: A new undertaking for Brazilian power suppliers. Int. J. Electr. Power Energy Syst.
**2012**, 38, 33–45. [Google Scholar] [CrossRef] - Amina, M.; Kodogiannis, V.S.; Petrounias, I.; Tomtsis, D. A hybrid intelligent approach for the prediction of electricity consumption. Int. J. Electr. Power Energy Syst.
**2012**, 43, 99–108. [Google Scholar] [CrossRef] - Gao, X.; Qi, C.; Xue, G.; Song, J.; Zhang, Y.; Yu, S. Forecasting the Heat Load of Residential Buildings with Heat Metering Based on CEEMDAN-SVR. Energies
**2020**, 13, 6079. [Google Scholar] [CrossRef] - Gao, B.; Huang, X.; Shi, J.; Tai, Y.; Zhang, J. Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks. Renew. Energy
**2020**, 162, 1665–1683. [Google Scholar] [CrossRef] - Cao, J.; Li, Z.; Li, J. Financial time series forecasting model based on CEEMDAN and LSTM. Phys. A Stat. Mech. Its Appl.
**2019**, 519, 127–139. [Google Scholar] [CrossRef] - Zhang, W.; Qu, Z.; Zhang, K.; Mao, W.; Ma, Y.; Fan, X. A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting. Energy Convers. Manag.
**2017**, 136, 439–451. [Google Scholar] [CrossRef] - Zhang, Y.; Pan, G.; Chen, B.; Han, J.; Zhao, Y.; Zhang, C. Short-term wind speed prediction model based on GA-ANN improved by VMD. Renew. Energy
**2020**, 156, 1373–1388. [Google Scholar] [CrossRef] - Zhang, Y.; Chen, B.; Pan, G.; Zhao, Y. A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting. Energy Convers. Manag.
**2019**, 195, 180–197. [Google Scholar] [CrossRef] - Abdoos, A.A. A new intelligent method based on the combination of VMD and ELM for short-term wind power forecasting. Neurocomputing
**2016**, 203, 111–120. [Google Scholar] [CrossRef] - Kim, S.H.; Lee, G.; Kwon, G.Y.; Kim, D.I.; Shin, Y.J. Deep learning based on multi-decomposition for short-term load forecasting. Energies
**2018**, 11, 3433. [Google Scholar] [CrossRef] [Green Version] - Koo, B.G.; Lee, H.S.; Park, J. Short-term electric load forecasting based on wavelet transform and GMDH. J. Electr. Eng. Technol.
**2015**, 10, 832–837. [Google Scholar] [CrossRef] [Green Version] - Kováč, S.; Conok, G.M.; Halenár, I.; Važan, P. Comparison of Heat Demand Prediction Using Wavelet Analysis and Neural Network for a District Heating Network. Energies
**2021**, 14, 1545. [Google Scholar] [CrossRef] - El-Hendawi, M.; Wang, Z. An ensemble method of full wavelet packet transform and neural network for short term electrical load forecasting. Electr. Power Syst. Res.
**2020**, 182, 106265. [Google Scholar] [CrossRef] - Rana, M.; Koprinska, I. Forecasting electricity load with advanced wavelet neural networks. Neurocomputing
**2016**, 182, 118–132. [Google Scholar] [CrossRef] - Kong, Z.; Xia, Z.; Cui, Y.; Lv, H. Probabilistic forecasting of short-term electric load demand: An integration scheme based on correlation analysis and improved weighted extreme learning machine. Appl. Sci.
**2019**, 9, 4215. [Google Scholar] [CrossRef] [Green Version] - Indian Energy Exchange Ltd. Area Volume. Available online: https://www.iexindia.com/marketdata/areavolume.aspx (accessed on 20 May 2020).
- Saroha, S.; Aggarwal, S.K. Multi step ahead forecasting of wind power by different class of neural networks. In Proceedings of the 2014 Recent Advances in Engineering and Computational Sciences (RAECS), Chandigarh, India, 6–8 March 2014. [Google Scholar] [CrossRef]
- Linear Networks with Delays: Linear Filters (Neural Network Toolbox). Available online: http://matlab.izmiran.ru/help/toolbox/nnet/linfilt8.html (accessed on 20 May 2020).
- Sfetsos, A.; Siriopoulos, C. Time series forecasting of averaged data with efficient use of information. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
**2005**, 35, 738–745. [Google Scholar] [CrossRef] - Vries, B.D.; Principe, J.C. A Theory for Neural Networks with Time Delays. In Proceedings of the Advances in Neural Information Processing Systems 3 (NIPS 1990), Denver, CO, USA, 26–29 November 1990; Available online: https://papers.nips.cc/paper/356-a-theory-for-neural-networks-with-time-delays (accessed on 20 May 2020).
- Saini, L.M.; Soni, M.K. Artificial neural network-based peak load forecasting using conjugate gradient methods. IEEE Trans. Power Syst.
**2002**, 17, 907–912. [Google Scholar] [CrossRef] - Trigg, D.W. Monitoring a Forecasting System. Oper. Res. Q.
**1964**, 15, 271. [Google Scholar] [CrossRef] - McClain, J.O. Dominant tracking signals. Int. J. Forecast.
**1988**, 4, 563–572. [Google Scholar] [CrossRef] - Trigg, D.W.; Leach, A.G. Exponential Smoothing with an Adaptive Response Rate. Oper. Res. Q.
**1967**, 18, 53. [Google Scholar] [CrossRef] - Yager, R.R.; Alajlan, N. A note on mean absolute deviation. Inf. Sci.
**2014**, 279, 632–641. [Google Scholar] [CrossRef]

