Endpoint Use Efficiency Comparison for AC and DC Power Distribution in Commercial Buildings
Abstract
:1. Introduction
2. Methods
- i.
- Characterize the efficiency of endpoint converters across their full load range.
- ii.
- Characterize realistic loads observed in office MELs by acquiring time-series load data.
- iii.
- Weight the converter efficiency by the observed load levels to create a weighted energy efficiency comparable between AC/DC and DC/DC test converters.
2.1. Test Converters Characterization
2.2. Converter Types
2.3. Power Monitoring
2.4. Endpoint Efficiency Weighted by Time Series Load Data
2.5. Context Summary
3. Results
3.1. Power Consumption Monitoring
3.2. Converter Selection
3.2.1. Single Input Single Output (SISO) Test Converters
3.2.2. Single Input Multiple Output (SIMO) Test Converters
3.2.3. 70 W SIMO Test Converters
3.2.4. 110 W SIMO Test Converters
3.2.5. 185 W SIMO Test Converters
3.3. Observations in AC/DC Central Converter Efficiency
4. Discussion
4.1. Interpretation of Test Converters Results
4.2. Example Comparison to Representative Efficiency Studies
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siraj, K.; Khan, H.A. DC distribution for residential power networks—A framework to analyze the impact of voltage levels on energy efficiency. Energy Rep. 2020, 6, 944–951. [Google Scholar] [CrossRef]
- Estimated, U.S. Energy Consumption in 2020: 92.9 Quads. 2020. Available online: https://flowcharts.llnl.gov/content/assets/docs/2020_United-States_Energy.pdf (accessed on 20 May 2021).
- Langner, R.; Trenbath, K. Integrating Smart Plug and Process Load Controls into Energy Management Information System Platforms: A Landscaping Study; Technical Report NREL/TP-5500-74080; National Renewable Energy Laboratory: Golden, CO, USA, 2019. [Google Scholar] [CrossRef] [Green Version]
- Seo, G.S.; Baek, J.; Choi, K.; Bae, H.; Cho, B. Modeling and analysis of DC distribution systems. In Proceedings of the 8th International Conference on Power Electronics-ECCE Asia, Jeju, Korea, 30 May–3 June 2011; pp. 223–227. [Google Scholar]
- Pang, H.; Lo, E.; Pong, B. DC electrical distribution systems in buildings. In Proceedings of the 2006 2nd International Conference on Power Electronics Systems and Applications, Hong Kong, China, 12–14 November 2006; pp. 115–119. [Google Scholar]
- Prabhala, V.A.; Baddipadiga, B.P.; Fajri, P.; Ferdowsi, M. An Overview of Direct Current Distribution System Architectures & Benefits. Energies 2018, 11, 2463. [Google Scholar]
- Mackay, L.; Blij, N.H.V.D.; Ramirez-Elizondo, L.; Bauer, P. Toward the universal DC distribution system. Electr. Power Components Syst. 2017, 45, 1032–1042. [Google Scholar] [CrossRef] [Green Version]
- Pratt, A.; Kumar, P.; Aldridge, T.V. Evaluation of 400 V DC distribution in telco and data centers to improve energy efficiency. In Proceedings of the 29th International Telecommunications Energy Conference (INTELEC 07), Rome, Italy, 30 September–4 October 2007; pp. 32–39. [Google Scholar]
- Gerber, D.L.; Liou, R.; Brown, R. Energy-saving opportunities of direct-DC loads in buildings. Appl. Energy 2019, 248, 274–287. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.D.C.; Agelidis, V.G. Photovoltaic-battery-powered DC bus system for common portable electronic devices. IEEE Trans. Power Electron. 2009, 24, 849–855. [Google Scholar] [CrossRef]
