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Abstract: Precise prediction of short-term electric load demand is the key for developing power
market strategies. Due to the dynamic environment of short-term load forecasting, probabilistic
forecasting has become the center of attention for its ability of representing uncertainty. In this
paper, an integration scheme mainly composed of correlation analysis and improved weighted
extreme learning machine is proposed for probabilistic load forecasting. In this scheme, a novel
cooperation of wavelet packet transform and correlation analysis is developed to deal with the
data noise. Meanwhile, an improved weighted extreme learning machine with a new switch algorithm
is provided to effectively obtain stable forecasting results. The probabilistic forecasting task is then
accomplished by generating the confidence intervals with the Gaussian process. The proposed
integration scheme, tested by actual data from Global Energy Forecasting Competition, is proved to
have a better performance in graphic and numerical results than the other available methods.

Keywords: probabilistic forecasting; integration scheme; correlation analysis; improved weighted
extreme learning machine; switch algorithm; Gaussian process

1. Introduction

Electric load forecasting (LF) is an indispensable task for electric utilities in the long term [1].
As a fundamental business problem, LF is associated with decision-making processes in power
system plannings, operations, energy trading and so forth [2,3]. Prediction of future load demand
is a tendency forecasting subject based on actual load data. Methods of tendency forecasting are
generally classified into three categories: the physical approaches, the statistical approaches and the
artificial intelligence (AI) approaches [4]. In practice, the diversity of data sources makes it impossible
to build physical models for LF [5]. Moreover, since the load demand is affected by the chaotic nature
of weather conditions, statistical approaches such as exponential smoothing, auto regression (AR),
moving average (MA) and their variants are insufficient to address the nonlinearity and randomness
properties of load data [6]. Consequently, AI approaches have become the mainstream of LF methods.
Traditional LF studies apply AI-based methods of neural network [7–9], support vector machine [10–12]
and other methods [13,14] to forecast the load demand with exactly values. Although the performance
of traditional LF models can be improved by optimizing the AI model, the forecasting uncertainty
at each load point is unknown [15]. To develop efficient strategies for power market management,
more detail about forecasting results should be provided [16].

Preferably, an emerging technique called probabilistic forecasting can offer much more
comprehensive information about future tendency, and thus is more effective for decision-making
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in the dynamic environment [17]. Over the past few years, numerous probabilistic forecasting
methods have been proposed and employed to achieve probabilistic forecasts in the industrial
tendency analysis [18]. Generally, more steps are involved in generating probabilistic intervals
than point forecasting. Hence, gradient-based methods with long training time are improper for
probabilistic forecasting [19,20]. In the field of LF, common forms of probabilistic load forecasting
(PLF) refer to providing output with quantile, interval and density function [21]. It is noticed that the
interval methods include prediction interval (PI) and confidence interval (CI).

Despite the investigations of PLF published in Global Energy Forecasting Competition 2014
(GEFCom2014) [22–24], advanced techniques for PLF are quite limited. In addition, most of the
investigations focus on the quantile and interval methods. Typical research on introducing the quantile
regression averaging (QRA) to PLF can be found in [21], which employed the QRA technique in point
forecasts for PLF tasks. In addition, an advanced quantile regression technique called gradient boosting
machine (GBM) is proved to outperform QRA techniques in terms of robustness and accessibility [25].
However, a large amount of time in training 99 required quantiles is unpalatable for short-term load
demand forecasting. The emerging technique of quantile regression neural network (QRNN) seems
to be a cure for reducing the time cost by optimizing a single forecasting model with overall pinball
loss [26]. Nevertheless, the massive computation brought by a large data set is unsustainable. The PI
method mentioned in [27] estimated the variance of forecasting errors with load forecasts based on
weather ensembles. In [28], the generalized extreme learning machine (ELM) was developed to predict
the load interval. Both the prediction error and the noise uncertainty were taken into account in
this ELM. Since the PIs are obtained by prediction, the accuracy of PI methods is only guaranteed for
fixed interval size. Moreover, the two-stage neural network [29] and the bootstrapping technique [30]
provide a statistical approach to generate CIs, of which the interval size can be adjusted flexibly with
various confidence levels. The width of CIs highly depends on the behavior of forecasting process.
Thus, the CI methods are sensitive to the quality of load data, namely the noise factors might result in
redundant uncertainty due to the fluctuations in interval size.