Model | Learning Algorithms | Input Neurons | Transfer Function | Momentum Constant | Learning Rate |
---|---|---|---|---|---|

FFNN | LM | 17 | tansig, purelin | 0.06 | 0.001 |

ERNN | LM | 17 | tansig, purelin | 0.06 | 0.001 |

GANN | GA | 17 | tansig, purelin | 0.06 | 0.001 |

LNNTD | BP | 17 | purelin | 0.06 | 0.001 |

WT+LNNTD | BP | $17+5$ | purelin | 0.06 | 0.001 |

WPD+LNNTD | BP | $17+8$ | purelin | 0.06 | 0.001 |

Proposed | BP | - | purelin | 0.06 | 0.001 |

Wavelet Component | Selected Time Lags for Forecasting Target Series (T) |
---|---|

D30 | TL_10, TL_9, TL_8, TL_7, T_6, TL_5, TL_4, TL_3, TL_2, TL_1 |

D31 | TL_19, TL_18, TL_17, T_16, TL_15, TL_14, TL_13, TL_12, TL_11, |

TL_10, TL_9, TL_8, TL_7, T_6, TL_5, TL_4, TL_3, TL_2, TL_1 | |

D32 | TL_25, TL_12, TL_11, TL_10, TL_9, TL_8, TL_7, T_6, TL_5, TL_4, |

TL_3, TL_2, TL_1 | |

D33 | TL_28, TL_25, TL_21, TL_10, TL_9, TL_8, TL_7, T_6, TL_5, TL_4, |

TL_3, TL_2, TL_1 | |

D34 | TL_13, TL_12, TL_11, TL_10, TL_9, TL_8, TL_7, T_6, TL_5, TL_4, |

TL_3, TL_2, TL_1 | |

D35 | TL_7, T_6, TL_5, TL_4, TL_3, TL_2, TL_1 |

D36 | TL_8, TL_7, T_6, TL_5, TL_4, TL_3, TL_2, TL_1 |

D37 | TL_9, TL_8, TL_7, T_6, TL_5, TL_4, TL_3, TL_2, TL_1 |

Decomposition Level | Decomposed Signals | WT | Decomposed Signals | WPD |
---|---|---|---|---|

