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Abstract: One of the most important research topics in smart grid technology is load forecasting,
because accuracy of load forecasting highly influences reliability of the smart grid systems. In the
past, load forecasting was obtained by traditional analysis techniques such as time series analysis
and linear regression. Since the load forecast focuses on aggregated electricity consumption patterns,
researchers have recently integrated deep learning approaches with machine learning techniques.
In this study, an accurate deep neural network algorithm for short-term load forecasting (STLF) is
introduced. The forecasting performance of proposed algorithm is compared with performances of
five artificial intelligence algorithms that are commonly used in load forecasting. The Mean Absolute
Percentage Error (MAPE) and Cumulative Variation of Root Mean Square Error (CV-RMSE) are used
as accuracy evaluation indexes. The experiment results show that MAPE and CV-RMSE of proposed
algorithm are 9.77% and 11.66%, respectively, displaying very high forecasting accuracy.

Keywords: artificial intelligence; convolutional neural network; deep neural networks; short-term
load forecasting

1. Introduction

Nowadays, there is a persistent need to accelerate development of low-carbon energy technologies
in order to address the global challenges of energy security, climate change, and economic growth.
The smart grids [1] are particularly important as they enable several other low-carbon energy
technologies [2], including electric vehicles, variable renewable energy sources, and demand
response. Due to the growing global challenges of climate, energy security, and economic growth,
acceleration of low-carbon energy technology development is becoming an increasingly urgent issue [3].
Among various green technologies to be developed, smart grids are particularly important as they are
key to the integration of various other low-carbon energy technologies, such as power charging for
electric vehicles, on-grid connection of renewable energy sources, and demand response.

The forecast of electricity load is important for power system scheduling adopted by energy
providers [4]. Namely, inefficient storage and discharge of electricity could incur unnecessary
costs, while even a small improvement in electricity load forecasting could reduce production costs
and increase trading advantages [4], particularly during the peak electricity consumption periods.
Therefore, it is important for electricity providers to model and forecast electricity load as accurately as
possible, in both short-term [5–12] (one day to one month ahead) and medium-term [13] (one month
to five years ahead) periods.

With the development of big data and artificial intelligence (AI) technology, new machine learning
methods have been applied to the power industry, where large electricity data need to be carefully
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managed. According to the Mckinsey Global Institute [14], the AI could be applied in the electricity
industry for power demand and supply prediction, because a power grid load forecast affects many
stakeholders. Based on the short-term forecast (1–2 days ahead), power generation systems can
determine which power sources to access in the next 24 h, and transmission grids can timely assign
appropriate resources to clients based on current transmission requirements. Moreover, using an
appropriate demand and supply forecast, electricity retailers can calculate energy prices based on
estimated demand more efficiently.

The powerful data collection and analysis technologies are becoming more available on the
market, so power companies are beginning to explore a feasibility of obtaining more accurate results
using AI in short-term load forecasts. For instance, in the United Kingdom (UK), the National Grid
is currently working with the DeepMind [15,16], a Google-owned AI team, which is used to predict
the power supply and demand peaks in the UK based on the information from smart meters and by
incorporating weather-related variables. This cooperation tends to maximize the use of intermittent
renewable energy and reduce the UK national energy usage by 10%. Therefore, it is expected that
electricity demand and supply could be predicted and managed in real time through deep learning
technologies and machines, optimizing load dispatch, and reducing operation costs.

The load forecasting can be categorized by the length of forecast interval. Although there is no
official categorization in the power industry, there are four load forecasting types [17]: very short term
load forecasting (VSTLF), short term load forecasting (STLF), medium term load forecasting (MTLF),
and long term load forecasting (LTLF). The VSTLF typically predicts load for a period less than 24 h,
STLF predicts load for a period greater than 24 h up to one week, MTLF forecasts load for a period
from one week up to one year, and LTLF forecasts load performance for a period longer than one year.
The load forecasting type is chosen based on application requirements. Namely, VSTLF and STLF are
applied to everyday power system operation and spot price calculation, so the accuracy requirement
is much higher than for a long term prediction. The MTLF and LTLF are used for prediction of power
usage over a long period of time, and they are often referenced in long-term contracts when determining
system capacity, costs of operation and system maintenance, and future grid expansion plans. Thus,
if the smart grids are integrated with a high percentage of intermittent renewable energy, load forecasting
will be more intense than that of traditional power generation sources due to the grid stability.