However, for the short-term load forecasting (STLF) in an hour-ahead situation, the procedure of
LF must be effective so that market operators and participants can react in time [31]. Hence, the massive
computation and time cost of quantile methods are unbearable. Although interval methods with the
application of ELM can overcome these limitations by removing training steps, the accuracy of output
highly depends on its random given parameters [32]. In addition, the fixed intervals of PI methods
and the redundant uncertainty of CI methods are adverse. Meanwhile, the impacts of load data noise
on the PLF can not be neglected [33]. Variable selection and feature extraction are the critical steps
for better performance in PLF. Xie [34] and Reis [35] summarized the frequently-used tools in load
data processing, among which correlation analysis and wavelet transform were the most typical and
efficient ones to be integrated into load forecasting ensembles [36].

In this paper, an integration scheme for PLF is proposed in order to strike a trade-off among
the advanced techniques mentioned above. The proposed scheme is a CI method that integrates
the techniques of wavelet packet transform, correlation analysis, Gaussian process and improved
weighted ELM. More specifically, the load data in time series form are selected and extracted by the
cooperation of wavelet packet transform and correlation analysis. The improved weighted ELM with
a computation reducing switch algorithm is the core of the forecasting model, while the Gaussian
process provides probabilistic intervals. Furthermore, the load data are separated into principal parts
and noise. The principal parts are utilized to load forecasting, while the noise, as a part of total
forecasting uncertainty, is merged with the model uncertainty.

The contributions of this paper are summarized as follows:

(1) The innovative scheme of combining wavelet packet transform and correlation analysis methods
is proposed to remove noise from raw data.

(2) The improved weighted ELM is applied for forecasting, and a computation reducing switch
algorithm is presented to obtain stable parameters for this ELM.
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(3) Considering the forecasting uncertainty, the Gaussian process is creatively used to deal with the
noise uncertainty and generate CIs for PLF.

(4) Newly raised criteria and an indicator are adopted for efficiency validation and contrast between
different PLF methods involved in comparisons.

The remainder of the paper is organized as follows. In Section 2, the techniques involved
in the integration scheme are elaborated sequentially. Section 3 explains the whole procedure for
implementing load forecasting in detail. Validation and case study with real data are demonstrated
in Section 4. Section 5 provides analysis and discussion of the results, while Section 6 concludes the
whole paper.

2. Methodology

2.1. Wavelet Packet Transform (WPT)

Wavelet transform (WT) is an efficient tool for signal analysis in the time-frequency domain. As an
extension of WT, WPT further decomposes the detailed information in the high-frequency region [37].
This ability makes it possible for WPT to be applied to remove Gaussian noise from the original signal.
Based on the multi-resolution analysis (MRA) [38], the procedure for a 3-level signal decomposition is
shown in Figure 1. The load series S is broken down into approximation (A) components and detail
(D) components.

(A)A1

A1

Load series  S

(A)D1 (D)A2 (D)D2

D1

(AA)A1 (AA)D1 (AD)A2 (AD)D2 (DA)A3 (DA)D3 (DD)A4 (DD)D4

Figure 1. Procedure for signal decomposition using wavelet packet transform (WPT).

Most of the load data in STLF have complex detail components due to the volatile environment.
A more precise forecast may be available after neglecting these components [39]. The wavelet bases of
Daubechies (db) and Coiflets (coif) are proved to be capable of treating the load data [40]. In this paper,
wavelet families of db2-db5 and coif2-coif5 are involved in data processing.