- Rasheed, A.; Khan, S.; Gelani, H.E.; Dastgeer, F. AC vs. DC Home: An Efficiency Comparison. In Proceedings of the 2019 International Symposium on Recent Advances in Electrical Engineering (RAEE), Islamabad, Pakistan, 28–29 August 2019; Volume 4, pp. 1–6. [Google Scholar]
- Vossos, V.; Garbesi, K.; Shen, H. Energy savings from direct-DC in US residential buildings. Energy Build. 2014, 68, 223–231. [Google Scholar] [CrossRef]
- Azazi, H.; El-Kholy, E.; Mahmoud, S.; Shokralla, S. Review of passive and active circuits for power factor correction in single phase, low power AC-DC converters. In Proceedings of the 14th International Middle East Power Systems Conference (MEPCON’10), Cairo, Egypt, 19–21 December 2010; p. 217. [Google Scholar]
- Singh, B.; Singh, B.N.; Chandra, A.; Al-Haddad, K.; Pandey, A.; Kothari, D.P. A review of single-phase improved power quality AC-DC converters. IEEE Trans. Ind. Electron. 2003, 50, 962–981. [Google Scholar] [CrossRef] [Green Version]
- Sannino, A.; Postiglione, G.; Bollen, M.H.J. Feasibility of a DC Network for Commercial Facilities. In Proceedings of the Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344), Pittsburgh, PA, USA, 13–18 October 2002; Volume 39, pp. 1499–1507. [Google Scholar] [CrossRef]
- Starke, M.; Tolbert, L.M.; Ozpineci, B. AC vs. DC distribution: A loss comparison. In Proceedings of the 2008 IEEE/PES Transmission and Distribution Conference and Exposition, Chicago, IL, USA, 21–24 April 2008; pp. 1–7. [Google Scholar]
- Gerber, D.L.; Vossos, V.; Feng, W.; Marnay, C.; Nordman, B.; Brown, R. A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings. Appl. Energy 2018, 210, 1167–1187. [Google Scholar] [CrossRef] [Green Version]
- Engelen, K.; Shun, E.L.; Vermeyen, P.; Pardon, I.; D’hulst, R.; Driesen, J.; Belmans, R. The feasibility of small-scale residential DC distribution systems. In Proceedings of the 32nd Annual Conference on IEEE Industrial Electronics (IECON 2006), Paris, France, 6–10 November 2006; pp. 2618–2623. [Google Scholar]
- Calwell, C.; Mansoor, A. AC-DC server power supplies: Making the leap to higher efficiency. In Proceedings of the Twentieth Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2005), Austin, TX, USA, 6–10 March 2005; Volume 1, pp. 155–158. [Google Scholar]
- What Is Energy Star. 2021. Available online: https://www.energystar.gov/about?s=footer&s=footer (accessed on 22 May 2021).
- Asensio, O.I.; Delmas, M.A. The effectiveness of US energy efficiency building labels. Nat. Energy 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Working with Global Businesses to Drive the Transition to a Net-Zero Economy. 2021. Available online: https://wwf.panda.org/discover/our_focus/climate_and_energy_practice/what_we_do/climatebusiness/climate_business_network/? (accessed on 22 May 2021).
- Trifilova, A.; Bessant, J.; Jia, F.; Gosling, J. Sustainability-driven innovation and the Climate Savers’ programme: Experience of international companies in China. Corp. Gov. 2013, 13, 599–612. [Google Scholar] [CrossRef] [Green Version]
- Energy Efficiency Requirements by Levels. 2021. Available online: https://slpower.com/data/collateral/PW153KB_DS.pdf (accessed on 22 May 2021).
- Energy Conservation Program: Energy Conservation Standards for External Power Supplies. 2014. Available online: https://www.energy.gov/sites/prod/files/2014/02/f7/eps_ecs_final_rule.pdf (accessed on 22 May 2021).
- What Is 80 PLUS Certified? 2021. Available online: https://www.clearesult.com/80plus/program-details#program-details-table (accessed on 22 May 2021).