db10 | MAPE | db10 | MAPE | |

Level 1 | A1, D1 | 3.22 | A1:1, D1:2 | 3.115 |

Level 2 | A2, D1, D2 | 2.49 | A2:1, D2:2, A2:3, D2:4 | 1.882 |

Level 3 | A3, D1, D2, | 2.22 | A3:1, D3:2, A3:3, D3:4, | 1.258 |

D3 | A3:5, D3:6, A3:7, D3:8 | |||

Level 4 | A4, D1, D2, | 2.12 | A4:1, D4:2, A4:3, D4:4, A4:5, | 1.314 |

D3, D4 | D4:6, A4:7, D4:8, A4:9, D4:10, | |||

A4:11, D4:12, A4:13, D4:14, | ||||

A4:16, D4:16 | ||||

Level 5 | A5, D1, D2, | 2.13 | A5:1, D5:2, A5:3, D5:4, A5:5, | 6.43 |

D3, D4, D5 | D5:6, A5:7, D5:8, A5:9, D5:10, | |||

A5:11, D5:12, A5:13, D5:14, A5:16, | ||||

D5:16, A5:17, D5:18, A5:19, D5:20, | ||||

A5:21, D5:22, A5:23, D5:24, A5:25, | ||||

D5:26, A5:27, D5:28, A5:29, D5:30, | ||||

A5:31, D5:32 | ||||

Level 6 | A6, D1, D2, | 2.17 | - | - |

D3, D4, D5, D6 |

2016 | FFNN | ERNN | GANN | LNNTD | WT+LNNTD | WPD+LNNTD | Proposed |
---|---|---|---|---|---|---|---|

January | 2.794 | 3.686 | 2.783 | 2.763 | 1.641 | 1.047 | 0.164 |

February | 2.431 | 3.197 | 2.474 | 2.410 | 1.563 | 1.005 | 0.175 |

March | 3.613 | 3.969 | 3.597 | 3.569 | 1.848 | 1.214 | 0.220 |

April | 3.769 | 4.069 | 3.582 | 3.438 | 1.624 | 1.132 | 0.205 |

May | 3.646 | 4.555 | 3.559 | 3.572 | 1.788 | 1.152 | 0.198 |

June | 2.853 | 3.383 | 2.906 | 2.862 | 1.528 | 1.019 | 0.174 |

July | 2.961 | 3.047 | 2.856 | 2.789 | 1.331 | 0.854 | 0.170 |

August | 3.299 | 3.571 | 3.206 | 3.143 | 1.635 | 1.003 | 0.198 |

September | 3.843 | 4.634 | 3.919 | 3.782 | 1.658 | 1.034 | 0.192 |

October | 4.381 | 5.014 | 3.962 | 3.953 | 1.793 | 1.120 | 0.204 |

November | 4.207 | 5.469 | 4.352 | 4.140 | 2.410 | 1.741 | 0.285 |

December | 3.501 | 4.392 | 3.561 | 3.391 | 2.219 | 1.622 | 0.226 |

A.V. | 3.441 | 4.082 | 3.396 | 3.318 | 1.753 | 1.162 | 0.201 |

2016 | FFNN | ERNN | GANN | LNNTD | WT+LNNTD | WPD+LNNTD | Proposed |
---|---|---|---|---|---|---|---|

January | 115.253 | 151.121 | 115.221 | 113.850 | 67.0143 | 43.039 | 6.758 |

February | 103.007 | 138.273 | 105.280 | 102.680 | 65.7499 | 42.895 | 7.398 |

March | 161.492 | 176.189 | 161.020 | 158.840 | 82.0146 | 53.843 | 9.805 |

April | 198.377 | 214.583 | 188.657 | 178.610 | 83.9282 | 58.263 | 10.523 |

May | 149.702 | 185.845 | 146.430 | 146.830 | 74.4242 | 47.911 | 8.0387 |

June | 130.586 | 153.594 | 132.857 | 130.780 | 68.9155 | 45.504 | 7.704 |

July | 146.409 | 150.990 | 141.618 | 137.820 | 65.9655 | 41.784 | 8.249 |

August | 160.145 | 173.035 | 156.889 | 152.300 | 78.7189 | 47.937 | 9.366 |

September | 195.639 | 235.798 | 199.298 | 191.290 | 84.2253 | 52.282 | 9.811 |

October | 219.531 | 253.934 | 199.514 | 197.180 | 89.0009 | 54.529 | 9.973 |

November | 205.628 | 263.373 | 214.261 | 201.730 | 114.344 | 81.572 | 13.454 |

December | 152.716 | 192.387 | 155.27 | 147.560 | 93.9196 | 67.216 | 7.596 |

A.V. | 161.540 | 190.760 | 159.693 | 154.950 | 80.6851 | 53.065 | 9.056 |

Season | Period | Testing Period |
---|---|---|

Winter | December–March | week 1 |

Summer | April–May | week 1 |