2.2. Correlation Analysis

As a basic method in statistics, correlation analysis is used to dig out the relationship between
a pair of variables. For predicting future behavior, it is essential that the variables have the similar
trend or distribution. An expression called the Pearson correlation coefficient (PCC) is commonly
recognized as the standard of correlation analysis. The value of PCC ranges from −1 to 1, with −1,
0, 1 indicating that the two variables are perfectly negatively correlated, uncorrelated and perfect
positive correlated, respectively. An autocorrelation coefficient (AC) is a special case of PCC where the
variables are the sub-series of the same series with various time series indexes. By defining S(t0) and
S(t1) as the sub-series of variable S with time series indexes t0 and ti (i 6= 0), the AC is defined as

ρS(ti)
=

Cov (S(t0), S(ti))√
D (S(t0))

√
D (S(ti))

=
Cov (S(t0), S(ti))

D (S)
, (1)

where ρS(ti)
is the AC between variables S(t0) and S(t1), Cov (·) is the covariance, and D (·) is

the variance. ρS(ti)
is determined by ti only. For both PCC and AC, it is generally accepted that

a little correlation exists when their absolute values are below 0.3 and the absolute values exceed 0.5
means that the series are related [41].
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In this paper, the two above standards are adopted to pick out the relevant sub-series from load
data and extract features from the wavelet components, which have stronger autocorrelation than the
origin sub-series. The proposed method is shown in Figure 2.

Wavelet packet 

decomposion

Load data S

ACs> 1 ?

t=(t1,t2,t3 ) A1~A4 , D1~D4

ACs> 2?

Load features F Noise N

Yes No

Yes

A*(t) , D*(t) A
~
(t) , D

~
(t)

Figure 2. Flowchart of the correction analysis method.

According to Figure 2, the load data S is divided into load features F and noise N. ρ1 and ρ2 are the
standards for load data filtering in time domain and wavelet domain. A∗(t), D∗(t) and A∼(t), D∼(t)
are the sub-series of wavelet components at time series t . To be proportional to correlation, ACs are in
the form of absolute value. Indeed, the PCCs between different approximation and detail components
are near zero since the components are decomposed by orthogonal wavelet bases. Then, Equation (1)
is also expressed as

ρS(ti) =
Cov (S(t0), S(ti))√

D (S(t0))
√

D (S(ti))
=

Cov (F(t0) + N(t0), F(ti) + N(ti))√
D (F(t0) + N(t0))

√
D (F(ti) + N(ti))

=
Cov (F(t0), F(ti)) + Cov (F(t0), N(ti)) + Cov (N(t0), F(ti)) + Cov (N(t0), N(ti))√

D (F(t0)) + D (N(t0)) + 2Cov (F(t0), N(t0)) ·
√

D (F(ti)) + D (N(ti)) + 2Cov (F(ti), N(ti))

≈ Cov (F(t0), F(ti)) + Cov (N(t0), N(ti))

D (F(t0)) + D (N(t0))
.

(2)

Setting ρ1 ≥ ρ2, the relation for ACs of S and N is obtained as

ρS(ti)
> ρ1 ≥ ρ2 > ρN(ti)

, (ti ∈ t) . (3)

Combining Equation (2) and Equation (3), the connection for ACs of S and F can be formulated
as follows:

ρF(ti)
− ρS(ti)

=
Cov (F(t0), F(ti))

D (F(t0))
− Cov (F(t0), F(ti)) + Cov (N(t0), N(ti))

D (F(t0)) + D (N(t0))

=
Cov (F(t0), F(ti)) D (N(t0))

D (F(t0)) · [D (F(t0)) + D (N(t0))]
− Cov (N(t0), N(ti)) D (F(t0))

D (F(t0)) · [D (F(t0)) + D (N(t0))]

=
D (N(t0))

D (F(t0))
·
(

ρS(ti)
− ρN(ti)

)
> 0.