- Khan, F.H.; Geist, T.D.; Vairamohan, B.; Fortenbery, B.D.; Hubbard, E. Challenges and Solutions in Measuring Computer Power Supply Efficiency for 80 PLUS® Certification. In Proceedings of the 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, 15–19 February 2009; pp. 2079–2085. [Google Scholar]
- Li, Q.; Lee, F.C.; Xu, M.; Wang, C. Light load efficiency improvement for PFC. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 3755–3760. [Google Scholar]
- Rasmussen, N. AC vs. DC power distribution for data centers. Am. Power Convers. Tech. Rep. 2007, 63. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj3zYf1g4PzAhWNu54KHSoRDoMQFnoECAQQAQ&url=https%3A%2F%2Fdownload.schneider-electric.com%2Ffiles%3Fp_enDocType%3DWhite%2BPaper%26p_File_Name%3DWP63R6.pdf%26p_Doc_Ref%3DSPD_SADE-5TNRLG_EN&usg=AOvVaw09s9iGVph3zYU8jRrf8tJu (accessed on 30 August 2021).
- Becker, D.J.; Sonnenberg, B. DC microgrids in buildings and data centers. In Proceedings of the 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, The Netherlands, 9–13 October 2011; pp. 1–7. [Google Scholar]
- Evans, V. Why Low Voltage Direct Current Grids? Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2013. [Google Scholar]
- Murari, K.; Padhy, N.P. A network-topology-based approach for the load-flow solution of AC–DC distribution system with distributed generations. IEEE Trans. Ind. Inform. 2018, 15, 1508–1520. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Eltantawy, A.B.; Salama, M. A generalized approach to the load flow analysis of AC–DC hybrid distribution systems. IEEE Trans. Power Syst. 2017, 33, 2117–2127. [Google Scholar] [CrossRef]
- Opiyo, N.N. A comparison of DC-versus AC-based minigrids for cost-effective electrification of rural developing communities. Energy Rep. 2019, 5, 398–408. [Google Scholar] [CrossRef]
- Liu, Z.; Li, M. Research on energy efficiency of Dc distribution system. AASRI Procedia 2014, 7, 68–74. [Google Scholar] [CrossRef]
- Santos, A.; Duggan, G.P.; Young, P.; Frank, S.; Hughes, A.; Zimmerle, D. Harmonic cancellation within AC low voltage distribution for a realistic office environment. Int. J. Electr. Power Energy Syst. 2022, 134, 107325. [Google Scholar] [CrossRef]
- Newmiller, J.; Erdman, W.; Stein, J.S.; Gonzalez, S. Sandia Inverter Performance Test Protocol efficiency weighting alternatives. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 0897–0900. [Google Scholar] [CrossRef]
- Bower, W.; Whitaker, C.; Erdman, W.; Behnke, M.; Fitzgerald, M. Performance Test Protocol for Evaluating Inverters Used in Grid-Connected Photovoltaic Systems; Sandia National Laboratories: Albuquerque, NM, USA, 2004. [Google Scholar]
- EMerge Alliance Occupied Space Standard FAQs. 2021. Available online: https://www.emergealliance.org/standards/occupied-space-2/standard-faqs/ (accessed on 25 November 2020).
- Mendelson, G. All You Need to Know about Power over Ethernet (PoE) and the IEEE 802.3 af Standard. Internet Cit. [Online] Jun. 2004. Available online: https://www.tymserve.us/documents/powerdsine/whitepapers/PoE_and_IEEE802_3af.pdf (accessed on 30 August 2021).