In addition, the load forecasting can be classified by calculation method into statistical methods
and computational intelligence (CI) methods. With recent developments in computational science
and smart metering, the traditional load forecasting methods have been gradually replaced by AI
technology. The smart meters for residential buildings have become available on the market around
2010, and since then, various studies on STLF for residential communities have been published [18,19].
When compared with the traditional statistical forecasting methods, the ability to analyze large amounts
of data in a very short time frame using AI technology has displayed obvious advantages [10].

Some of frequently used load forecast methods include linear regression [5,6,20], autoregressive
methods [7,21], and artificial neural networks [9,22,23]. Furthermore, clustering methods were also
proposed [24]. In [20,25] similar time sequences were matched while in [24] the focus was on customer
classification. A novel approach based on the support vector machine was proposed in [26,27].
The other forecasting methods, such as exponential smoothing and Kalman filters, were also applied
in few studies [28]. A careful literature review of the latest STLF method can be found in [8]. In [13],
it was shown that accuracy of STLF is influenced by many factors, such as temperature, humidity,
wind speed, etc. In many studies, the artificial neural network (ANN) forecasting methods [9–11,29]
have been proven to be more accurate than traditional statistical methods, and accuracy of different
ANN methods has been reviewed by many researchers [1,30]. In [31], a multi-model partitioning
algorithm (MMPA) for short-term electricity load forecasting was proposed. According to the obtained
experimental results, the MMPA method is better than autoregressive integrated moving average
(ARIMA) method. In [17], authors used the ANN-based method reinforced by wavelet denoising
algorithm. The wavelet method was used to factorize electricity load data into signals with different
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frequencies. Therefore, the wavelet denosing algorithm provides good electricity load data for neural
network training and improves load forecasting accuracy.

In this study, a new load forecasting model based on a deep learning algorithm is presented.
The forecasting accuracy of proposed model is within the requested range, and model has advantages of
simplicity and high forecasting performance. The major contributions of this paper are: (1) introduction
of a precise deep neural network model for energy load forecasting; (2) comparison of performances of
several forecasting methods; and, (3) creation of a novel research direction in time sequence forecasting
based on convolutional neural networks.

2. Methodology of Artificial Neural Networks

Artificial neural networks (ANNs) are computing systems inspired by the biological neural
networks. The general structure of ANNs contains neurons, weights, and bias. Based on their powerful
molding ability, ANNs are still very popular in the machine learning field. However, there are many
ANN structures used in the machine learning problems, but the Multilayer Perceptron (MLP) [32] is
the most commonly used ANN type. The MLP is a fully connected structure artificial neural network.
The structure of MLP is shown in Figure 1. In general, the MLP consists of one input layer, one or more
hidden layers, and one output layer. However, the MLP network presented in Figure 1 is the most
common MLP structure, which has only one hidden layer. In the MLP, all the neurons of the previous
layer are fully connected to the neurons of the next layer. In Figure 1, x1, x2, x3, . . . , x6 are the neurons
of the input layer, h1, h2, h3, h4 are the neurons of the hidden layer, and y1, y2, y3, y4 are the neurons of
the output layer. In the case of energy load forecasting, the input is the past energy load, and the output
is the future energy load. Although, the MLP structure is very simple, it provides good results in many
applications. The most commonly used algorithm for MLP training is the backpropagation algorithm.
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Figure 1. The Multilayer Perceptron (MLP) structure.

