Modified Modelling for Heat Like Equations within Caputo Operator
Abstract
1. Introduction
2. Definitions and Preliminaries
3. The Presentation of the Method
4. Implementation of the Method
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gao, H.; Liu, C.; He, C.; Xu, X.; Wu, S.; Li, Y. Performance analysis and working fluid selection of a supercritical organic Rankine cycle for low grade waste heat recovery. Energies 2012, 5, 3233–3247. [Google Scholar] [CrossRef]
- Glavatskaya, Y.; Podevin, P.; Lemort, V.; Shonda, O.; Descombes, G. Reciprocating expander for an exhaust heat recovery rankine cycle for a passenger car application. Energies 2012, 5, 1751–1765. [Google Scholar] [CrossRef]
- Fu, B.; Ouyang, C.; Li, C.; Wang, J.; Gul, E. An improved mixed integer linear programming approach based on symmetry diminishing for unit commitment of hybrid power system. Energies 2019, 12, 833. [Google Scholar] [CrossRef]
- D’agostino, D.; Zangheri, P.; Castellazzi, L. Towards nearly zero energy buildings in Europe: A focus on retrofit in non-residential buildings. Energies 2017, 10, 117. [Google Scholar] [CrossRef]
- Bornoff, R. Extraction of boundary condition independent dynamic compact thermal models of LEDs—A delphi4LED methodology. Energies 2019, 12, 1628. [Google Scholar] [CrossRef]
- Prince, M.; Vigeant, M.; Nottis, K. Development of the heat and energy concept inventory: Preliminary results on the prevalence and persistence of engineering students’ misconceptions. J. Eng. Educ. 2012, 101, 412–438. [Google Scholar] [CrossRef]
- Khan, H.; Shah, R.; Arif, M.; Bushnaq, S. The Chebyshev Wavelet Method (CWM) for the Numerical Solution of Fractional HIV Infection of CD4+T Cells Model. International. J. Appl. Comput. Math. 2020, 6, 1–17. [Google Scholar]
- Kuo, P.H.; Huang, C.J. A high precision artificial neural networks model for short-term energy load forecasting. Energies 2018, 11, 213. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Mohammad, G.; Mustafa, M.T.; Zaman, F.D. Adomian decomposition method for a nonlinear heat equation with temperature dependent thermal properties. Math. Probl. Eng. 2009, 2009. [Google Scholar] [CrossRef]
- Sarwar, S.; Alkhalaf, S.; Iqbal, S.; Zahid, M.A. A note on optimal homotopy asymptotic method for the solutions of fractional order heat-and wave-like partial differential equations. Comput. Math. Appl. 2015, 70, 942–953. [Google Scholar] [CrossRef]
- Khan, H.; Shah, R.; Kumam, P.; Arif, M. Analytical Solutions of Fractional-Order Heat and Wave Equations by the Natural Transform Decomposition Method. Entropy 2019, 21, 597. [Google Scholar] [CrossRef]
- Secer, A. Approximate analytic solution of fractional heat-like and wave-like equations with variable coefficients using the differential transforms method. Adv. Differ. Equ. 2012, 2012, 198. [Google Scholar] [CrossRef][Green Version]
- Liu, C.F.; Kong, S.S.; Yuan, S.J. Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem. Therm. Sci. 2013, 17, 715–721. [Google Scholar] [CrossRef]
- Shou, D.H.; He, J.H. Beyond Adomian method: The variational iteration method for solving heat-like and wave-like equations with variable coefficients. Phys. Lett. A 2008, 372, 233–237. [Google Scholar] [CrossRef]
- Batiha, B.; Noorani, M.S.M.; Hashim, I.; Batiha, K. Numerical simulations of systems of PDEs by variational iteration method. Phys. Lett. A 2008, 372, 822–829. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The variational iteration method for solving linear and nonlinear systems of PDEs. Comput. Math. Appl. 2007, 54, 895–902. [Google Scholar] [CrossRef]
- Khan, H.; Shah, R.; Kumam, P.; Baleanu, D.; Arif, M. An efficient analytical technique, for the solution of fractional-order telegraph equations. Mathematics 2019, 7, 426. [Google Scholar] [CrossRef]
- Shah, R.; Khan, H.; Kumam, P.; Arif, M.; Baleanu, D. Natural transform decomposition method for solving fractional-order partial differential equations with proportional delay. Mathematics 2019, 7, 532. [Google Scholar] [CrossRef]
- Jan, R.; Xiao, Y. Effect of partial immunity on transmission dynamics of dengue disease with optimal control. Math. Methods Appl. Sci. 2019, 42, 1967–1983. [Google Scholar] [CrossRef]
- Jan, R.; Xiao, Y. Effect of pulse vaccination on dynamics of dengue with periodic transmission functions. Adv. Differ. Equ. 2019, 1, 368. [Google Scholar] [CrossRef]
- Duangpithak, S. Variational iteration method for special nonlinear partial differential equations. Int. J. Math. Anal. 2012, 6, 1071–1077. [Google Scholar]
- Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; With a Preface by Yves Cherruault. Fundamental Theories of Physics; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Adomian, G. The diffusion-Brusselator equation. Comput. Math. Appl. 1995, 29, 1–3. [Google Scholar] [CrossRef]
- Eltayeb, H.; Bachar, I.; Kılıçman, A. On conformable double laplace transform and one dimensional fractional coupled burgers’ equation. Symmetry 2019, 11, 417. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Y.T.; Newman, S.A.; Alber, M. Application of discontinuous Galerkin methods for reaction-diffusion systems in developmental biology. J. Sci. Comput. 2009, 40, 391–418. [Google Scholar] [CrossRef]