- Said, D.; Nor, K. Effects of harmonics on distribution transformers. In Proceedings of the 2008 Australasian Universities Power Engineering Conference, Sydney, NSW, Australia, 14–17 December 2008; pp. 1–5. [Google Scholar]
- Shareghi, M.; Phung, B.; Naderi, M.; Blackburn, T.; Ambikairajah, E. Effects of current and voltage harmonics on distribution transformer losses. In Proceedings of the 2012 IEEE International Conference on Condition Monitoring and Diagnosis, Bali, Indonesia, 23–27 September 2012; pp. 633–636. [Google Scholar]
- Korn, D.; Hinge, A.; Dagher, F.; Partridge, C. Transformers Efficiency: Unwinding the Technical Potential. In Proceedings of the 2000 ACEEE Summer Study on Energy Efficiency in Buildings; American Council for an Energy Efficient Economy: Washington, DC, USA, 2000; Volume 1, pp. 149–162. [Google Scholar]
- dos Santos, A.F.B. Device Characterization on Energy Design and Scoping Tool for DC Distribution Systems and a Study on Harmonics in AC/DC Converters in Low Voltage Distribution. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2020. [Google Scholar]
- EMerge Alliance Data/Telecom Center Standard. 2021. Available online: https://www.emergealliance.org/standards/data-telecom/ (accessed on 8 September 2021).
Converter ID | Brand | Model | Input Voltage | Output Voltage (VDC) | Rated Power (W) |
---|---|---|---|---|---|
Converter 1 | Mean Well | IRM-30-24ST | 100–240 VAC | 24 | 30 |
Converter 2 | Mean Well | RSD-30G-24 | 9–36 VDC | 24 | 30 |
Converter 3 | DELL | DA90PE1-00 | 100–240 VAC | 19.5 | 90 |
Converter 4 | BixPower | BX-DD90X-24 V | 24 VDC | 19.5 | 90 |
Converter 5 | Emaks | A1749 | 100–240 VAC | 15 | 90 |
Converter 6 | BixPower | BX-DD90X-24 V | 24 VDC | 15 | 90 |
Converter 7 | Integrated Power Designs | REL-70-4006-CHCO | 85–264 VAC | 5/24/12 | 70 |
Converter 8 | Integrated Power Designs | DC2-70-4006-CHCO | 18–36 VDC | 5/24/12 | 70 |
Converter 9 | Integrated Power Designs | DC4-70-4006-CHCO | 36–72 VDC | 5/24/12 | 70 |
Converter 10 | Integrated Power Designs | GRN-110-4003-CHCO | 85–264 VAC | 5/24/12 | 110 |
Converter 11 | Integrated Power Designs | DC2-110-4006-CHCO | 18–36 VDC | 5/24/12 | 110 |
Converter 12 | Integrated Power Designs | DC4-110-4006-CHCO | 36–72 VDC | 5/24/12 | 110 |
Converter 13 | Integrated Power Designs | REL-185-4001-CHCO | 85–264 VAC | 3.3/5/12 | 185 |
Converter 14 | Integrated Power Designs | DC2-185-4001-CHCO | 18–36 VDC | 3.3/5/12 | 185 |