Rainy | June–September | week 1 |

Dry | October–November | week 1 |

Models | Week 1 | Week 2 | Week 3 | Week 4 | A.V. |
---|---|---|---|---|---|

FFNN | 2.5142 | 3.6082 | 3.415 | 4.096 | 3.408 |

ERNN | 3.0571 | 3.9597 | 3.966 | 5.407 | 4.097 |

GANN | 2.5091 | 3.7614 | 3.39 | 4.127 | 3.447 |

LNNTD | 2.5345 | 3.7416 | 3.393 | 3.964 | 3.408 |

WT+LNNTD | 1.5189 | 1.5274 | 1.636 | 1.657 | 1.585 |

WPD+LNNTD | 1.8174 | 0.9913 | 1.0189 | 1.1304 | 1.2395 |

Proposed | 0.3008 | 0.1886 | 0.1973 | 0.2134 | 0.225 |

Models | Week 1 | Week 2 | Week 3 | Week 4 | A.V. |
---|---|---|---|---|---|

FFNN | 100.747 | 177.882 | 161.195 | 241.018 | 170.211 |

ERNN | 121.359 | 195.231 | 185.157 | 323.919 | 206.417 |

GANN | 100.576 | 185.298 | 159.586 | 244.208 | 172.417 |

LNNTD | 101.137 | 184.009 | 159.882 | 231.445 | 169.118 |

WT+LNNTD | 58.957 | 75.0393 | 74.9522 | 96.5705 | 76.3797 |

WPD+LNNTD | 70.9611 | 50.0129 | 48.34038 | 63.3021 | 58.1541 |

Proposed | 12.0576 | 9.45813 | 9.246981 | 11.9904 | 10.6883 |

Models | FFNN | ERNN | GANN | LNNTD | WT+LNNTD | WPD+LNNTD | Proposed |
---|---|---|---|---|---|---|---|

January | 0.959 | 0.97 | 0.968 | 0.923 | 0.977 | 0.990 | 0.9997 |

February | 0.917 | 0.855 | 0.912 | 0.916 | 0.970 | 0.987 | 0.9996 |

March | 0.873 | 0.851 | 0.873 | 0.875 | 0.972 | 0.987 | 0.9995 |

April | 0.859 | 0.833 | 0.866 | 0.868 | 0.973 | 0.986 | 0.9996 |

May | 0.873 | 0.811 | 0.876 | 0.876 | 0.971 | 0.988 | 0.9996 |

June | 0.916 | 0.891 | 0.912 | 0.913 | 0.980 | 0.991 | 0.9997 |

July | 0.908 | 0.898 | 0.912 | 0.915 | 0.982 | 0.993 | 0.9997 |

August | 0.925 | 0.913 | 0.926 | 0.928 | 0.983 | 0.994 | 0.9997 |

September | 0.851 | 0.803 | 0.843 | 0.853 | 0.975 | 0.990 | 0.9996 |

October | 0.654 | 0.875 | 0.916 | 0.919 | 0.984 | 0.994 | 0.9998 |

November | 0.912 | 0.865 | 0.901 | 0.913 | 0.977 | 0.988 | 0.9996 |

December | 0.933 | 0.904 | 0.927 | 0.937 | 0.979 | 0.989 | 0.9997 |

A.V. | 0.882 | 0.872 | 0.903 | 0.903 | 0.977 | 0.990 | 0.9996 |

Models | FFNN | ERNN | GANN | LNNTD | WT+LNNTD | WPD+LNNTD | Proposed |
---|---|---|---|---|---|---|---|

January | −34.78 | 68.77 | −23.3 | 7.92 | −4.12 | −15.11 | 0.57 |

February | −18.06 | 65.92 | −4.36 | 44.24 | 8.11 | −4.27 | 2.46 |

March | 88.32 | 60.51 | 99.98 | 80.86 | 99.48 | −2.01 | 2.62 |

April | 257.81 | 278.8 | 261.26 | 127.48 | 41.55 | −28.49 | 4.84 |

May | −97.35 | −83.9 | −68.25 | −31.01 | 39.91 | −5.29 | −1.00 |

June | 50.512 | 50.8 | 75.72 | 43.48 | 12.52 | −0.37 | 2.50 |

July | 104.03 | 57.02 | 87.04 | 83.65 | 37.69 | −16.34 | 3.05 |

August | −4.562 | 24.56 | 65.50 | 70.48 | 83.89 | −4.40 | 4.11 |

September | 49.949 | −32.7 | 43.63 | 72.82 | 133.80 | −15.19 | 6.83 |

October | −27 | 196.3 | 86.81 | 13.39 | 13.36 | −20.07 | −0.24 |

November | 43.307 | −30.9 | 55.79 | 35.45 | 3.65 | −5.75 | 0.90 |

December | −120.5 | −3.39 | −116.8 | −38.15 | 2.16 | 4.05 | −4.92 |

Models | Metrics | Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | Step 6 |
---|---|---|---|---|---|---|---|