Although MLPs are very good in modelling and patter recognition, the convolutional neural
networks (CNNs) provide better accuracy in highly non-linear problems, such as energy load
forecasting. The CNN uses the concept of weight sharing. The one-dimensional convolution and
pooling layer are presented in Figure 2. The lines in the same color denote the same sharing weight,
and sets of the sharing weights can be treated as kernels. After the convolution process, the inputs x1,
x2, x3, . . . , x6 are transformed to the feature maps c1, c2, c3, c4. The next step in Figure 2 is pooling,
wherein the feature map of convolution layer is sampled and its dimension is reduced. For instance, in
Figure 2 dimension of the feature map is 4, and after pooling process that dimension is reduced to 2.
The process of pooling is an important procedure to extract the important convolution features.
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The other popular solution of the forecasting problem is Long Short Term Memory network
(LSTM) [33]. The LSTM is a recurrent neural network, which has been used to solve many time
sequence problems. The structure of LSTM is shown in Figure 3, and its operation is illustrated by the
following equations:

ft = σ(W f · [ht−1, xt] + b f ) (1)

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

Ct = ft × Ct−1 + it × C̃t (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot × tanh(Ct) (6)

where xt is the network input, and ht is the output of hidden layer, σ denotes the sigmoidal function,
Ct is the cell state, and C̃t denotes the candidate value of the state. Besides, there are three gates in
LSTM: it is the input gate, ot is the output gate, and ft is the forget gate. The LSTM is designed for
solving the long-term dependency problem. In general, the LSTM provides good forecasting results.
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3. The Proposed Deep Neural Network

The structure of the proposed deep neural network DeepEnergy is shown in Figure 4. Unlike the
general forecasting method based on the LSTM, the DeepEnergy uses the CNN structure. The input
layer denotes the information on past load, and the output values represent the future energy load.
There are two main processes in DeepEnergy, feature extraction, and forecasting. The feature extraction
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in DeepEnergy is performed by three convolution layers (Conv1, Conv2, and Conv3) and three pooling
layers (Pooling1, Pooling2, and Pooling3). The Conv1–Conv3 are one-dimensional (1D) convolutions,
and the feature maps are all activated by the Rectified Linear Unit (ReLU) function. Besides, the kernel
sizes of Conv1, Conv2, and Conv3 are 9, 5, 5, respectively, and the depths of the feature maps are 16, 32,
64, respectively. The pooling method of Pooling1 to Pooling3 is the max pooling, and the pooling size
is equal to 2. Therefore, after the pooling process, the dimension of the feature map will be divided by
2 to extract the important features of the deeper layers.

In the forecasting, the first step is to flat the Pooling3 layer into one dimension and construct
a fully connected structure between Flatten layer and Output layer. In order to fit the values previously
normalized in the range [0, 1], the sigmoidal function is chosen as an activation function of the output
layer. Furthermore, in order to overcome the overfitting problem, the dropout technology [34] is
adopted in the fully connected layer. Namely, the dropout is an efficient way to prevent overfitting in
artificial neural network. During the training process, neurons are randomly “dead”. As shown in
Figure 4, the output values of chosen neurons (the gray circles) are equal to zero in certain training
iteration. The chosen neurons are randomly changed during training process.

Furthermore, the flowchart of proposed DeepEnergy is represented in Figure 5. Firstly, the raw
energy load data are loaded into the memory. Then, the data preprocessing is executed and data are
normalized in the range [0, 1] in order to fit the characteristic of the machine learning model. For the
purpose of validation of DeepEnergy generalization performance, the data are split into training data
and testing data. The training data are used for training of proposed model. After the training process,
the proposed DeepEnergy network is created and initialized. Before the training, the training data
are randomly shuffled to force the proposed model to learn complicated relationships between input
and output data. The training data are split into several batches. According to the order of shuffled
data, the model is trained on all of the batches. During the training process, if the desired Mean Square
Error (MSE) is not reached in the current epoch, the training will continue until the maximal number
of epochs or desired MSE is reached. On the contrary, if the maximal number of epochs is reached,
then the training process will stop regardless the MSE value. Final performances are evaluated to
demonstrate feasibility and practicability of the proposed method.
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4. Experimental Results