Smart Plug ID | Device | Output Voltage (VDC) Voltage (VDC) | Power (W) | AC/DC Test Converter | DC/DC Test Converter |
---|---|---|---|---|---|
Smart Plug 1 | Netgear WNR2000 v3 | 12 | 36 | Converter 1 | Converter 2 |
Smart Plug 2 | HP Laptop | 19.5 | 90 | Converter 3 | Converter 4 |
Smart Plug 3 | Microsoft Laptop 1 | 15 | 90 | Converter 5 | Converter 6 |
Smart Plug 4 | Microsoft Laptop 2 | 15 | 90 | ||
Smart Plug 5 | ViewSonic Monitor | 5/12/24 | 36 | ||
Smart Plug 6 | HP Monitor E232 | 5/12/24 | 35 | ||
Smart Plug 7 | HP Monitor E232 | 5/12/24 | 35 | ||
Smart Plug 8 | HP Monitor E232 | 5/12/24 | 35 | ||
Smart Plug 9 | HP Monitor E242 | 5/12/24 | 38 | ||
Smart Plug 10 | Acer Monitor CB421HYK | 5/12/24 | 60 | Converter 7 | Converter 8, 9 |
Smart Plug 11 | Dell Monitor P2415Qp | 5/12/24 | 90 | Converter 10 | Converter 11, 12 |
Smart Plug 12 | HP Monitor E232 | 5/12/24 | 35 | ||
Smart Plug 13 | HP Monitor E273 | 5/12/24 | 42 | ||
Smart Plug 14 | HP Monitor E273 | 5/12/24 | 42 | ||
Smart Plug 15 | Apple Thunderbolt Display | 5/12/24 | 250 | ||
Smart Plug 16 | Dell Monitor E2010Ht | 5/12/24 | 26 | ||
Smart Plug 17 | Phillips Monitor 288P6L | 5/12/24 | 60 | Converter 7 | Converter 8, 9 |
Smart Plug 18 | HP Z240 Tower Workstation | 3.3/5/12 | 400 | ||
Smart Plug 19 | HP Z240 Tower Workstation | 3.3/5/12 | 400 | ||
Smart Plug 20 | Netgear RND-6C/RN31600 | 3.3/5/12 | 200 | Converter 13 | Converter 14 |
Laptops | Monitors | Desktops | Network Appliances | |
---|---|---|---|---|
Minimum Value | 4.4 | 16.8 | 0.2 | 2.8 |
Lower Quartile | 10 | 34.3 | 4.6 | 5.6 |
Median | 13.3 | 40.5 | 7.0 | 5.6 |
Mean | 18.2 | 39.8 | 7.3 | 12.9 |
Upper Quartile | 31.1 | 47.4 | 11.5 | 21.5 |
Maximum Value | 32.2 | 66.7 | 11.5 | 22.5 |
Device | Rated Power | 1% | 5% | 10% | 15% | 20% | 35% | 50% | 70% | 100% | Weighted Energy Efficiency | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Netgear | Eff. Conv. 9 (%) | 41.7 | 77.9 | 85.2 | 86.4 | 86.9 | 86.8 | 86.4 | 86.2 | 85.8 | AC | 80.5% |
WNR2000 | Eff. Conv. 10 (%) | 8.4 | 51.1 | 79.1 | 82.0 | 83.3 | 85.0 | 85.4 | 85.6 | 85.5 | DC | 67.1% |
v3 | Delta Eff (%) | −33.3 | −26.8 | −6.1 | −4.4 | −3.6 | −1.8 | −1.0 | −0.7 | −0.3 | Net Delta | −13.4% |
Eff. Conv. 1 (%) | 43.8 | 73.2 | 74.1 | 76.1 | 79.8 | 85.2 | 86.3 | 86.9 | 86.5 | AC | 84.2% | |
HP Laptop | Eff. Conv. 2 (%) | 37.1 | 71.1 | 85.1 | 89.4 | 91.3 | 93.2 | 93.2 | 92.5 | 91.0 | DC | 92.8% |
Delta Eff (%) | −6.7 | −2.0 | 11.0 | 13.3 | 11.5 | 8.0 | 6.9 | 5.6 | 4.5 | Net Delta | 8.6% | |