FFNN | MAPE | 2.78 | 3.99 | 4.80 | 6.57 | 8.68 | 9.89 |

FFNN | MAE | 114.97 | 165.64 | 196.21 | 270.32 | 354.35 | 404.99 |

ERNN | MAPE | 3.28 | 4.281 | 5.18 | 7.02 | 8.85 | 10.03 |

ERNN | MAE | 134.52 | 174.57 | 211.98 | 291.23 | 365.59 | 414.12 |

GANN | MAPE | 2.85 | 3.83 | 4.66 | 6.62 | 8.67 | 10.01 |

GANN | MAE | 117.44 | 157.51 | 191.88 | 272.66 | 353.79 | 410.55 |

LNNTD | MAPE | 2.76 | 3.87 | 4.62 | 6.35 | 8.31 | 9.57 |

LNNTD | MAE | 113.84 | 159.05 | 189.68 | 260.87 | 341.33 | 393.74 |

WTLNNTD | MAPE | 1.62 | 2.69 | 3.31 | 4.77 | 5.50 | 6.10 |

WTLNNTD | MAE | 66.19 | 110.32 | 137.06 | 196.34 | 226.94 | 249.91 |

WPD+LNNTD | MAPE | 1.04 | 2.32 | 3.04 | 4.27 | 5.17 | 5.81 |

WPD+LNNTD | MAE | 43.03 | 95.11 | 125.95 | 175.76 | 213.25 | 238.35 |

Proposed | MAPE | 0.19 | 0.37 | 0.59 | 1.07 | 1.34 | 1.57 |

Proposed | MAE | 7.07 | 15.22 | 24.23 | 44.02 | 54.76 | 63.29 |

Seasons | FFNN | ERNN | GANN | LNNTD | WT+LNNTD | WPD+LNNTD |
---|---|---|---|---|---|---|

Yearly | 94.15 | 95.07 | 94.08 | 93.94 | 88.53 | 82.70 |

Winter | 88.03 | 90.16 | 88.01 | 88.13 | 80.19 | 83.44 |

Summer | 94.77 | 95.23 | 94.98 | 94.95 | 87.65 | 80.97 |

Rainy | 94.22 | 95.02 | 94.17 | 94.18 | 87.94 | 80.63 |

Dry | 94.79 | 96.05 | 94.82 | 94.61 | 87.12 | 81.12 |

Seasons | FFNN | ERNN | GANN | LNNTD | WT+LNNTD | WPD+LNNTD |
---|---|---|---|---|---|---|

Yearly | 94.39 | 95.25 | 94.32 | 94.15 | 88.77 | 82.93 |

Winter | 88.03 | 90.06 | 88.01 | 88.07 | 79.54 | 83.00 |

Summer | 94.68 | 95.15 | 94.89 | 94.85 | 87.39 | 81.08 |

Rainy | 94.26 | 95.00 | 94.20 | 94.21 | 87.66 | 80.87 |

Dry | 95.02 | 96.29 | 95.09 | 94.81 | 87.58 | 81.05 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Saroha, S.; Zurek-Mortka, M.; Szymanski, J.R.; Shekher, V.; Singla, P.
Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals. *Energies* **2021**, *14*, 6065.
https://doi.org/10.3390/en14196065

**AMA Style**

Saroha S, Zurek-Mortka M, Szymanski JR, Shekher V, Singla P.
Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals. *Energies*. 2021; 14(19):6065.
https://doi.org/10.3390/en14196065

**Chicago/Turabian Style**

Saroha, Sumit, Marta Zurek-Mortka, Jerzy Ryszard Szymanski, Vineet Shekher, and Pardeep Singla.
2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals" *Energies* 14, no. 19: 6065.
https://doi.org/10.3390/en14196065