In the experiment, the USA District public consumption dataset and electric load dataset from
2016 provided by the Electric Reliability Council of Texas were used. Since then, the support vector
machine (SVM) [35] is a popular machine learning technology, in experiment; the radial basis function
(RBF) kernels of SVM were chosen to demonstrate the SVM performance. Besides, the random
forest (RF) [36], decision tree (DT) [37], MLP, LSTM, and proposed DeepEnergy network were also
implemented and tested. The results of load forecasting by all of the methods are shown in Figures 6–11.
In the experiment, the training data were two-month data, and test data were one-month data. In order
to evaluate the performances of all listed methods, the dataset was divided into 10 partitions. In the
first partition, training data consisted of energy load data collected in January and February 2016, and
test data consisted of data collected in March 2016. In the second partition, training data were data
collected in February and March 2016, and test data were data collected in April 2016. The following
partitions can be deduced by the same analogy.

In Figures 6–11, red curves denote the forecasting results of the corresponding models, and
blue curves represent the ground truth. The vertical axes represent the energy load (MWh), and the
horizontal axes denote the time (hour). The energy load from the past (24 × 7) h was used as an
input of the forecasting model, and predicted energy load in the next (24 × 3) h was an output of the
forecasting model. After the models received the past (24 × 7) h data, they forecasted the next (24 × 3)
h energy load, red curves in Figures 6–11. Besides, the correct information is illustrated by blue curves.
The differences between red and blue curves denote the performances of the corresponding models.
For the sake of comparison fairness, testing data were not used during the training process of models.
According to the results presented in Figures 6–11, the proposed DeepEnergy network has the best
prediction performance among all of the models.
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In order to evaluate the performance of forecasting models more accurately, the Mean Absolute
Percentage Error (MAPE) and Cumulative Variation of Root Mean Square Error (CV-RMSE) were
employed. The MAPE and CV-RMSE are defined by Equations (7) and (8), respectively, where yn

denotes the measured value, ŷn is the estimated value, and N represents the sample size.

MAPE =
1
N

N

∑
n=1

∣∣∣∣yn − ŷn

yn

∣∣∣∣ (7)

CV − RMSE =

√
1
N

N
∑

n=1

(
yn−ŷn

yn

)2

1
N

N
∑

n=1
yn

(8)

The detailed experimental results are presented numerically in Tables 1 and 2. As shown in
Tables 1 and 2, the MAPE and CV-RMSE of the DeepEnergy model are the smallest and the goodness
of error is the best among all models, namely, average MAPE and CV-RMSE are 9.77% and 11.65%,
respectively. The MAPE of MLP model is the largest among all of the models; an average error is
about 15.47%. On the other hand, the CV-RMSE of SVM model is the largest among all models; an
average error is about 17.47%. According to the average MAPE and CV-RMSE values, the electric load
forecasting accuracy of tested models in descending order is as follows: DeepEnergy, RF, LSTM, DT,
SVM, and MLP.

Table 1. The experimental results in terms of Mean Absolute Percentage Error (MAPE) given
in percentages.

Test SVM RF DT MLP LSTM DeepEnergy

#1 7.327408 7.639133 8.46043 9.164315 10.40804813 7.226127
#2 7.550818 8.196129 10.23476 11.14954 9.970662683 8.244051
#3 13.07929 10.11102 12.14039 19.99848 14.85568499 11.00656
#4 16.15765 17.27957 19.86511 22.45493 12.83487893 12.17574
#5 5.183255 6.570061 8.50582 15.01856 5.479091542 5.41808
#6 10.33686 9.944028 11.11948 10.94331 11.7681534 9.070998
#7 8.934657 6.698508 8.634132 7.722149 7.583802292 9.275215
#8 18.5432 16.09926 17.17215 16.93843 15.6574951 13.2776
#9 49.97551 17.9049 21.29354 29.06767 16.31443679 11.18214

#10 11.20804 8.221766 10.68665 12.20551 8.390061493 10.80571
Average 14.82967 10.86644 12.81125 15.46629 11.32623153 9.768222

Table 2. The experimental results in terms of Cumulative Variation of Root Mean Square Error
(CV-RMSE) given in percentages.