Microsoft | Eff. Conv. 3 (%) | 75.6 | 85.2 | 88.6 | 89.0 | 88.9 | 88.2 | 88.3 | 88.0 | 86.2 | AC | 88.8% */ 88.3% ** |
Laptop 1 * | Eff. Conv. 4 (%) | 40.1 | 68.8 | 84.8 | 89.1 | 91.0 | 92.7 | 92.6 | 91.6 | 89.3 | DC | 88.3% */ 86.1% ** |
and 2 ** | Delta Eff (%) | −35.5 | −16.4 | −3.8 | 0.2 | 2.0 | 4.5 | 4.3 | 3.6 | 3.1 | Net Delta | −0.6% */ −2.3% ** |
Test Converters 7, 8 & 9 | Max Power (W) | Load (W) | |||||
---|---|---|---|---|---|---|---|
Rated Power (W) | 70 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | |
1% | Out 1 (5 V) | 24.89 | 0.7 | - | - | - | - |
5% | Out 1 (5 V) | 24.89 | 3.5 | - | - | - | - |
Out 1 (5 V) | 24.89 | 7.0 | 7.4 | 7.4 | 7.9 | 8.4 | |
15% | Out 2 (24 V) | - | 1.5 | 1.6 | 2.1 | 2.1 | 1.1 |
Out 3 (12 V) | 143.37 | 2.0 | 1.6 | 1.1 | 0.5 | 1.1 | |
Out 1 (5 V) | 24.89 | 7.0 | 10.5 | 14.7 | 8.4 | 7.4 | |
30% | Out 2 (24 V) | - | 7.0 | 5.3 | 4.2 | 10.5 | 3.2 |
Out 3 (12 V) | 143.37 | 7.0 | 5.3 | 2.1 | 2.1 | 10.5 | |
Out 1 (5 V) | 24.89 | 7.0 | 14.0 | 8.4 | 11.2 | 9.8 | |
40% | Out 2 (24 V) | - | 14.0 | 7.0 | 8.4 | 14.0 | 4.2 |
Out 3 (12 V) | 143.37 | 7.0 | 7.0 | 11.2 | 2.8 | 14.0 | |
Out 1 (5 V) | 24.89 | 20.0 | 14.7 | 14.7 | 7.4 | 9.8 | |
70% | Out 2 (24 V) | - | 19.0 | 17.2 | 14.7 | 22.1 | 29.4 |
Out 3 (12 V) | 143.37 | 10.0 | 17.2 | 19.6 | 19.6 | 9.8 |
Rated Power (70 W) | 0% | 1% | 5% | 15% | 30% | 40% | 70% |
---|---|---|---|---|---|---|---|
AC Eff. Conv. 7, 120 VAC (%) | 0.0 | 9.0 | 31.6 | 53.6 | 64.8 | 68.8 | 73.7 |
DC Eff. Conv. 8, 24 VDC (%) | 0.2 | 12.5 | 38.4 | 58.8 | 69.7 | 72.8 | 75.8 |
DC Eff. Conv. 9, 48 VDC (%) | 0.0 | 12.4 | 39.7 | 60.4 | 71.1 | 75.5 | 78.5 |
Delta Eff. [Conv 8—7] (%) | 0.2 | 3.5 | 6.8 | 5.1 | 4.9 | 4.0 | 2.0 |
Delta Eff. [Conv 9—7] (%) | 0.0 | 3.4 | 8.1 | 6.8 | 6.3 | 6.7 | 4.7 |
Acer Monitor (60 W) | Phillips Monitor (60 W) | |
---|---|---|
AC | 59.5% | 61.4% |
DC (24 V) | 64.6% | 66.5% |
DC (48 V) | 66.0% | 67.8% |
Net Delta (24 V) | 5.1% | 5.2% |
Net Delta (48 V) | 6.5% | 6.5% |
Test Converter | Weighted Energy Efficiency (%) | Net Delta Efficiency (Δ% |
---|---|---|
AC | 68.0% | |
DC (24 V) | 48.0% | −20.0% |
DC (48 V) | 33.5% | −34.5% |
Test Converter | Weighted Energy Efficiency (%) | Net Delta Efficiency (Δ%) |
---|---|---|
AC | 63.7% | |
DC (24 V) | 67.0% | +3.3% |
AC/DC | DC/DC | Delta Efficiencies | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Smart Plug ID | Appliance | Test Conv. | Peak Eff. (%) | Eff. at Full Load (%) | Eff. in Data-Sheet (%) | Wt. E. Eff. (%) | Test Conv. | Peak Eff. (%) | Eff. at Full Load (%) | Eff. in Data-Sheet (%) | Wt. E. Eff. (%) | Delta Peak Eff. (%) | Delta Eff. at Full Load (%) | Delta Eff. Data Sheet (%) | Delta Net Eff. (%) |