(4)

Based on the analysis above, it is concluded that F has stronger autocorrelation than S and is better
for tendency forecasting. N is a series with little autocorrelation which contributes nearly nothing to
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future prediction. The distribution of N can be approximated by Gaussian distribution. Extracted from
actual load series, distributions of N can be seen in Figure 3.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Distribution of N

Normal distribution 

×
10410K 
4W

×104  kW

(a)Values of N decomposed by db3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Distribution of N

Normal distribution 

×104  kW

(b)Values of N decomposed by db4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Distribution of N

Normal distribution 

×104  kW

(c)Values of N decomposed by coif2

-1.5 -1 -0.5 0 0.5 1 1.5

Distribution of N

Normal distribution 

×104  kW

(d)Values of N decomposed by coif5

Figure 3. The distributions of N compare to normal distribution.

2.3. Gaussian Process

Gaussian (Normal) distribution is the most common continuous probability distribution in
statistics. The notation of a Gaussian distribution with mean value µ and variance σ2 is represented as
N ∼

(
µ, σ2). Its probability density function(PDF) is defined as

f (x) =
1√
2πσ

e

(
− (x−µ)2

2σ2

)
, (5)

where x is a random variable. Preferably, for d independent univariate Gaussian distributions
Nα ∼

(
µα, σα

2) , α = 1, 2, · · · · · · d, it is well-known the product and convolution of their PDFs are also
Gaussian PDFs [42]. Define Np ∼

(
µp, σp

2) and Nc ∼
(
µc, σc

2) as the new Gaussian distribution for the
product and convolution of d independent univariate Gaussian distributions. It can be calculated that

µp =
d

∑
α=1

(
µα

σα
2 ·
)

σp
2 σp

2 =
d

∑
α=1

1
σα

2 , (6)

µc =
d

∑
α=1

µα σc
2 =

d

∑
α=1

σα
2, (7)

where the µp, σp
2 are the mean value and variance for the product of Gaussian PDFs, and µc, σc

2 are
for the convolution case. Normally, the product process mainly works on combining the independent



Appl. Sci. 2019, 9, 4215 6 of 17

estimations of the Gaussian distribution, while the convolution process accumulates the uncertainty
caused by independent factors.

2.4. Improved Weighted Extreme Learning Machine (IWELM)

(1) Basic ELM: ELM is a single layer feed-forward network which is widely accepted for its simple
training process and excellent performance in generalization. An origin ELM model on one of N
samples (xn, rn) , n = 1, 2, · · · · · ·N can be described by

L

∑
l=1

g (xn ·wl + bl)βl = on, (8)

where xn= [xn1, xn2 . . . . . . xnK] is the input vector, rn and on are desired and actual output, respectively.
wl=[w1l , w2l . . . . . . wKl ]

T , l = 1, 2, · · · · · · L is the input weight, bl is the bias of hidden layer, and βl is
the output weight. For all training samples, the whole model can be written as

Hβ = g (X ·W + u · b) β = o, (9)

where X=
[
x1

T , x2
T . . . . . . xn

T]T is the input matrix, W=
[
w1

T , w2
T . . . . . . wL

T]T is the input weight
matrix, u is a N-dimensional column vector in which all the elements are 1, b = [b1, b2 . . . . . . bL] is the
bias vector, r=[r1, r2 . . . . . . rN ]

T is the output vector, and H is the hidden layer output matrix, which
is obtained by giving W, b randomly. Then, the output weight vector can be directly calculated by
β = H†r, where H† is the Moore–Penrose generalized inverse of H.

(2) Weighted ELM: Considering the importance degree of features, a branch of ELM called
weighted extreme learning machine (WELM) inserts a coefficient matrix Υ= diag [γ1, γ2 . . . . . . γK]

between X and W. WELM associates each input feature with the hidden layer through a controllable
parameter γk ∈ Υ (k = 1, 2 · · · · · ·K). The whole model is expressed by rewriting Equation (9) as

HΥβ = g (X · Υ ·W + u · b) β = o. (10)

For all the training data, the effect of each input feature on hidden layer nodes can be adjusted
flexibly as is shown in Figure 4. Overall, Υ and β are respectively regarded as the input and output
structural parameters of the WELM model.

xn1

xn2

xnK

rn

1

2

K

xn (W b)

Figure 4. The structure of the weighted extreme learning machine (WELM) model.