- Abdou, M.A. Approximate solutions of system of PDEEs arising in physics. Int. J. Nonlinear Sci 2011, 12, 305–312. [Google Scholar]
- Quintana-Murillo, J.; Yuste, S.B. A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations. Eur. Phys. J. Spec. Top. 2013, 222, 1987–1998. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Sun, Z.Z.; Liao, H.L. Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 2014, 265, 195–210. [Google Scholar] [CrossRef]
- Goufo, E.F.D. Fractal and fractional dynamics for a 3D autonomous and two-wing smooth chaotic system. Alex. Eng. J. 2020. [Google Scholar] [CrossRef]
- Yuste, S.B.; Quintana-Murillo, J. A finite difference method with non-uniform timesteps for fractional diffusion equations. Comput. Phys. Commun. 2012, 183, 2594–2600. [Google Scholar] [CrossRef]
- Priya, G.S.; Prakash, P.; Nieto, J.J.; Kayar, Z. Higher-order numerical scheme for the fractional heat equation with Dirichlet and Neumann boundary conditions. Numer. Heat Transf. Part B Fundam. 2013, 63, 540–559. [Google Scholar] [CrossRef]
- Mustapha, K. An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA J. Numer. Anal. 2011, 31, 719–739. [Google Scholar] [CrossRef]
- Gao, G.H.; Sun, Z.Z. A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 2011, 230, 586–595. [Google Scholar] [CrossRef]
- Shah, R.; Khan, H.; Arif, M.; Kumam, P. Application of Laplace–Adomian decomposition method for the analytical solution of third-order dispersive fractional partial differential equations. Entropy 2019, 21, 335. [Google Scholar] [CrossRef]
- Mahmood, S.; Shah, R.; Arif, M. Laplace Adomian Decomposition Method for Multi Dimensional Time Fractional Model of Navier-Stokes Equation. Symmetry 2019, 11, 149. [Google Scholar] [CrossRef]
- Shah, R.; Khan, H.; Baleanu, D.; Kumam, P.; Arif, M. A novel method for the analytical solution of fractional Zakharov–Kuznetsov equations. Adv. Differ. Equ. 2019, 2019, 1–14. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Shah, R.; Khan, H.; Arif, M. Some analytical and numerical investigation of a family of fractional-order Helmholtz equations in two space dimensions. Math. Methods Appl. Sci. 2020, 43, 199–212. [Google Scholar] [CrossRef]
- Shah, R.; Khan, H.; Kumam, P.; Arif, M. An analytical technique to solve the system of nonlinear fractional partial differential equations. Mathematics 2019, 7, 505. [Google Scholar] [CrossRef]
- Saad, K.M.; Al-Shomrani, A.A. An application of homotopy analysis transform method for Riccati differential equation of fractional order. J. Fract. Calc. Appl. 2016, 7, 61–72. [Google Scholar]
- Prakash, A.; Verma, V.; Kumar, D.; Singh, J. Analytic study for fractional coupled Burger’s equations via Sumudu transform method. Nonlinear Eng. 2018, 7, 323–332. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef]
- Jafari, H. Iterative Methods for Solving System of Fractional Differential. Ph.D. Thesis, Pune University, Pune City, India, 2006. [Google Scholar]
- Bhalekar, S.; Daftardar-Gejji, V. Solving evolution equations using a new iterative method. Numer. Methods Partial Differ. Equ. Int. J. 2010, 26, 906–916. [Google Scholar] [CrossRef]
- Jafari, H.; Nazari, M.; Baleanu, D.; Khalique, C.M. A new approach for solving a system of fractional partial differential equations. Comput. Math. Appl. 2013, 66, 838–843. [Google Scholar] [CrossRef]
- Yan, L. Numerical solutions of fractional Fokker-Planck equations using iterative Laplace transform method. Abstr. Appl. Anal. 2013, 2013. [Google Scholar] [CrossRef]
- Sharma, S.C.; Bairwa, R.K. Closed Form Solution for the Time-Fractional Schrödinger Equation via Laplace Transform. Int. J. Math. Its Appl. 2015, 3, 53–62. [Google Scholar]
- Sharma, S.C.; Bairwa, R.K. A reliable treatment of Iterative Laplace transform method for fractional Telegraph equations. Annal. Pure Appl. Math 2014, 9, 81–89. [Google Scholar]
- Sharma, S.C.; Bairwa, R.K. Iterative Laplace transform method for solving fractional heat and wave-like equations. Res. J. Math. Stat. Sci. 2015, 3, 4–9. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, H.; Khan, A.; Al-Qurashi, M.; Shah, R.; Baleanu, D. Modified Modelling for Heat Like Equations within Caputo Operator. Energies 2020, 13, 2002. https://doi.org/10.3390/en13082002
Khan H, Khan A, Al-Qurashi M, Shah R, Baleanu D. Modified Modelling for Heat Like Equations within Caputo Operator. Energies. 2020; 13(8):2002. https://doi.org/10.3390/en13082002
Chicago/Turabian StyleKhan, Hassan, Adnan Khan, Maysaa Al-Qurashi, Rasool Shah, and Dumitru Baleanu. 2020. "Modified Modelling for Heat Like Equations within Caputo Operator" Energies 13, no. 8: 2002. https://doi.org/10.3390/en13082002
APA StyleKhan, H., Khan, A., Al-Qurashi, M., Shah, R., & Baleanu, D. (2020). Modified Modelling for Heat Like Equations within Caputo Operator. Energies, 13(8), 2002. https://doi.org/10.3390/en13082002