Test SVM RF DT MLP LSTM DeepEnergy

#1 9.058992 9.423908 10.57686 10.65546 12.16246177 8.948922
#2 10.14701 10.63412 12.99834 13.91199 12.19377007 10.46165
#3 17.02552 12.42314 14.58249 23.2753 16.9291218 13.30116
#4 21.22162 21.1038 24.48298 23.63544 14.13596516 14.63439
#5 6.690527 7.942747 10.10017 15.44461 6.334195125 6.653999
#6 11.88856 11.6989 13.39033 12.20149 12.96057349 10.74021
#7 10.77881 7.871596 10.35254 8.716806 8.681353107 10.85454
#8 19.49707 17.09079 18.95726 17.73124 16.55737557 14.51027
#9 54.58171 19.91185 24.84425 29.37466 17.66342548 13.01906

#10 13.80167 10.15117 13.06351 13.39278 10.20235927 13.47003
Average 17.46915 12.8252 15.33487 16.83398 12.78206008 11.65942
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It is obvious that red curve in Figure 11, which denotes the DeepEnergy algorithm, is better than
other curves in Figures 6–10, which further verifies that the proposed DeepEnergy algorithm has the
best prediction performance. Therefore, it is proven that the DeepEnergy STLF algorithm proposed
in the paper is practical and effective. Although the LSTM has good performance in time sequence
problems, in this study, the reduction of training loss is still not fast enough to handle this forecasting
problem because the size of input and output data is too large for the traditional LSTM neural network.
Therefore, the traditional LSTM is not suitable for this kind of prediction. Finally, the experimental
results show that proposed DeepEnergy network provides the best results in energy load forecasting.

5. Discussion

The traditional machine learning methods, such as SVM, random forest, and decision tree, are
widely used in many applications. In this study, these methods also provide acceptable results.
In aspect of SVM, the supporting vectors are mapped into a higher dimensional space by the kernel
function. Therefore, the selection of kernel function is very important. In order to achieve the goal
of nonlinear energy load forecasting, the RBF is chosen as a SVM kernel. When compared with the
SVM, the learning concept of decision tree is much simpler. Namely, the decision tree is a flowchart
structure easy to understand and interpret. However, only one decision tree does not have the ability
to solve complicated problems. Therefore, the random forest, which represents the combination of
numerous decision trees, provides the model ensemble solution. In this paper, the experimental
results of random forest are better than those of decision tree and SVM, which proves that the model
ensemble solution is effective in the energy load forecasting. In aspect of the neural networks, the
MLP is the simplest ANN structure. Although the MLP can model the nonlinear energy forecasting
task, its performance in this experiment is not outstanding. On the other hand, the LSTM considers
data relationships in time steps during the training. According to the result, the LSTM can deal with
the time sequence problems, and the forecasting trend is marginally correct. However, the proposed
CNN structure, named the DeepEnergy, has the best results in the experiment. The experiments
demonstrate that the most important feature can be extracted by the designed 1D convolution and
pooling layers. This verification also proves the CNN structure is effective in the forecasting, and the
proposed DeepEnergy gives the outstanding results. This paper not only provides the comparison of
the traditional machine learning and deep learning methods, but also gives a new research direction in
the energy load forecasting.

6. Conclusions

This paper proposes a powerful deep convolutional neural network model (DeepEnergy) for energy
load forecasting. The proposed network is validated by experiment with the load data from the past
seven days. In the experiment, the data from coast area of the USA were used and historical electricity
demand from consumers was considered. According to the experimental results, the DeepEnergy
can precisely predict energy load in the next three days. In addition, the proposed algorithm was
compared with five AI algorithms that were commonly used in load forecasting. The comparison
showed that performance of DeepEnergy was the best among all tested algorithms, namely the
DeepEnergy had the lowest values of both MAPE and CV-RMSE. According to all of the obtained
results, the proposed method can reduce monitoring expenses, initial cost of hardware components,
and long-term maintenance costs in the future smart grids. Simultaneously, the results verify that
proposed DeepEnergy STLF method has strong generalization ability and robustness, thus it can
achieve very good forecasting performance.
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