However, there are two problems with the application of WELM: on the one hand, compared with
the increasing computation brought by extra parameters γk, the significance of these extra parameters
to LF is ambiguous. On the other hand, the results of this model are various owing to its random
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weights and biases. In this paper, an improved WELM model with an optimization algorithm is
provided to resolve the above problems.

(3) IWELM: Firstly, the coefficient matrix Υ is divided into blocks so as to tackle the redundancies
brought by the similarity of different features. The blocks of the input features decomposed by
a certain wavelet family is proved to be capable of forecasting future load demand as an individual
predictor [43]. To take advantage of all the individual predictors, the structure of these predictors is
specified by Υ. For example, for all the features xnk (k ∈ Z, k ∈ [1, K]) decomposed by db2, it is defined
that γk = γdb2. γdb2 is the weight of the above features in the hidden layer nodes and the output.

Secondly, instead of picking the parameters randomly, an improved switch optimization algorithm
is presented to attain fixed values for Υ and W, b. For minimizing the forecasting errors, the loss
function η of training data are defined as

η=‖Hβ− r‖2 =
N

∑
i=1

ξi
2 =

N

∑
i=1

(oi − ri)
2, (11)

where ‖·‖ stands for the L2 vector norm. ξi is the output error of the ith sample. To avoid overfitting in
optimization, the Tikhonov regularization [44] is used to restrict the norm of output weights while
minimizing the loss. Then, the loss function is rewritten as

ηG=C‖Hβ− r‖2 + ‖β‖2, (12)

where ηG is the generalized loss function, and C is the regularization parameter. Using the
Karush-Kuhn-Tucker (KKT) conditions [45], the optimal equation for β is solved as

∂ηG
∂β

=0→ β=

(
I
C
+ HTH

)−1
HTr, (13)

where ∂·
∂· is the symbol of partial derivative. After acquiring β, the minimization of ηG tends

to be a optimal problem with Υ and W, b, which is usually solved by a gradient descent (GD)
iterative method.

Iterative algorithms seldom occur in ELM networks due to the massive computation of
calculating the generalized inverse matrix in the iterative loops. An advanced algorithm named
Levenberg–Marquardt (LM) is applicable for ELM [46], but the number of parameters is strictly limited.

In this paper, an improved switch optimization algorithm based on the special structure of
IWELM is proposed. Defining Ḣ, β̇ and ṙ as the targets of optimization and output, the target model is
expressed by

ṙ = Ḣ β̇ = (H + ∆H) (β + ∆β) . (14)

Then, the switch algorithm is employed to eliminate ∆H, ∆β, which are the redundant parts of H
and β, respectively. The scheme for the proposed switch algorithm is shown in Figure 5. This switch
algorithm reserves the accuracy of the iterative algorithm and reduces the computation through
a 2-layer loops frame that is composed of the LM and Adam algorithm. A specific criterion is involved
in switching from LM to Adam.

LM on ss

Coarse-tuning for a 

better structure with 

the blocks 

Adam on ssss

Fine-tuning for a 

minimum value with 

the output 

Switching criterion
0

,W b

Figure 5. The principle for the proposed switch algorithm.
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The coarse-tuning is a rapid adjustment on structural parameters Υ and β, where Υ is optimized
by the LM algorithm and β is calculated by Equation (13). The fine-turning is an iterative process
which aims to obtain accurate values for W and b. The steps of the proposed switch algorithm are
outlined in Algorithm 1. The symbol⊗means the element-wise multiplication. J indicates the Jacobian
matrix, and κ represents for the switching criterion. Further details about the original switch algorithm
can be consulted in [47].

According to the steps in Algorithm 1, the first period of each outer loop is the LM algorithm that
is a trust-region algorithm. On this account, the proposed switch algorithm is convergent. The ultimate
objective of the switch algorithm is a certain IWELM model with stable parameters Υ, W, b, β.
The computation is reduced by removing the calculation of the generalized inverse matrix from the
iterative process.