Smart | Netgear | Conv. 1 | 86.9 | 85.8 | 88.5 | 80.5 | Conv. 2 | 85.6 | 85.5 | 89.0 | 67.1 | −1.3 | −0.3 | 0.5 | −13.4 |
Plug 1 | WNR2000 v3 | ||||||||||||||
Smart | HP Laptop | Conv. 3 | 86.9 | 86.5 | - | 84.2 | Conv. 4 | 93.2 | 91.0 | >88.0 | 92.8 | 6.3 | 4.5 | - | 8.6 |
Plug 2 | |||||||||||||||
Smart | Microsoft | Conv. 5 | 89.0 | 86.2 | - | 88.8 | Conv. 6 | 92.7 | 89.3 | >88.0 | 88.3 | 3.7 | 3.1 | - | −0.6 |
Plug 3 | Laptop 1 | ||||||||||||||
Smart | Microsoft | Conv. 5 | 89.0 | 86.2 | - | 88.3 | Conv. 6 | 92.7 | 89.3 | >88.0 | 86.1 | 3.7 | 3.1 | - | −2.3 |
Plug 4 | Laptop 2 | ||||||||||||||
Smart | Acer Monitor | Conv. 7 | 76.0 | 76.0 | 78.0 | 59.5 | Conv. 8 | 76.4 | 76.3 | 78.0 | 64.6 | 0.4 | 0.3 | 0.0 | 5.1 |
Plug 10 | CB421HYK | Conv. 9 | 80.0 | 80.0 | 78.0 | 66.0 | 4.0 | 4.0 | 0.0 | 6.5 | |||||
Smart | Dell Monitor | Conv. 10 | - | - | 85.0 | 68.0 | Conv. 11 | - | - | 82.0 | 48.0 | - | - | −3.0 | −20.0 |
Plug 11 | P2415Qp | Conv. 12 | - | - | 82.0 | 33.5 | - | - | −3.0 | −34.5 | |||||
Smart | Phillips | Conv. 7 | 76.0 | 76.0 | 78.0 | 61.4 | Conv. 8 | 76.4 | 76.3 | 78.0 | 66.5 | 0.4 | 0.3 | 0.0 | 5.2 |
Plug 17 | Monitor 288P6L | Conv. 9 | 80.0 | 80.0 | 78.0 | 67.8 | 4.0 | 4.0 | 0.0 | 6.5 | |||||
Smart | Netgear RND- | Conv. 13 | - | - | 82.0 | 63.7 | Conv. 14 | - | - | 77.0 | 67.0 | ||||
Plug 20 | 6C/RN31600 | - | - | −5.0 | 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.; Duggan, G.; Frank, S.; Gerber, D.; Zimmerle, D. Endpoint Use Efficiency Comparison for AC and DC Power Distribution in Commercial Buildings. Energies 2021, 14, 5863. https://doi.org/10.3390/en14185863
Santos A, Duggan G, Frank S, Gerber D, Zimmerle D. Endpoint Use Efficiency Comparison for AC and DC Power Distribution in Commercial Buildings. Energies. 2021; 14(18):5863. https://doi.org/10.3390/en14185863
Chicago/Turabian StyleSantos, Arthur, Gerald Duggan, Stephen Frank, Daniel Gerber, and Daniel Zimmerle. 2021. "Endpoint Use Efficiency Comparison for AC and DC Power Distribution in Commercial Buildings" Energies 14, no. 18: 5863. https://doi.org/10.3390/en14185863
APA StyleSantos, A., Duggan, G., Frank, S., Gerber, D., & Zimmerle, D. (2021). Endpoint Use Efficiency Comparison for AC and DC Power Distribution in Commercial Buildings. Energies, 14(18), 5863. https://doi.org/10.3390/en14185863