Algorithm 1 Switch from LM to Adam.

1: Initialize: δ=10−6, β1 = 0.9, β2 = 0.999, T2 = 20, Υ = IW and b are given randomly
β = H†r, η=‖Hβ− r‖2

2: Begin:
3: while η0 < η do
4: κ = 1, t1 = 0
5: while κ > 10−3& t1 < T1 do (LM)

6: J =
[(

∂ξ1
∂Υ

)T
,
(

∂ξ2
∂Υ

)T
. . . . . .

(
∂ξn
∂Υ

)T
]T

, ∆Υ = −
(
JTJ + λI

)
JT (Hβ− r)

7: Υ′=Υ + ∆Υ, β′=
(

I/C + HTH
)−1HTr

8: if η < ‖Hβ′ − r‖ then
9: κ=‖β′ − β‖

/
‖β‖, η ← ‖Hβ′ − r‖

10: β← β′, Υ←′, λ← λ/10
11: else
12: λ← 10λ, t1 ← t1 + 1
13: end if
14: end while
15: t2 = 0, u0 = 0, v0 = 0
16: while t2 < T2 do (Adam)
17: gt2

= ∂η
/

∂ (W, b), t2 ← t2 + 1, ut2 = β1

1−β
t2
1

ut2−1 +
1−β1

1−β
t2
1

gt2

18: vt2 = β2

1−β
t2
2

vt2−1 +
1−β2

1−β
t2
2

gt2
⊗ gt2

, (W, b)← (W, b) + 0.001 · ut2√vt2+ε

19: end while
20: end while
21: Return Υ, W, b, β

3. Implementation

In practice, the load data set is divided into training samples and testing samples for validation.
To accomplish the PLF task, an integration scheme composed of the methods in Section 2 is proposed.
The flowchart of the integration scheme is shown in Figure 6. As is seen in the flowchart, training
samples are broken down into components by the method mentioned in Figure 2, and testing samples are
extracted with the same indexes in the time domain and wavelet domain. Then, the Gaussian method
in Equation (6) is employed to obtain the Gaussian distribution N ∼

(
µr, σr

2) from the homogeneous
components decomposed by the wavelet families, where µr is treated as ṙ in IWELM model and σr

2 is the
variance of Gaussian noise. An example for this Gaussian process can be seen in Figure 7.
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Figure 6. Flowchart of the proposed integration scheme.
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In the next step, all features F decomposed by the involved wavelet family are gathered as the
input of the IWELM model. Then, the model is trained with Algorithm 1 on training samples (F, ṙ). σξ

2

is the variance of errors between ṙ and training output, which is also deemed as the model uncertainty.
Finally, based on the testing samples, the trained IWELM model is exploited to obtain the

forecasting output o. The total uncertainty σo
2 is the convolution of the σr

2 and σξ
2, and the forecasting

output of the whole scheme is N ∼
(
o, σo

2).
4. Results

4.1. Data Sets

The load data are derived from the files released in GEFcom2014 [22]. Both load data and
temperature data are provided in these files. Although additional input features of temperature data
and other exogenous variables are helpful to STLF in some cases, the redundant part of these features
will add into uncertainties for PLF [23,28,40]. In this paper, hourly load data of four stations are picked
out as the forecasting data sets. The load data of these areas differ in orders of magnitude. For each
station, load data of 14 months are involved. The load data of 2005 are collected as the training samples,
while the first 2 months of 2006 are separated as the testing samples. The ranges of data from stations
1–4 are, respectively, [80,290], [3,18], [10,60], [49,215] ×103 (kW). The standardization step in features
processing is skipped since only load data are used. The load data part of the data sets is shown
in Figure 8.

Apr. May. June. July. Aug. Sep.

0.5

1

1.5

2

2.5
10

5

L
o
a
d
/k
W

Figure 8. Load data of the second and third quarters in 2005.

4.2. Models for Comparison

To confirm the superiority of the proposed integration scheme, three state-of-the-art methods of
PLF are adopted as comparisons, which are successively quantile regression, prediction interval and
confidence interval methods.

Model 1 (QRNN): The quantile regression neural network (QRNN) model discussed in [48] is
directly used for PLF. The Huber function [47] is the substitute of the loss function, which is a hybrid
of the absolute value and squared error functions.

Model 2 (GELM+NN): The statement of this model can be found in [28]. A wavelet processing
with Daubechies is applied to the generalized ELM for load forecasting. The total uncertainty for PLF is
the summation of model uncertainty and noise uncertainty. The noise is predicted by a neural network.

Model 3 (hybrid ELM+Bootstrapping): This model is an extension of the load forecasting model
published in [40]. The hybrid neural network with an ensemble feature selection method is used as
the main part of load forecasting, while the bootstrapping method works for PLF. This model is also
regarded as the reference of the proposed model that neglects the noise factor.
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4.3. Evaluation Criteria and Result

Validating the proposed model with load data of station 1, the forecasting results are formed
from load values with CIs that are determined by the total uncertainty. The former and latter 200 h
of forecasting results are respectively shown in Figures 9 and 10. The palettes attached to the right
of the figures indicate that the confidence level ranges from 0% to 100%, which corresponds to the
color changes from dark green to light green. It can be recognized that the results are credible most
of the time. Table 1 presents the accuracy of the forecasting results under various confidence levels.
The confidence level can be obtained by setting the value of z according to the standard normal (z)
distribution table. Then, the accuracy is represented by the coverage of CIs ranging from µ− zσ to
µ + zσ.

It is evident that the larger interval size can improve the forecasting accuracy, though the
additional uncertainty is undesirable. For the purpose of a pertinent contrast between different
classifications in PLF methods, three criteria are designed here to reach a fair comparison among the
particular ones:
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Figure 9. The former 200 h of results predicted by the proposed model.
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Figure 10. The latter 200 h of results predicted by the proposed model.

(1) Accuracy under the same confidence level (A/CL): A/CL is obtained by calculating the accuracy
under an exact quantile or confidence level. This criterion is suitable for the comparison of quantile
regression and CI methods, both of which aim at variable interval size. The graphical results
of Model 1 and proposed model under quantile and confidence level of 50% are displayed in
Figure 11. As shown in Table 1, the Model 1 performs better than the proposed model only when
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the quantile/confidence-level is set to be low, i.e., 10% and 20%. As the quantile/confidence-level
increases, the proposed model is more accurate than Model 1 and it better adapts to the given
quantile/confidence-level.

Table 1. Accuracy comparison between Model 1 and the proposed model.

Quantile/Confidence-Level 10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

Model 1 20% 28% 30% 35% 38% 43% 51% 56% 60% 72%
proposed model 12% 21% 31% 38% 46% 53% 68% 74% 88% 94%

(2) Uncertainty under equal accuracy (U/A): U/A is obtained by summing the total interval size
under the same accuracy. It provides a feasible way to deal with the variable interval size, which is
a barrier in comparing the PI and CI methods. Lower uncertainty also means fewer risks of predicting
load within a required accuracy level. Comparing Model 2 and proposed model under accuracy of 90%,
the results in Figure 12 show that the proposed model can forecast the load with a smaller interval size.
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Figure 11. Accuracy under the same confidence level (A/CL) comparison between Model 1 and the
proposed model under confidence level 50%.
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Figure 12. Uncertainty under equal accuracy (U/A) comparison between Model 2 and the proposed
model under accuracy 90%.

(3) Accuracy under equal uncertainty (A/U): A/U is obtained by calculating the accuracy under
equal uncertainty (2zσ). It is designed especially for concise access to distinguish the CI methods,
of which the total uncertainty can be easily calculated. As seen in Figure 13, CI methods of Model 3
and proposed model are traced in A/U form. It is clear that the proposed model is more efficient for all
given levels of uncertainty. All of the statistical characteristics are described Figure 14 for an intuitive
comparison. Influenced by the environmental noise, the raw load data may contain some extreme



Appl. Sci. 2019, 9, 4215 13 of 17

values. There is no need to cover all these outliers while forecasting. After eliminating the impact of
noise, the fluctuation of forecasting errors obtained from proposed model is smoother. Therefore, lower
uncertainty is needed to cover the fluctuation.
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Figure 13. Accuracy under equal uncertainty (A/U) comparison between Model 3 and the
proposed model.

Figure 14. Statistical box-plot for forecasting error contrast to uncertainty of the proposed model and
Model 3.

Figures 11–14 show graphical comparisons between the proposed model and the contrast models.
It is obvious that the proposed model delivers better results in the validations above. To elaborate
a little further, the data from four selected stations are devoted to testing all the cases. For a common
method to measure the utility of candidate models, an indicator named mean interval proportion
(MIP) is introduced as follows:

Pτ =
1
N

N

∑
i=1

Ui
(τ) − Li

(τ)

ri
, (15)

where Pτ is the MIP indicator which means the proportion of interval size in actual load value at
coverage τ. Ui

(τ) and Li
(τ) are respectively the lower and upper thresholds of the interval at coverage

τ. The closed intervals formed by the above thresholds represent the least uncertainties at a certain
coverage, while the MIPs indicate the maximum tolerance of forecasting errors. Explicitly, the thorough
numerical contrast of MIPs among the candidate models can be consulted in Tables 2 and 3.
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Table 2. Performance comparison of the methods under 50%/90% coverage.

Method τ = 50% τ = 90%

Model 1 Model 2 Model 3 Proposed Model 1 Model 2 Model 3 Proposed Model

station 1 0.067 0.072 0.077 0.058 0.268 0.159 0.154 0.114
station 2 0.064 0.068 0.072 0.046 0.241 0.166 0.147 0.184
station 3 0.071 0.081 0.104 0.062 0.301 0.162 0.194 0.171
station 4 0.066 0.076 0.081 0.049 0.255 0.184 0.139 0.108

Table 3. Performance comparison of the methods under 99%/100% coverage.

Method τ = 99% τ = 100%

Model 1 Model 2 Model 3 Proposed Model 1 Model 2 Model 3 Proposed Model

station 1 0.343 0.252 0.251 0.216 0.344 0.292 0.305 0.285
station 2 0.321 0.267 0.260 0.202 0.324 0.289 0.342 0.301
station 3 0.372 0.271 0.299 0.277 0.377 0.331 0.384 0.364
station 4 0.315 0.263 0.249 0.220 0.315 0.301 0.317 0.297

5. Discussion

The probabilistic forecasting methods discussed in this study tend to provide more detailed
information about forecasting output. The proposed model and three state-of-the-art models of
quantile, CI and PI methods are simulated for a comprehensive comparison. Validated with numerous
data and experiments, prominent results are highlighted in bold. Apparently, the two CI methods hold
the steady response. The QRNN method, though having the worst performance at higher coverage,
is found to be barely satisfactory at τ = 50%. The proposed model achieves encouraging results
most of the time. One exception is that the performance of the PI method is surprisingly remarkable
on station 3, which contains the amount of an outlier due to treacherous weather in its location.
Although the CI methods are sensitive to data noise, the proposed integration scheme outperforms
other methods in terms of accuracy and can forecast the load with smaller intervals.

6. Conclusions

The course of load forecasting is laborious for the sake of various affecting factors in nature.
In this paper, an integration scheme of multiple methods is proposed for probabilistic forecasting on
short-term electric load demand. To boost the efficiency of probabilistic load forecasting, several
improvements are exploited within the integration scheme. Firstly, a cooperation of WPT and
correlation analysis is applied to remove data noise. Secondly, the IWELM with a computation
reducing switch algorithm is presented for load forecasting. Thirdly, the CIs of forecasting results
are produced by the Gaussian process. Finally, the superiority of the proposed model is validated
by actual load data from GEFcom2014, and the corresponding criteria are designed for comparison.
The results show that the proposed integration scheme is more flexible, reliable and effective than the
other available methods.
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